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Abstract: In this paper, two kinds of occurrence mechanism on the phenomenon of concen-

tration and the formation of delta shock waves in the flux approximation limit of Riemann solutions

to the extended Chaplygin gas equations are analyzed. By phase plane analysis and generalized

characteristic analysis, we construct the Riemann solution to the extended Chaplygin gas equations

completely and obtain two results: on one hand, as the pressure vanishes, any two-shock Riemann

solution to the extended Chaplygin gas equations tends to a δ-shock solution to the transportation

equation; on the other hand, as the pressure approaches the generalized Chaplygin pressure, any

two-shock Riemann solution tends to a δ-shock solution to the generalized Chaplygin gas equations,

which generalize to the extended Chaplygin gas.
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1 Introduction

The extended Chaplygin gas equations can be expressed as
{

ρt + (ρu)x = 0,

(ρu)t + (ρu2 + P )x = 0,
(1.1)

where ρ, u and P represent the density, the velocity and the scalar pressure, respectively,
and

P = Aρn − B

ρα
, 1 ≤ n ≤ 3, 0 < α ≤ 1 (1.2)

with two parameters A,B > 0.
This model was proposed by Naji [1] to study the evolution of dark energy. For n = 2,

this model can also be seen as the magnetogasdynamics with generalized Chaplygin pressure
[2]. When B = 0 in (1.2), P = Aρn is the standard state equation for perfect fluid. Up
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to now, various kinds of theoretical models have been proposed to interpret the behavior of
dark energy. Specially, when n = 1 in (1.2), it reduces to the state equation for modified
Chaplygin gas, which was originally proposed by Benaoum in 2002 [3]. As an exotic fluid,
such a gas can explain the current accelerated expansion of the universe. Whereas when
A = 0 in (1.2), P = − B

ρα is called the pressure for the generalized Chaplygin gas [4].
Furthermore, when α = 1, P = −B

ρ
is called the pressure for (pure) Chaplygin gas which

was introduced by Chaplygin [5], Tsien [6] and von Karman [7] as a suitable mathematical
approximation for calculating the lifting force on a wing of an airplane in aerodynamics. It
has also been advertised as a possible model for dark energy [8].

When two parameters A, B → 0, the limit system of (1.1) with (1.2) formally becomes
the following transportation equations{

ρt + (ρu)x = 0,

(ρu)t + (ρu2)x = 0,
(1.3)

which is also called the zero-pressure gas dynamics, and can be used to describe some im-
portant physical phenomena, such as the motion of free particles sticking together under
collision and the formation of large scale structures in the universe [9–11].

The transportation equation (1.3) were studied extensively since 1994. The existence of
measure solutions of the Riemann problem was first proved by Bouchut [12] and the existence
of the global weak solutions was obtained by Brenier and Grenier [13] and Rykov and Sinai
[10]. Sheng and Zhang [14] discovered that the δ-shock and vacuum states do occur in the
Riemann solutions to the transportation equations (1.3) by the vanishing viscosity method.
Huang and Wang [15] proved the uniqueness of the weak solution when the initial data is a
Radon measure. Also see [14, 16–19] for more related results.

δ-shock is a kind of nonclassical nonlinear waves on which at least one of the state
variables becomes a singular measure. Korchinski [20] first introduced the concept of the
δ-function into the classical weak solution in his unpublished Ph. D. thesis. Tan, Zhang and
Zheng [21] considered some 1-D reduced system and discovered that the form of δ-functions
supported on shocks was used as parts in their Riemann solutions for certain initial data.
LeFloch et al. [22] applied the approach of nonconservative product to consider nonlinear
hyperbolic systems in the nonconservative form. Recently, the weak asymptotic method
was widely used to study the δ-shock wave type solution by Danilov and Shelkovich et al.
[23–25].

As for delta shock waves, one research focus is to explore the phenomena of concentration
and cavitation and the formation of delta shock waves and vacuum states in solutions. In
[26], Chen and Liu considered the Euler equations for isentropic fluids, i.e., in (1.1), they
took the prototypical pressure function as follows:

P = ε
ργ

γ
, γ > 1. (1.4)

They analyzed and identified the phenomena of concentration and cavitation and the forma-
tion of δ-shocks and vacuum states as ε → 0, which checked the numerical observation for
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the 2-D case by Chang, Chen and Yang [27, 28]. They also pointed out that the occurrence
of δ-shocks and vacuum states in the process of vanishing pressure limit can be regarded as
a phenomenon of resonance between the two characteristic fields. Moreover, they made a
further step to generalize this result to the nonisentropic fluids in [29]. Besides, the results
were extended to the relativistic Euler equations for polytropic gases in [30], the perturbed
Aw-Rascle model in [31], the magnetogasdynamics with generalized Chaplygin pressure in
[2], the modified Chaplygin gas equations in [32, 33], etc.

In this paper, we focus on the extended Chaplygin gas equations (1.1) to discuss the
phenomena of concentration and cavitation and the formation of delta shock waves and
vacuum states in Riemann solutions as the double parameter pressure vanishes wholly or
partly, which corresponds to a two parameter limit of Riemann solutions in contrast to the
previous works in [2, 26, 29–31]. Equivalently, we study the limit behavior of Riemann
solutions to the extended Chaplygin gas equations as the pressure vanishes, or tends to the
generalized Chaplygin pressure.

It is noticed that, When A, B → 0, system (1.1) with (1.2) formally becomes the
transportation equations (1.3). For fixed B, when A → 0, system (1.1) with (1.2) formally
becomes the generalized Chaplygin gas equations

{
ρt + (ρu)x = 0,

(ρu)t + (ρu2 − B
ρα )x = 0.

(1.5)

When α = 1, it is just the Chaplygin gas equations. In 1998, Brenier [34] first studied the 1-
D Riemann problem and obtained the solutions with concentration when initial data belongs
to a certain domain in the phase plane. Recently, Guo, Sheng and Zhang [35] abandoned this
constrain and constructively obtained the general solutions of the 1-D Riemann problem in
which the δ-shock wave developed. Moreover, in that paper, they also systematically studied
the 2-D Riemann problem for isentropic Chaplygin gas equations. In [36], Wang solved the
Riemann problem of (1.5) by the weak asymptotic method. It has been shown that, in their
results, δ-shocks do occur in the Riemann solutions, but vacuum states do not. For more
results about Chaplygin gas, one can refer to [37–40].

In this paper, we first solve the Riemann problem of system (1.1) with Riemann initial
data

(ρ, u)(x, 0) = (ρ±, u±), ±x > 0, (1.6)

where ρ± > 0, u± are arbitrary constants. With the phase plane analysis method, we
construct the Riemann solutions with four different structures: R1R2, R1S2, S1R2 and S1S2.

Then we analyze the formation of δ-shocks and vacuum states in the Riemann solutions
to the extended Chaplygin gas equations as the pressure vanishes. It is shown that, as
the pressure vanishes, any two-shock Riemann solution tends to a δ-shock solution to the
transportation equations, and the intermediate density between the two shocks tends to a
weighted δ-measure that forms the δ-shock; by contrast, any two-rarefaction-wave Riemann
solution tends to a two-contact-discontinuity solution to the transportation equations, and
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the nonvacuum intermediate state between the two rarefaction waves tends to a vacuum
state, even when the initial data stays away from the vacuum. As a result, the delta shocks for
the transportation equations result from a phenomenon of concentration, while the vacuum
states results from a phenomenon of cavitation in the vanishing pressure limit process. These
results are completely consistent with that in [26], and also cover those obtained in [2, 32, 33].

In addition, we also prove that as the pressure tends to the generalized Chaplygin
pressure (A → 0), any two-shock Riemann solution to the extended Chaplygin gas equations
tends to a δ-shock solution to the generalized Chaplygin gas equations, and the intermediate
density between the two shocks tends to a weighted δ-measure that forms the δ-shock.
Consequently, the delta shocks for the generalized Chaplygin gas equations result from a
phenomenon of concentration in the partly vanishing pressure limit process.

From the above analysis, we can find two kinds of occurrence mechanism on the phe-
nomenon of concentration and the formation of delta shock wave. On one hand, since the
strict hyperbolicity of the limiting system (1.3) fails, see Section 4, the delta shock wave
forms in the limit process as the pressure vanishes. This is consistent with those results
obtained in [2, 26, 29–32]. On the other hand, the strict hyperbolicity of the limiting system
(1.5) is preserved, see Section 5, the formation of delta shock waves still occur as the pressure
partly vanishes. In this regard, it is different from those in [2, 26, 29–32]. In any case, the
phenomenon of concentration and the formation of delta shock wave can be regarded as a
process of resonance between two characteristic fields.

The paper is organized as follows. In Section 2, we restate the Riemann solutions to
transportation equations (1.3) and the generalized Chaplygin gas equations (1.5). In Section
3, we investigate the Riemann problem of the extended Chaplygin gas equations (1.1)–(1.2)
and examine the dependence of the Riemann solutions on the two parameters A,B > 0.
In Section 4, we analyze the limit of Riemann solutions to the extended Chaplygin gas
equations (1.1)–(1.2) with (1.6) as the pressure vanishes. In Section 5, we discuss the limit
of Riemann solutions to the extended Chaplygin gas equations (1.1)–(1.2) with (1.6) as the
pressure approaches to the generalized Chaplygin pressure. Finally, conclusions are drawn
and discussions are made in Section 6.

2 Preliminaries

2.1 Riemann Problem for the Transportation Equations

In this section, we restate the Riemann solutions to the transportation equations (1.3)
with initial data (1.6), see [14] for more details.

The transportation equations (1.3) have a double eigenvalue λ = u and only one right
eigenvectors ~r = (1, 0)T . Furthermore, we have ∇λ · ~r = 0, which means that λ is linearly
degenerate. The Riemann problem (1.3) and (1.6) can be solved by contact discontinuities,
vacuum or δ-shocks connecting two constant states (ρ±, u±).

By taking the self-similar transformation ξ = x
t
, the Riemann problem is reduced to the
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boundary value problem of the ordinary differential equations:
{
−ξρξ + (ρu)ξ = 0,

−ξ(ρu)ξ + (ρu2)ξ = 0
(2.1)

with (ρ, u)(±∞) = (ρ±, u±).
For the case u− < u+, there is no characteristic passing through the region {ξ : u− <

ξ < u+}, so the vacuum should appear in the region. The solution can be expressed as

(ρ, u)(ξ) =





(ρ−, u−), −∞ < ξ ≤ u−,

(0, ξ), u− < ξ < u+,

(ρ+, u+), u+ ≤ ξ < ∞.

(2.2)

For the case u− = u+, it is easy to see that the constant states (ρ±, u±) can be connected
by a contact discontinuity.

For the case u− > u+, a solution containing a weighted δ-measure supported on a curve
will be constructed. Let x = x(t) be a discontinuity curve, we consider a piecewise smooth
solution of (1.3) in the form

(ρ, u)(x, t) =





(ρ−, u−), x < x(t),
(w(t)δ(x− x(t)), uδ(t)), x = x(t),
(ρ+, u+), x > x(t).

(2.3)

To define the measure solutions, a two-dimensional weighted δ-measure p(s)δS supported
on a smooth curve S = {(x(s), t(s)) : a < s < b} can be defined as

〈p(s)δS , ψ(x(s), t(s))〉 =
∫ b

a

p(s)ψ(x(s), t(s))
√

x′(s)2 + t′(s)2ds (2.4)

for any ψ ∈ C∞
0 (R×R+).

For convenience, we usually select the parameter s = t and use w(t) =
√

1 + x′(t)2p(t)
to denote the strength of the δ shock wave from now on.

As shown in [14], for any ψ ∈ C∞
0 (R × R+), the δ-measure solution (2.3) constructed

above satisfies {
〈ρ, ψt〉+ 〈ρu, ψx〉 = 0,

〈ρu, ψt〉+ 〈ρu2, ψx〉 = 0,
(2.5)

in which

〈ρ, ψ〉 =
∫ ∞

0

∫ ∞

−∞
ρ0ψdxdt + 〈w1(·)δS , ψ(·, ·)〉,

〈ρu, ψ〉 =
∫ ∞

0

∫ ∞

−∞
ρ0u0ψdxdt + 〈w2(·)δS , ψ(·, ·)〉,

where
ρ0 = ρ− + [ρ]H(x− σt), ρ0u0 = ρ−u− + [ρu]H(x− σt)



No. 4 Concentration in the flux approximation limit of Riemann solutions to the extended · · · · · · 509

and
w1(t) =

t√
1 + σ2

(σ[ρ]− [ρu]), w2(t) =
t√

1 + σ2
(σ[ρu]− [ρu2]).

Here, H(x) is the Heaviside function given by H(x) = 1 for x > 0 and H(x) = 0 for x < 0.
Substituting (2.3) into (2.5), one can derive the generalized Rankine-Hugoniot condi-

tions 



dx(t)
dt

= uδ(t),
dw(t)

dt
= [ρ]uδ(t)− [ρu],

d(w(t)uδ(t))
dt

= [ρu]uδ(t)− [ρu2],

(2.6)

where [ρ] = ρ+ − ρ−, etc.
Through solving (2.6) with x(0) = 0, w(t) = 0, we obtain





uδ(t) = σ =
√

ρ−u− +
√

ρ+u+√
ρ− +

√
ρ+

,

x(t) = σt,

w(t) = −√ρ−ρ+(u+ − u−)t.

(2.7)

Moreover, the δ-measure solution (2.3) with (2.7) satisfies the δ-entropy condition

u+ < σ < u−,

which means that all the characteristics on both sides of the δ-shock are incoming.

2.2 Riemann Problem for the Generalized Chaplygin Gas Equations

In this section, we solve the Riemann problem for the generalized Chaplygin gas equa-
tions (1.5) with (1.6), which one can also see in [35, 36].

It is easy to see that (1.5) has two eigenvalues

λB
1 = u−

√
αBρ−

α+1
2 , λB

2 = u +
√

αBρ−
α+1

2

with corresponding right eigenvectors

−→r1
B = (−

√
αBρ−

α+1
2 , ρ)T , −→r2

B = (
√

αBρ−
α+1

2 , ρ)T .

So (1.5) is strictly hyperbolic for ρ > 0. Moreover, when 0 < α < 1, we have 5λB
i · −→ri

B 6= 0,
i = 1, 2, which implies that λB

1 and λB
2 are both genuinely nonlinear and the associated waves

are rarefaction waves and shock waves. When α = 1, 5λB
i · −→ri

B = 0, i = 1, 2, which implies
that λB

1 and λB
2 are both linearly degenerate and the associated waves are both contact

discontinuities, see [41].
Since system (1.5) and the Riemann initial data (1.6) are invariant under stretching of

coordinates (x, t) → (βx, βt) (β is constant), we seek the self-similar solution

(ρ, u)(x, t) = (ρ, u)(ξ), ξ =
x

t
.
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Then the Riemann problem (1.5) and (1.6) is reduced to the following boundary value
problem of the ordinary differential equations

{
−ξρξ + (ρu)ξ = 0,

−ξ(ρu)ξ + (ρu2 − B
ρα )ξ = 0

(2.8)

with (ρ, u)(±∞) = (ρ±, u±).
Besides the constant solution, it provides the backward rarefaction wave

←−
R (ρ−, u−) :

{
ξ = λB

1 = u−√αBρ−
α+1

2 ,

u− 2
√

αB
1+α

ρ−
α+1

2 = u− − 2
√

αB
1+α

ρ
−α+1

2
− , ρ < ρ−,

(2.9)

and the forward rarefaction wave

−→
R (ρ−, u−) :

{
ξ = λB

2 = u +
√

αBρ−
α+1

2 ,

u + 2
√

αB
1+α

ρ−
α+1

2 = u− + 2
√

αB
1+α

ρ
−α+1

2
− , ρ > ρ−.

(2.10)

When α = 1, the backward (forward) rarefaction wave becomes the backward (forward)
contact discontinuity.

For a bounded discontinuity at ξ = σ, the Rankine-Hugoniot conditions hold:

{
−σB[ρ] + [ρu] = 0,

−σB[ρu] + [ρu2 − B
ρα ] = 0,

(2.11)

where [ρ] = ρ−ρ−, etc. Together with the Lax shock inequalities, (2.11) gives the backward
shock wave

←−
S (ρ−, u−) :





σB
1 = ρu− ρ−u−

ρ− ρ− ,

u− u− = −
√

B( 1
ρ
− 1

ρ−
)( 1

ρα − 1
ρα
−

), ρ > ρ−,
(2.12)

and the forward shock wave

−→
S (ρ−, u−) :





σB
2 = ρu− ρ−u−

ρ− ρ− ,

u− u− = −
√

B( 1
ρ
− 1

ρ−
)( 1

ρα − 1
ρα
−

), ρ < ρ−.
(2.13)

When α = 1, the backward (forward) shock wave becomes the backward (forward) contact
discontinuity.

Furthermore, for a given left state (ρ−, u−), the backward shock wave
←−
S (ρ−, u−) has a

straight line u = u− −
√

Bρ
−α+1

2
− as its asymptote, and for a given right state (ρ+, u+), the

forward shock wave
−→
S (ρ+, u+) has a straight line u = u+ +

√
Bρ

−α+1
2

+ as its asymptote.

It is easy to see that, when u+ +
√

Bρ
−α+1

2
+ ≤ u−−

√
Bρ

−α+1
2

− , the backward shock wave←−
S (ρ−, u−) can not intersect with the forward shock wave

−→
S (ρ+, u+), a delta shock wave
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must develop in solutions. Under definition (2.4), a delta shock wave can be introduced to
construct the solution of (1.5)–(1.6), which can be expressed as

(ρ, u)(x, t) =





(ρ−, u−), x < σBt,

(wB(t)δ(x− σBt), σB), x = σBt,

(ρ+, u+), x > σBt

(2.14)

with

B

ρα
=





B
ρα
−

, x < σBt,

0, x = σBt,
B
ρα

+
, x > σBt,

see [34].
By the weak solution definition in Subsection 2.1, for system (1.5)，we can get the

following generalized Rankine-Hugoniot conditions




dxB(t)
dt

= uB
δ (t) = σB,

dwB(t)
dt

= uB
δ (t)[ρ]− [ρu],

d(wB(t)uB
δ (t))

dt
= uB

δ (t)[ρu]− [ρu2 − B
ρα ],

(2.15)

where xB(t), wB(t) and uB
δ (t) are respectively denote the location, weight and propagation

speed of the δ-shock, [ρ] = ρ(xB(t) + 0, t)− ρ(xB(t)− 0, t) denotes the jump of the function
ρ across the δ-shock.

Then by solving (2.15) with initial data x(0) = 0, wB(0) = 0, under the entropy
condition

u+ +
√

αBρ
−α+1

2
+ < σB < u− −

√
αBρ

−α+1
2

− , (2.16)

we can obtain

wB(t) = wB
0 t, (2.17)

σB =
ρ+u+ − ρ−u− + wB

0

ρ+ − ρ−
, (2.18)

when ρ+ 6= ρ−, where

wB
0 =

{
ρ+ρ−

(
(u+ − u−)2 − (

1
ρ+

− 1
ρ−

)(
B

ρα
+

− B

ρα
−

)
)} 1

2 , (2.19)

and

wB(t) = (ρ−u− − ρ+u+)t, (2.20)

σB =
1
2
(u+ + u−), (2.21)

when ρ+ = ρ−.
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In the phase plane (ρ > 0, u ∈ R), given a constant state (ρ−, u−), we draw the
elementary wave curves (2.9)–(2.10) and (2.12)–(2.13) passing through this point, which are
denoted by

←−
R ,
−→
R ,
←−
S and

−→
S , respectively. The backward shock wave

←−
S has an asymptotic

line u = u− −
√

Bρ
−α+1

2
− . In addition, we draw a Sδ curve, which is determined by

u +
√

Bρ−
α+1

2 = u− −
√

Bρ
−α+1

2
− , ρ > 0. (2.22)

Then, the phase plane can be divided into five parts I(ρ−, u−), II(ρ−, u−), III(ρ−, u−), IV(ρ−, u−)
and V(ρ−, u−) (see Fig.1).

By the analysis method in the phase plane, one can construct the Riemann solutions
for any given (ρ+, u+) as follows:

(1) (ρ+, u+) ∈ I(ρ−, u−):
←−
R +

−→
R ;

(2) (ρ+, u+) ∈ II(ρ−, u−):
←−
R +

−→
S ;

(3) (ρ+, u+) ∈ III(ρ−, u−):
←−
S +

−→
R ;

(4) (ρ+, u+) ∈ IV(ρ−, u−):
←−
S +

−→
S ;

(5) (ρ+, u+) ∈ V(ρ−, u−): δ-shock.

-

6

Fig.1 The (ρ, u) phase plane for the genreralized Chaplygin gas equations (1.5).

u

ρ

u− −
√

Bρ
−α+1

2
− u− +

√
Bρ
−α+1

2
−

I(ρ−, u−)

II(ρ−, u−)

III(ρ−, u−)

qq
(ρ−, u− − 2

√
Bρ
−α+1

2
− ) (ρ−, u−)

IV(ρ−, u−)

V(ρ−, u−)

←−
S

−→
R

←−
R

−→
S

Sδ

3 Riemann Problem for the Extended Chaplygin Gas Equations

In this section, we first solve the elementary waves and construct solutions to the Rie-
mann problem of (1.1)–(1.2) with (1.6), and then examine the dependence of the Riemann
solutions on the two parameters A,B > 0.

The eigenvalues of the system (1.1)–(1.2) are

λAB
1 = u−

√
Anρn−1 +

αB

ρα+1
, λAB

2 = u +

√
Anρn−1 +

αB

ρα+1
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with corresponding right eigenvectors

~rAB
1 = (−ρ,

√
Anρn−1 +

αB

ρα+1
)T , ~rAB

2 = (ρ,

√
Anρn−1 +

αB

ρα+1
)T .

Moreover, we have

∇λAB
i · ~rAB

i =
An(n + 1)ρn+α + (1− α)αB

2
√

(Anρn+α + αB)ρα+1
> 0, i = 1, 2.

Thus λAB
1 and λAB

2 are genuinely nonlinear and the associated elementary waves are shock
waves and rarefaction waves.

For (1.1)–(1.2) with (1.6) are invariant under uniform stretching of coordinates: (x, t) →
(βx, βt) with constant β > 0, we seek the self-similar solution

(ρ, u)(x, t) = (ρ(ξ), u(ξ)), ξ =
x

t
.

Then the Riemann problem (1.1)–(1.2) with (1.6) is reduced to the boundary value problem
of the following ordinary differential equations

{
−ξρξ + (ρu)ξ = 0,

−ξ(ρu)ξ + (ρu2 + P )ξ = 0, P = Aρn − B
ρα

(3.1)

with (ρ, u)(±∞) = (ρ±, u±).

Any smooth solutions of (3.1) satisfies

(
u− ξ ρ

Anρn−1 + αB
ρα+1 ρ(u− ξ)

)(
dρ

du

)
= 0. (3.2)

It provides either the constant state solutions (ρ, u)(ξ) = constant, or the rarefaction wave
which is a continuous solutions of (3.2) in the form (ρ, u)(ξ). Then, according to [41], for a
given left state (ρ−, u−), the rarefaction wave curves in the phase plane, which are the sets
of states that can be connected on the right by a 1-rarefaction wave or 2-rarefaction wave,
are as follows

R1(ρ−, u−) :





ξ = λ1 = u−
√

Anρn−1 + αB
ρα+1 ,

u− u− = − ∫ ρ

ρ−

√
Anρn−1+ αB

ρα+1

ρ
dρ,

(3.3)

and

R2(ρ−, u−) :





ξ = λ2 = u +
√

Anρn−1 + αB
ρα+1 ,

u− u− =
∫ ρ

ρ−

√
Anρn−1+ αB

ρα+1

ρ
dρ.

(3.4)



514 Journal of Mathematics Vol. 39

From (3.3) and (3.4), we obtain that

dλAB
1

dρ
=

∂λAB
1

∂u

du

dρ
+

∂λAB
1

∂ρ
= −

An(n + 1)ρn−1 +
α(1− α)B

ρα+1

2ρ

√
Anρn−1 +

αB

ρα+1

< 0, (3.5)

dλAB
2

dρ
=

∂λAB
2

∂u

du

dρ
+

∂λAB
2

∂ρ
=

An(n + 1)ρn−1 +
α(1− α)B

ρα+1

2ρ

√
Anρn−1 +

αB

ρα+1

> 0, (3.6)

which implies that the velocity of 1-rarefaction (2-rarefaction) wave λAB
1 (λAB

2 ) is monotonic
decreasing (increasing) with respect to ρ.

With the requirement λAB
1 (ρ−, u−) < λAB

1 (ρ, u) and λAB
2 (ρ−, u−) < λAB

2 (ρ, u), noticing
(3.5) and (3.6), we get that

R1(ρ−, u−) :





ξ = λ1 = u−
√

Anρn−1 + αB
ρα+1 ,

u− u− = − ∫ ρ

ρ−

√
Anρn−1+ αB

ρα+1

ρ
dρ, ρ < ρ−,

(3.7)

and

R2(ρ−, u−) :





ξ = λ2 = u +
√

Anρn−1 + αB
ρα+1 ,

u− u− =
∫ ρ

ρ−

√
Anρn−1+ αB

ρα+1

ρ
dρ, ρ > ρ−.

(3.8)

For the 1-rarefaction wave, through differentiating u respect to ρ in the second equation
in (3.7), we get

uρ = −

√
Anρn−1 +

αB

ρα+1

ρ
< 0, (3.9)

uρρ =
−An(n− 3)ρn+α + α(α + 3)B

2ρ2
√

Anρn+α + αBρα+1
. (3.10)

Thus, it is easy to get uρρ > 0 for 1 ≤ n ≤ 3, i.e., the 1-rarefaction wave is convex for
1 ≤ n ≤ 3 in the upper half phase plane (ρ > 0).

In addition, from the second equation of (3.7), we have

u− u− =
∫ ρ−

ρ

√
Anρn−1 + αB

ρα+1

ρ
dρ ≥

∫ ρ−

ρ

√
αBρ−

α+1
2 −1dρ =

2
√

αB

α + 1
(ρ−

α+1
2 − ρ

−α+1
2

− ),

which means that lim
ρ→0

u = +∞.

By a similar computation, we have that, for the 2-rarefaction wave, uρ > 0, uρρ < 0
for 1 ≤ n ≤ 3 and lim

ρ→+∞
u = +∞. Thus, we can draw the conclusion that the 2-rarefaction

wave is concave for 1 ≤ n ≤ 3 in the upper half phase plane (ρ > 0).
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Now we consider the discontinuous solution. For a bounded discontinuity at ξ = σ, the
Rankine-Hugoniot condition holds

{
σAB[ρ] = [ρu],
σAB[ρu] = [ρu2 + P ], P = Aρn − B

ρα ,
(3.11)

where [ρ] = ρ+ − ρ−, etc.
Eliminating σ from (3.11), we obtain

u− u− = ±
√

ρ− ρ−
ρρ−

(
A(ρn − ρn

−)−B(
1
ρα
− 1

ρα
−

)
)
. (3.12)

Using the Lax entropy condition, the 1-shock satisfies

σAB < λAB
1 (ρ−, u−), λAB

1 (ρ, u) < σAB < λAB
2 (ρ, u), (3.13)

while the 1-shock satisfies

λAB
1 (ρ−, u−) < σAB < λAB

2 (ρ−, u−), λAB
2 (ρ, u) < σAB. (3.14)

From the first equation in (3.11), we have

σAB =
ρu− ρ−u−

ρ− ρ−
= u +

ρ−(u− u−)
ρ− ρ−

= u− +
ρ(u− u−)

ρ− ρ−
. (3.15)

Thus, by a simple calculation, (3.13) is equivalent to

−ρ

√
Anρn−1 +

αB

ρα+1
<

ρρ−(u− u−)
ρ− ρ−

< −ρ−

√
Anρn−1

− +
αB

ρα+1
−

, (3.16)

and (3.14) is equivalent to

ρ

√
Anρn−1 +

αB

ρα+1
<

ρρ−(u− u−)
ρ− ρ−

< ρ−

√
Anρn−1

− +
αB

ρα+1
−

. (3.17)

(3.16) and (3.17) imply that ρ > ρ−, u < u− and ρ < ρ−, u < u−, respectively.
Through the above analysis, for a given left state (ρ−, u−), the shock curves in the

phase plane, which are the sets of states that can be connected on the right by a 1-shock or
2-shock, are as follows

S1(ρ−, u−) :





σ1 = ρu− ρ−u−
ρ− ρ− ,

u− u− = −
√

ρ−ρ−
ρρ−

(
A(ρn − ρn

−)−B( 1
ρα − 1

ρα
−

)
)
, ρ > ρ−

(3.18)

and

S2(ρ−, u−) :





σ2 = ρu− ρ−u−
ρ− ρ− ,

u− u− = −
√

ρ−ρ−
ρρ−

(
A(ρn − ρn

−)−B( 1
ρα − 1

ρα
−

)
)
, ρ < ρ−.

(3.19)
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For the 1-shock wave, through differentiating u respect to ρ in the second equation in
(3.18), we get

2(u− u−)uρ =
1
ρ2

(
A(ρn − ρn

−)−B(
1
ρα
− 1

ρα
−

)
)

+
ρ− ρ−
ρρ−

(Anρn−1 +
αB

ρα+1
) > 0, (3.20)

which means that uρ < 0 for the 1-shock wave and that the 1-shock wave curve is starlike
with respect to (ρ−, u−) in the region ρ > ρ−. Similarly, we can get uρ > 0 for the 2-shock
wave and that the 2-shock wave curve is starlike with respect to (ρ−, u−) in the region ρ < ρ−.
In addition, it is easy to check that lim

ρ→+∞
u = −∞ for the 1-shock wave and lim

ρ→0
u = −∞

for the 2-shock wave.

Through the analysis above, for a given left state (ρ−, u−), the sets of states con-
nected with (ρ−, u−) on the right in the phase plane consist of the 1-rarefaction wave
curve R1(ρ−, u−), the 2-rarefaction wave curve R2(ρ−, u−), the 1-shock curve S1(ρ−, u−)
and the 2-shock curve S2(ρ−, u−). These curves divide the upper half plane into four parts
R1R2(ρ−, u−), R1S2(ρ−, u−), S1R2(ρ−, u−) and S1S2(ρ−, u−). Now, we put all of these
curves together in the upper half plane (ρ > 0, u ∈ R) to obtain a picture as Fig.2.

By the phase plane analysis method, it is easy to construct Riemann solutions for any
given right state (ρ+, u+) as follows

(1) (ρ+, u+) ∈ R1R2(ρ−,u−) : R1 + R2;

(2) (ρ+, u+) ∈ R1S2(ρ−,u−) : R1 + S2;

(3) (ρ+, u+) ∈ S1R2(ρ−,u−) : S1 + R2;

(4) (ρ+, u+) ∈ S1S2(ρ−,u−) : S1 + S2.

-

6

u

ρ

r (ρ−,u−)

R1R2(ρ−, u−)

S1R2(ρ−, u−)

S1S2(ρ−, u−)

R1S2(ρ−, u−)

S1 R2

S2 R1

Fig. 2 The (ρ, u) phase plane for the extended Chaplygin gas equations (1.1)–(1.2).

4 Formation of δ-Shocks and Vacuum States as A,B → 0

In this section, we will study the vanishing pressure limit process, i.e., A,B → 0. Since
the two regions S1R2(ρ−, u−) and R1S2(ρ−, u−) in the (ρ, u) plane have empty interior when
A,B → 0, it suffices to analyze the limit process for the two cases (ρ+, u+) ∈ S1S2(ρ−, u−)
and (ρ+, u+) ∈ R1R2(ρ−, u−).
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First, we analyze the formation of δ-shocks in Riemann solutions to the extended Chap-
lygin gas equations (1.1)–(1.2) with (1.6) in the case (ρ+, u+) ∈ S1S2(ρ−, u−) as the pressure
vanishes.

4.1 δ-Shocks and Concentration

When (ρ+, u+) ∈ S1S2(ρ−, u−), for fixed A,B > 0, let (ρAB
∗ , uAB

∗ ) be the intermediate
state in the sense that (ρ−, u−) and (ρAB

∗ , uAB
∗ ) are connected by 1-shock S1 with speed σAB

1 ,
(ρAB
∗ , uAB

∗ ) and (ρ+, u+) are connected by 2-shock S2 with speed σAB
2 . Then it follows

S1 :





σAB
1 = ρAB

∗ uAB
∗ − ρ−u−

ρAB
∗ − ρ−

,

uAB
∗ − u− = −

√
ρAB∗ −ρ−
ρAB∗ ρ−

(
A((ρAB∗ )n − ρn

−)−B( 1
(ρAB∗ )α − 1

ρα
−

)
)
, ρAB

∗ > ρ−,
(4.1)

S2 :





σAB
2 = ρ+u+ − ρAB

∗ uAB
∗

ρ+ − ρAB
∗

,

u+ − uAB
∗ = −

√
ρ+−ρAB∗
ρ+ρAB∗

(
A(ρn

+ − (ρAB∗ )n)−B( 1
ρα
+
− 1

(ρAB∗ )α )
)
, ρ+ < ρAB

∗ .
(4.2)

In the following, we give some lemmas to show the limit behavior of the Riemann
solutions of system (1.1)–(1.2) with (1.6) as A,B → 0.

Lemma 4.1 lim
A,B→0

ρAB
∗ = +∞.

Proof Eliminating uAB
∗ in the second equation of (4.1) and (4.2) gives

u+ − u− = −
√

ρAB∗ − ρ−
ρAB∗ ρ−

(
A((ρAB∗ )n − ρn

−)−B(
1

(ρAB∗ )α
− 1

ρα
−

)
)

−
√

ρ+ − ρAB∗
ρ+ρAB∗

(
A(ρn

+ − (ρAB∗ )n)−B(
1
ρα

+

− 1
(ρAB∗ )α

)
)
. (4.3)

If lim
A,B→0

ρAB
∗ = M ∈ (max{ρ−, ρ+},+∞), then by taking the limit in (4.3) as A,B → 0,

we obtain that u+ − u− = 0, which contradicts with u+ < u−. Therefore we must have
lim

A,B→0
ρAB
∗ = +∞.

By Lemma 4.1, from (4.3) we immediately have the following lemma.

Lemma 4.2 lim
A,B→0

A(ρAB
∗ )n = ρ−ρ+

(
√

ρ− +
√

ρ+)2
(u− − u+)2.

Lemma 4.3

lim
A,B→0

uAB
∗ = lim

A,B→0
σAB

1 = lim
A,B→0

σAB
2 = σ. (4.4)



518 Journal of Mathematics Vol. 39

Proof From the first equation of (4.1) and (4.2) for S1 and S2, by Lemma 4.1, we have

lim
A,B→0

σAB
1 = lim

A,B→0

ρAB
∗ uAB

∗ − ρ−u−
ρAB
∗ − ρ−

= lim
A,B→0

uAB
∗ − ρ−u−

ρAB∗
1− ρ−

ρAB∗

= lim
A,B→0

uAB
∗ ,

lim
A,B→0

σAB
2 = lim

A,B→0

ρ+u+ − ρAB
∗ uAB

∗
ρ+ − ρAB

∗
= lim

A,B→0

ρ+u+

ρAB∗
− uAB

∗
ρ+

ρAB∗
− 1

= lim
A,B→0

uAB
∗ ,

which immediately leads to lim
A,B→0

uAB
∗ = lim

A,B→0
σAB

1 = lim
A,B→0

σAB
2 .

From the second equation of (4.1), by Lemmas 4.1–4.2, we get

lim
A,B→0

uAB
∗ = u− − lim

A,B→0

√
ρAB∗ − ρ−
ρAB∗ ρ−

(
A((ρAB∗ )n − ρn

−)−B(
1

(ρAB∗ )α
− 1

ρα
−

)
)

= u− −
√

1
ρ−

ρ−ρ+

(
√

ρ− +
√

ρ+)2
(u− − u+)2

= u− −
√

ρ+√
ρ− +

√
ρ+

(u− − u+)

=
√

ρ−u− +√
ρ+u+√

ρ− +√
ρ+

= σ.

The proof is completed.
Lemma 4.4

lim
A,B→0

∫ xAB
2

xAB
1

ρAB
∗ dx =

√
ρ+ρ−(u− − u+)t, (4.5)

lim
A,B→0

∫ xAB
2

xAB

ρAB
∗ uAB

∗ dx = σ
√

ρ+ρ−(u− − u+)t. (4.6)

Proof Here we only prove the case for ρ+ 6= ρ−. The first equation of the Rankine-
Hugoniot condition (3.11) for S1 and S2 read

{
σAB

1 (ρAB
∗ − ρ−) = ρAB

∗ uAB
∗ − ρ−u−,

σAB
2 (ρ+ − ρAB

∗ ) = ρ+u+ − ρAB
∗ uAB

∗ ,
(4.7)

from which we have

lim
A,B→0

ρAB
∗ (σAB

2 −σAB
1 ) = lim

A,B→0
(−σAB

1 ρ−+σAB
2 ρ+−ρ+u++ρ−u−) =

√
ρ+ρ−(u−−u+). (4.8)

Similarly, from the second equations of the Rankine-Hugoniot condition (3.11) for S1

and S2,




σAB
1 (ρAB

∗ uAB
∗ − ρ−u−) = ρAB

∗ (uAB
∗ )2 − ρ−u2

− + A((ρAB
∗ )n − ρn

−)−B( 1
(ρAB
∗ )α − 1

ρα
−

),

σAB
2 (ρ+u+ − ρAB

∗ uAB
∗ ) = ρ+u2

+ − ρAB
∗ (uAB

∗ )2 + A(ρn
+ − (ρAB

∗ )n)−B( 1
ρα

+
− 1

(ρAB
∗ )α ),

(4.9)
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we obtain

lim
A,B→0

ρAB
∗ uAB

∗ (σAB
2 − σAB

1 )

= lim
A,B→0

(−σAB
1 ρ−u− + σAB

2 ρ+u+ − ρ+u2
+ + ρ−u2

− −A(ρn
+ − ρn

−) + B(
1
ρα

+

− 1
ρα
−

))

= σ
√

ρ+ρ−(u− − u+). (4.10)

Thus, from (4.8) and (4.10) we immediately get (4.5) and (4.6). For the case ρ+ = ρ−, the
conclusion is obviously true, so we omit it. The proof is finished.

The above Lemmas 4.1–4.4 show that, as A,B → 0, the curves of the shock wave S1 and
S2 will coincide and the delta shock waves will form. Next we will arrange the values which
give the exact position, propagation speed and strength of the delta shock wave according
to Lemmas 4.3 and 4.4.

From (4.5) and (4.6), we let

w(t) =
√

ρ+ρ−(u− − u+)t, (4.11)

w(t)uδ(t) = σ
√

ρ+ρ−(u− − u+)t, (4.12)

then

uδ(t) = σ. (4.13)

Furthermore, by letting dx(t)
dt

= uδ(t), we have

x(t) = σt. (4.14)

From (4.11)–(4.14), we can see that the quantities defined above are exactly consistent
with those given by (2.7). Thus, it uniquely determines that the limits of the Riemann
solutions to system (1.1)–(1.2) and (1.6) when A,B → 0 in the case (ρ+, u+) ∈ IV and
u− > u+ is just the delta shock solution of (1.3) and (1.6). So we get the following results
which characterizes the vanishing pressure limit in the case (ρ+, u+) ∈ IV and u− > u+.

Theorem 4.1 If u− > u+, for each fixed A,B, (ρ+, u+) ∈ IV, assuming that (ρAB, uAB)
is a two-shock wave solution of (1.1)–(1.2) and (1.6) which is constructed in Section 3, it is
obtained that when A,B → 0, (ρAB, uAB) converges to a delta shock wave solution to the
transportation equations (1.3) with the same initial data.

4.2 Formation of Vacuum States

In this subsection, we show the formation of vacuum states in the Riemann solutions to
(1.1)–(1.2) with (1.6) in the case (ρ+, u+) ∈ R1R2(ρ−, u−) with u− < u+ and ρ± > 0 as the
pressure vanishes.

At this moment, for fixed A,B > 0, let (ρAB
∗ , uAB

∗ ) be the intermediate state in the
sense that (ρ−, u−) and (ρAB

∗ , uAB
∗ ) are connected by 1-rarefaction wave R1 with speed λAB

1 ,
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(ρAB
∗ , uAB

∗ )and (ρ+, u+) are connected by 2-rarefaction wave R2 with speed λAB
2 . Then it

follows

R1 :





ξ = λAB
1 = u−

√
Anρn−1 + αB

ρα+1 ,

u− u− = −
∫ ρ

ρ−

√
Anρn−1 + αB

ρα+1

ρ
dρ, ρAB

∗ ≤ ρ ≤ ρ−,
(4.15)

R2 :





ξ = λAB
2 = u +

√
Anρn−1 + αB

ρα+1 ,

u+ − u =

∫ ρ+

ρ

√
Anρn−1 + αB

ρα+1

ρ
dρ, ρAB

∗ ≤ ρ ≤ ρ+.

(4.16)

Now, from the second equations of (4.15) and (4.16), using the following integral identity

∫ ρ−

ρ

√
Anρn−1

− + αB
ρα+1

ρ
dρ

=
2

α + 1

(
−

√
Anρn−1

− +
αB

ρα+1
+

√
Anρn−1

− ln(
√

Anρn−1
− ρα+1 + αB +

√
Anρn−1

− ρα+1)
)∣∣∣

ρ−

ρ
,

it follows that the intermediate state (ρAB
∗ , uAB

∗ ) satisfies

u+ − u−

=

∫ ρ−

ρAB∗

√
Anρn−1 + αB

ρα+1

ρ
dρ +

∫ ρ+

ρAB∗

√
Anρn−1 + αB

ρα+1

ρ
dρ

≤
∫ ρ−

ρAB∗

√
Anρn−1

− + αB
ρα+1

ρ
dρ +

∫ ρ+

ρAB∗

√
Anρn−1

+ + αB
ρα+1

ρ
dρ

=
2

α + 1

(
−

√
Anρn−1

− +
αB

ρα+1
−

+
√

Anρn−1
− ln(

√
Anρn−1

− ρα+1
− + αB +

√
Anρn−1

− ρα+1
− )

+

√
Anρn−1

− +
αB

(ρAB∗ )α+1
−

√
Anρn−1

− ln(
√

Anρn−1
− (ρAB∗ )α+1 + αB +

√
Anρn−1

− (ρAB∗ )α+1)

−
√

Anρn−1
+ +

αB

ρα+1
+

+
√

Anρn−1
+ ln(

√
Anρn−1

+ ρα+1
+ + αB +

√
Anρn−1

+ ρα+1
+ )

+

√
Anρn−1

+ +
αB

(ρAB∗ )α+1
−

√
Anρn−1

+ ln(
√

Anρn−1
+ (ρAB∗ )α+1 + αB +

√
Anρn−1

+ (ρAB∗ )α+1)
)
,

(4.17)

which implies the following result.
Theorem 4.2 Let u− < u+ and (ρ+, u+) ∈ I(ρ−,u−). For any fixed A,B > 0, assume

that (ρAB, uAB) is the two-rarefaction wave Riemann solution of (1.1)–(1.2) with Riemann
data (ρ±, u±) constructed in Section 3. Then as A,B → 0, the limit of the Riemann solution
(ρAB, uAB) is two contact discontinuities connecting the constant states (ρ±, u±) and the
intermediate vacuum state as follows

(ρ, u)(ξ) =





(ρ−, u−), −∞ < ξ ≤ u−,

(0, ξ), u− ≤ ξ ≤ u+,

(ρ+, u+), u+ ≤ ξ < ∞,
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which is exactly the Riemann solution to the transport equations (1.3) with the same Rie-
mann data (ρ±, u±).

Indeed, if lim
A,B→0

ρAB
∗ = K ∈ (0,min{ρ−, ρ+}), then (4.17) leads to u+ − u− = 0, which

contradicts with u− < u+. Thus lim
A,B→0

ρAB
∗ = 0, which just means vacuum occurs. Moreover,

as A,B → 0, one can directly derive from (4.15) and (4.16) that λAB
1 , λAB

2 → u and two
rarefaction waves R1 and R2 tend to two contact discontinuities ξ = x

t
= u±, respectively.

These reach the desired conclusion.

5 Formation of δ-Shocks as A → 0

In this section, we study the formation of the delta shock waves in the limit of Riemann
solutions of (1.1)–(1.2) with (1.6) as A → 0 in the case (ρ+, u+) ∈ V(ρ−,u−), i.e., u+ +√

Bρ
−α+1

2
+ ≤ u− −

√
Bρ

−α+1
2

− (see Fig. 3).

-

6

Fig.3 The (ρ, u) phase plane for the generalized Chaplygin gas equations (1.5)

and the extended Chaplygin gas equations (1.1)–(1.2).

u

ρ

u− −
√

Bρ
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√
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√
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Lemma 5.1 When (ρ+, u+) ∈ V(ρ−,u−), there exists a positive parameter A0 such
that (ρ+, u+) ∈ S1S2(ρ−, u−) when 0 < A < A0.

Proof From (ρ+, u+) ∈ V(ρ−,u−), we have

u+ +
√

Bρ
−α+1

2
+ ≤ u− −

√
Bρ

−α+1
2

− , (5.1)

then

(u− − u+)2 ≥ (√
Bρ

−α+1
2

+ +
√

Bρ
−α+1

2
−

)2

= B(ρ−α−1
+ + ρ−α−1

− + 2ρ
−α+1

2
+ ρ

−α+1
2

− )

> B(ρ−α−1
+ + ρ−α−1

− − ρ−1
+ ρ−α

− − ρ−1
− ρ−α

+ )

= B(
1
ρ+

− 1
ρ−

)(
1
ρα

+

− 1
ρα
−

). (5.2)
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All the states (ρ, u) connected with (ρ−, u−) by a backward shock wave S1 or a forward
shock wave S2 satisfy

u− u− = −
√

ρ− ρ−
ρρ−

(
A(ρn − ρn

−)−B(
1
ρα
− 1

ρα
−

)
)
, ρ > ρ−, (5.3)

or

u− u− = −
√

ρ− ρ−
ρρ−

(
A(ρn − ρn

−)−B(
1
ρα
− 1

ρα
−

)
)
, ρ < ρ−. (5.4)

When ρ+ = ρ−, the conclusion is obviously true. When ρ+ 6= ρ−, by taking

(u+ − u−)2 =
ρ+ − ρ−
ρ+ρ−

(
A0(ρn

+ − ρn
−)−B(

1
ρα

+

− 1
ρα
−

)
)
, (5.5)

we have

A0 =
ρ+ρ−

(ρ+ − ρ−)(ρn
+ − ρn

−)

(
(u+ − u−)2 −B(

1
ρ+

− 1
ρ−

)(
1
ρα

+

− 1
ρα
−

)
)
, (5.6)

which together with (5.2) gives the conclusion. The proof is completed.
When 0 < A < A0, the Riemann solution of (1.1)–(1.2) with (1.6) includes a backward

shock wave S1 and a forward shock wave S2 with the intermediate state (ρA
∗ , uA

∗ ) besides two
constant states (ρ±, u±). We then have

S1 :





σA
1 = ρA

∗ uA
∗ − ρ−u−

ρA
∗ − ρ−

,

uA
∗ − u− = −

√
ρA∗ −ρ−
ρA∗ ρ−

(
A((ρA∗ )n − ρn

−)−B( 1
(ρA∗ )α − 1

ρα
−

)
)
, ρA

∗ > ρ−
(5.7)

and

S2 :





σA
2 = ρ+u+ − ρA

∗ uA
∗

ρ+ − ρA
∗

,

u+ − uA
∗ = −

√
ρ+−ρA∗
ρ+ρA∗

(
A(ρn

+ − (ρA∗ )n)−B( 1
ρα
+
− 1

(ρA∗ )α )
)
, ρ+ < ρA

∗ ,
(5.8)

here σA
1 and σA

2 are the propagation speed of S1 and S2, respectively. Similar to that in
Section 4, in the following, we give some lemmas to show the limit behavior of the Riemann
solutions of system (1.1)–(1.2) with (1.6) as A → 0.

Lemma 5.2 lim
A→0

ρA
∗ = +∞.

Proof Eliminating uA
∗ in the second equation of (5.7) and (5.8) gives

u− − u+ =

√
ρA∗ − ρ−
ρA∗ ρ−

(
A((ρA∗ )n − ρn

−)−B(
1

(ρA∗ )α
− 1

ρα
−

)
)

+

√
ρ+ − ρA∗
ρ+ρA∗

(
A(ρn

+ − (ρA∗ )n)−B(
1
ρα

+

− 1
(ρA∗ )α

)
)
. (5.9)
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If lim
A→0

ρA
∗ = K ∈ (max{ρ−, ρ+},+∞), then by taking the limit in (5.9) as A → 0, we obtain

that

u− − u+ =
√

B
(√

(
1
ρ−

− 1
K

)(
1
ρα
−
− 1

Kα
) +

√
(

1
ρ+

− 1
K

)(
1
ρα

+

− 1
Kα

)
)

<
√

B
(√

1
ρ−

1
ρα
−

+

√
1
ρ+

1
ρα

+

)

=
√

Bρ
−α+1

2
+ +

√
Bρ

−α+1
2

− , (5.10)

which contradicts with (5.2). Therefore we must have lim
A→0

ρA
∗ = +∞. The proof is completed.

By Lemma 5.2, from (5.9) we immediately have the following lemma.
Lemma 5.3 lim

A→0
A(ρA

∗ )n < ρ−(u− − u+)2.

Lemma 5.4 Let lim
A→0

uA
∗ = σ̂B, then

lim
A→0

uA
∗ = lim

A→0
σA

1 = lim
A→0

σA
2 = σ̂B ∈

(
u+ +

√
αBρ

−α+1
2

+ , u− −
√

αBρ
−α+1

2
−

)
. (5.11)

Proof From the second equation of (5.7) for S1, by Lemmas 4.2 and 4.3, we have

lim
A→0

uA
∗ = u− − lim

A→0

√
ρA∗ − ρ−
ρA∗ ρ−

(
A((ρA∗ )n − ρn

−)−B(
1

(ρA∗ )α
− 1

ρα
−

)
)

= u− −
√

1
ρ−

(
lim
A→0

A(ρA∗ )n +
B

ρα
−

)

< u− −
√

αBρ
−α+1

2
− . (5.12)

Similarly, from the second equation of (5.8) for S2, we have

lim
A→0

uA
∗ = u+ + lim

A→0

√
ρ+ − ρA∗
ρ+ρA∗

(
A(ρn

+ − (ρA∗ )n)−B(
1
ρα

+

− 1
(ρA∗ )α

)
)

= u+ +

√
1
ρ+

(
lim
A→0

A(ρA∗ )n +
B

ρα
+

)

> u+ +
√

αBρ
−α+1

2
+ . (5.13)

Furthermore, similar to the analysis in Lemma 4.3, we can obtain lim
A→0

uA
∗ = lim

A→0
σA

1 =

lim
A→0

σA
2 = σ̂B. The proof is completed.

Lemma 5.5 For σ̂B mentioned in Lemma 5.4,

σ̂B = σB =
ρ+u+ − ρ−u− +

{
ρ+ρ−

(
(u+ − u−)2 − (

1
ρ+

− 1
ρ−

)(
B

ρα
+

− B

ρα
−

)
)} 1

2

ρ+ − ρ−
(5.14)
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as ρ+ 6= ρ− and

σ̂B = σB =
u+ + u−

2
(5.15)

as ρ+ = ρ−.
Proof Letting lim

A→0
A(ρA

∗ )n = L, by Lemma 5.4, from (5.12) and (5.13) we have

lim
A→0

uA
∗ = u− −

√
1
ρ−

(
L +

B

ρα
−

)
= u+ +

√
1
ρ+

(
L +

B

ρα
+

)
= σ̂B,

which leads to

L +
B

ρα
+

= ρ−(u− − σ̂B)2, (5.16)

L +
B

ρα
−

= ρ+(u+ − σ̂B)2. (5.17)

Eliminating L from (5.16) and (5.17), we have

(ρ+ − ρ−)(σ̂B)2 − 2(ρ+u+ − ρ−u−)σ̂B + ρ+u2
+ − ρ−u2

− −B(
1
ρα

+

− 1
ρα
−

) = 0. (5.18)

From (5.18), noticing σ̂B ∈
(
u+ +

√
αBρ

−α+1
2

+ , u− −
√

αBρ
−α+1

2
−

)
, we immediately get

(5.14) and (5.15). The proof is finished.
Similar to Lemma 4.4, we have the following lemma.
Lemma 5.6

lim
A→0

∫ xA
2

xA
1

ρA
∗ dx = wB

0 t, (5.19)

lim
A→0

∫ xA
2

xA
1

ρA
∗ uA

∗ dx = wB
0 σBt. (5.20)

Proof Here we only prove the case for ρ+ 6= ρ−. Similar to the proof of Lemma 4.4,
taking account into (3.11) and (5.18), we have

lim
A→0

ρA
∗ (σA

2 − σA
1 ) = lim

A→0
(−σA

1 ρ− + σA
2 ρ+ − (ρ+u+ − ρ−u−)

= σB(ρ+ − ρ−)− (ρ+u+ − ρ−u−) = wB
0 ,

and

lim
A→0

ρA
∗ vA

∗ (σA
2 − σA

1 )

= lim
A→0

(−σA
1 ρ−u− + σA

2 ρ+u+ − ρ+u+(u+ + βt) + ρ−u−(u− + βt)

−A(ρn
+ − ρn

−) + B(
1
ρα

+

− 1
ρα
−

))

= σB(ρ+u+ − ρ−u−)− (ρ+u2
+ − ρ−u2

−) + B(
1
ρα

+

− 1
ρα
−

)

= (ρ+ − ρ−)(σB)2 − (ρ+u+ − ρ−u−)σB

= σB(σB(ρ+ − ρ−)− (ρ+u+ − ρ−u−)) = σBwB
0 .
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So

lim
A→0

∫ xA
2 (t)

xA
1 (t)

ρA
∗ dx == lim

A→0

∫ t

0

ρA
∗ (σA

2 − σA
1 )dt = wB

0 t, (5.21)

lim
A→0

∫ xA
2 (t)

xA
1 (t)

ρA
∗ uA

∗ dx = lim
A→0

∫ t

0

ρA
∗ uA

∗ (σA
2 − σA

1 )dt = σBwB
0 t. (5.22)

For the case ρ+ = ρ−, the conclusion is obviously true, so we omit it. The proof is finished.
The above Lemmas 5.1–5.6 show that, as A → 0, the curves of the shock wave SA

1 and
SA

2 will coincide and the delta shock waves will form. Next, we will arrange the values which
give the exact position, propagation speed and strength of the delta shock wave according
to Lemmas 5.4 and 5.6.

From (5.21) and (5.22), when ρ+ 6= ρ−, we let

wB(t) = wB
0 t, (5.23)

wB(t)uB
δ (t) = (σB

0 + βt)wB
0 t, (5.24)

then

uB
δ (t) = σB

0 + βt, (5.25)

which is equal to σB(t). Furthermore, by letting dxB(t)
dt

= σB(t), we have

xB(t) = σB
0 t +

1
2
βt2. (5.26)

From (5.23)–(5.26), we can see that the quantities defined above are exactly consistent
with those given by (2.17)–(2.20). When ρ+ = ρ−, similar results can be obtained. Thus,
it uniquely determines that the limits of Riemann solutions to system (1.1)–(1.2) and (1.6)
when A → 0 in the case (ρ+, u+) ∈V and u− > u+ is just the delta shock solution of (1.5)
and (1.6). So we get the following results which characterizes the vanishing pressure limit
in the case (ρ+, u+) ∈V and u− > u+.

Theorem 5.1 If u− > u+, for each fixed A,B, (ρ+, u+) ∈V, assuming that (ρA, uA)
is a two-shock wave solution of (1.1)–(1.2) and (1.6) which is constructed in Section 3, it
is obtained that when A → 0, (ρA, uA) converges to a delta shock wave solution to the
generalized Chaplygin gas equations (1.5) with the same initial data.

6 Conclusions and Discussions

In this paper, we have considered two kinds of flux approximation limits of Riemann
solutions to the extended Chaplygin gas equations and studied the concentration and the
formation of delta shocks during the limit process. Moreover, we have proved that the van-
ishing pressure limit of Riemann solutions to extended Chaplygin gas equations is just the
corresponding ones to transportation equations, and when the extended Chaplygin pressure
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approaches the generalized Chaplygin pressure, the limit of Riemann solutions to the ex-
tended Chaplygin gas equations is just the corresponding ones to the generalized Chaplygin
gas equations.

On the other hand, recently, Shen and Sun have studied the Riemann problem for the
nonhomogeneous transportation equations, and the nonhomogeneous (generalized) Chaply-
gin gas equations with coulomb-like friction, see [38, 39, 42]. Similarly, we will also con-
sider the Riemann problem for the nonhomogeneous extended Chaplygin gas equations with
coulomb-like friction. Furthermore, we will consider the formation of delta shock waves in its
flux approximation limit and analyze the relations of Riemann solutions among the nonho-
mogeneous extended Chaplygin gas equations, the nonhomogeneous generalized Chaplygin
gas equations and the nonhomogeneous transportation equations. These will be left for our
future work.
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延拓Chaplygin气体黎曼解的流逼近极限过程中的集中性研究

张庆玲

(江汉大学数学与计算机科学学院, 湖北武汉 430056)

摘要: 本文研究了延拓Chaplygin气体的黎曼解在流逼近极限过程中的集中现象和狄拉克激波的两种

形成机制问题. 利用相平面分析法和广义特征分析法, 构造出了延拓Chaplygin气体的整体黎曼解, 并获得了

两个结果: 当压力消失时, 延拓Chaplygin气体的包含两个激波的解收敛到输运方程的狄拉克激波解; 当压力

项趋近于广义Chaplygin压力项时, 延拓Chaplygin气体的包含两个激波的解收敛到广义Chaplygin气体的狄

拉克激波解. 结论推广到了延拓Chaplygin气体.
关键词: 延拓Chaplygin气体; 狄拉克激波; 流逼近极限; 黎曼解; 输运方程; 广义Chaplygin气体
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