
Vol. 39 ( 2019 )
No. 4

数 学 杂 志
J. of Math. (PRC)

EXISTENCE AND UNIQUENESS OF SOLUTIONS FOR

CAPUTO-HADAMARD TYPE FRACTIONAL

DIFFERENTIAL EQUATIONS

SHI Lin-fei, LI Cheng-fu
(School of Mathematics and Computational Science, Xiangtan University, Xiangtan 411105, China)

Abstract: In this paper, we study a class of Caputo-Hadamard fractional differential equa-

tions with boundary value problems. By using Banach fixed point theorem and the method of

upper and lower solutions method, the existence and uniqueness results of the solutions are ob-

tained, which generalizes some results about ordinary differential equations with boundary value

problems. As an application, two examples are given to illustrate our main results.
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1 Introduction

Over the past few decades, the fractional calculus made great progress, and it was
widely used in various fields of science and engineering. There were numbers applications
in electromagnetics, control theory, viscoelasticity and so on. There was a high-speed devel-
opment in fractional differential equations in recent years, and we referred the reader to the
monographs Podlubny [1], Kilbas et al. [2] and Zhou [3]. In the current theory of fractional
differential equations, much of the work is based on Riemann-Liouville and Caputo fractional
derivatives, but the research of Caputo-Hadamard fractional derivatives of differential equa-
tions is very few, which includes logarithmic function and arbitrary exponents. Motivated
by this fact, we consider a class of Caputo-Hadamard fractional differential equations with
boundary value problems (BVPs).

Nowadays, some authors studied the existence and uniqueness of solutions for nonlinear
fractional differential equation with boundary value problems. For the recent development of
the topic, we referred the reader to a series papers by Ahmad et al. [4–6], Mahmudov et al.
[7] and the references therein. Details and properties of the Hadamard fractional derivative
and integral can be found in [8–12].

∗ Received date: 2018-07-07 Accepted date: 2018-09-29

Foundation item: Supported by National Natural Science Foundation of China (11671339).

Biography: Shi Linfei (1994–), female, born at Xinxiang, Henan, master, major in differential

equations and dynamical systems. E-mail: shilinfeixtu@163.com.



494 Journal of Mathematics Vol. 39

Wafa Shammakh [13] studied the existence and uniqueness results for the following
three-point BVPs

{
C
HDαx(t) + f(t, x(t)) = 0, 1 ≤ t ≤ e, 1 ≤ α ≤ 2,

x(1) = 0, C
HDx(e) = γC

HDx(ξ),

where C
HDα is the Caputo-Hadamard fractional derivative of order 1 ≤ α ≤ 2, 0 ≤ γ < 1,

ξ ∈ (1, e), C
HD = t d

dt
, and f : [1, e] → [0,∞).

Yacine Arioua and Nouredine Benhamidouche [14] studied the existence of solutions for
the following BVPs of nonlinear fractional differential equations

{
C
HDα

1+u(t) + f(t, u(t)) = 0, 1 < t < e, 2 < α ≤ 3,

u(1) = u′(1) = 0,
(

C
HDα−1

1+

)
u(e) =

(
C
HDα−2

1+

)
u(e) = 0,

where C
HDα

1+ is the Caputo-Hadamard fractional derivative of order α, and f : [1, e]×R→ R
is a given continuous function.

Yunru Bai and Hua Kong [15] used the method of upper and lower solutions, proved
the existence of solutions to nonlinear Caputo-Hadamard fractional differential equations

{
C
HDα

a+x(t) = f(t, x(t), HIα
a+x(t)), t ∈ [a, b],

x(a) = xa,

where C
HDα

a+ and HIα
a+ stand for the Caputo-Hadamard fractional derivative and Hadamard

integral operators, f : [a, b]× R× R→ R and 1 < a < b < ∞.
The purpose of this paper is to discuss the existence and uniqueness of solutions for

nonlinear Caputo-Hadamard fractional differential equations




C
HDα

1+u(t) = f(t, u(t)), 1 ≤ t ≤ e, 2 < α ≤ 3,

u(1) = u′(1) = 0, u(e) = λ

∫ e

1

u(s)ds, 1 ≤ λ ≤ 2,
(1.1)

where C
HDα

1+ is the Caputo-Hadamard fractional derivative of order 2 < α ≤ 3, and f is a
continuous function.

2 Preliminaries

In this section, we introduce some necessary definitions, lemmas and notations that will
be used later.

Definition 2.1 [2] The Hadamard fractional integral of order α ∈ R+ for a continuous
function g : [1,∞) → R is given by

HIα
1+g(t) =

1
Γ(α)

∫ t

1

(
ln

t

s

)α−1
g(s)
s

ds, α > 0,

where Γ(·) stands for the Gamma function.
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Definition 2.2 [2] The Hadamard fractional derivative of order α ∈ R+ for a continuous
function g : [1,∞) → R is given by

HDα
1+g(t) = δn(HIα

1+g)(t) =
(

t
d

dt

)n 1
Γ(n− α)

∫ t

1

(
ln

t

s

)n−α−1
g(s)
s

ds,

where n−1 < α < n, n = [α]+1, δ = t d
dt

, and [α] denotes the integer part of the real number
α.

Definition 2.3 [16, 17] The Caputo-Hadamard fractional derivative of order α ∈ R+

for at least n-times differentiable function g : [1,∞) → R is defined as

C
HDα

1+g(t) =
1

Γ(n− α)

∫ t

1

(
ln

t

s

)n−α−1

δn g(s)
s

ds.

Lemma 2.4 [16, 17] Let u ∈ Cn
δ ([1, e],R), then

HIα
1+(C

HDα
1+u)(t) = u(t)−

n−1∑
j=0

cj(ln t)j , (2.1)

here Cn
δ ([1, e],R) = {u : [1, e] → R : δn−1u ∈ C([1, e],R)}.

Lemma 2.5 Let h ∈ C([1, e],R), u ∈ C3
δ ([1, e],R). Then the unique solution of the

linear Caputo-Hadamard fractional differential equation




C
HDα

1+u(t) = h(t), 1 ≤ t ≤ e, 2 < α ≤ 3,

u(1) = u′(1) = 0, u(e) = λ

∫ e

1

u(s)ds, 1 ≤ λ ≤ 2
(2.2)

is equivalent to the following integral equation

u(t) =
1

Γ(α)

∫ t

1

(
ln

t

s

)α−1
h(s)

s
ds +

(ln t)2

Γ(α)(1− λA)

×
(

λ

∫ e

1

∫ s

1

(
ln

s

r

)α−1 h(r)
r

drds−
∫ e

1

(
ln

e

s

)α−1 h(s)
s

ds

)
,

(2.3)

where A =
∫ e

1

(ln t)2dt = (e− 2).

Proof In view of Lemma 2.4, applying HIα
1+ to both sides of (2.2),

u(t) = HIα
1+h(t) + c0 + c1(ln t) + c2(ln t)2,

where c0, c1, c2 ∈ R.
The boundary condition u(1) = u′(1) = 0 implies that c0 = c1 = 0. Thus

u(t) = HIα
1+h(t) + c2(ln t)2. (2.4)
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In view of the boundary condition u(e) = λ

∫ e

1

u(s)ds, we conclude that

u(e) = HIα
1+h(e) + c2 = λ

∫ e

1

HIα
1+h(s)ds + λc2

∫ e

1

(ln t)2dt,

c2 =
1

1− λA

(
λ

∫ e

1

HIα
1+h(s)ds− HIα

1+h(e)
)

. (2.5)

Substituting (2.5) in (2.4), we obtain (2.3). This completes the proof.
Based on Lemma 2.5, the solution of problems (1.1)–(1.2) can be expressed as

u(t) =
1

Γ(α)

∫ t

1

(
ln

t

s

)α−1
f(s, u(s))

s
ds +

(ln t)2

Γ(α)(1− λA)

×
(

λ

∫ e

1

∫ s

1

(
ln

s

r

)α−1 f(r, u(r))
r

drds−
∫ e

1

(
ln

e

s

)α−1 f(s, u(s))
s

ds

)
.

(2.6)

3 Main Results

Let E := C([1, e],R) be the Banach space of all continuous functions from [1, e] to R
with the norm ‖u‖ = max

t∈[1,e]
|u(t)|. Due to Lemma 2.5, we define an operator A : E → E as

Au(t) =
1

Γ(α)

∫ t

1

(
ln

t

s

)α−1
f(s, u(s))

s
ds +

(ln t)2

Γ(α)(1− λA)

×
(

λ

∫ e

1

∫ s

1

(
ln

s

r

)α−1 f(r, u(r))
r

drds−
∫ e

1

(
ln

e

s

)α−1 f(s, u(s))
s

ds

)
.

(3.1)

It should be noticed that BVPs (1.1) has solutions if and only if the operator A has
fixed points.

First, we obtain the existence and uniqueness results via Banach fixed point theorem.
Theorem 3.1 Assume that f : [1, e]×R→ R is a continuous function, and there exists

a constant L > 0 such that
(H1) |f(t, u)− f(t, v)| ≤ L|u− v|,∀ t ∈ [1, e], u, v ∈ R. If

L

[
1

Γ(α + 1)
+

1 + λ(e− 1)
Γ(α + 1)|1− λA|

]
< 1, (3.2)

then problem (1.1) has a unique solution on [1, e].
Proof Denote Q = 1

Γ(α+1)
+ 1+λ(e−1)

Γ(α+1)|1−λA| , we set Br := {u ∈ C([1, e],R) : ‖u‖ ≤ r}
and choose r ≥ MQ

1−LQ
, where M = max

t∈[1,e]
|f(t, 0)| < ∞.

Obviously it is concluded that

|f(s, u(s))| = |f(s, u(s))− f(s, 0) + f(s, 0)| ≤ Lr + M.



No. 4 Existence and uniqueness of solutions for Caputo-Hadamard type fractional differential equations 497

Now, we show that ABr ⊆ Br. For any u ∈ Br, t ∈ [1, e], we have

‖Au‖ = max
t∈[1,e]

|(Au)(t)| ≤ max
t∈[1,e]

{
1

Γ(α)

∫ t

1

(
ln

t

s

)α−1 |f(s, u(s))|
s

ds +
(ln t)2

Γ(α)|1− λA|

×
(
|λ|

∫ e

1

∫ s

1

(
ln

s

r

)α−1 |f(r, u(r))|
r

drds +
∫ e

1

(
ln

e

s

)α−1 |f(s, u(s))|
s

ds

)}

≤(Lr + M)Q ≤ r,

which implies that ABr ⊆ Br. Let u, v ∈ Br, and for each t ∈ [1, e], we have

|(Au)(t)− (Av)(t)| ≤ 1
Γ(α)

∫ t

1

(
ln

t

s

)α−1 |f(s, u(s))− f(s, v(s))|
s

ds

+
(ln t)2

Γ(α)|1− λA|

(
|λ|

∫ e

1

∫ s

1

(
ln

s

r

)α−1 |f(r, u(r)− f(r, v(r))|
r

drds

+
∫ e

1

(
ln

e

s

)α−1 |f(s, u(s)− f(s, v(s))|
s

ds

)

≤LQ‖u− v‖.

Therefore,
‖Au− Av‖ ≤ LQ‖u− v‖.

From assumption (3.2), it follows that A is a contraction mapping. Hence problem (1.1)
has a unique solution by using Banach fixed point theorem. This completes the proof.

Next, we will use the method of upper and lower solutions to obtain the existence result
of BVPs (1.1).

Definition 3.2 Functions u, u ∈ C([1, e],R) are called upper and lower solutions of
fractional integral equation (2.6), respactively, if it satisfies for any t ∈ [1, e] ,

u(t) ≤ 1
Γ(α)

∫ t

1

(
ln

t

s

)α−1
h(s)

s
ds +

(ln t)2

Γ(α)(1− λA)

×
(

λ

∫ e

1

∫ s

1

(
ln

s

r

)α−1 h(r)
r

drds−
∫ e

1

(
ln

e

s

)α−1 h(s)
s

ds

)
,

u(t) ≥ 1
Γ(α)

∫ t

1

(
ln

t

s

)α−1
h(s)

s
ds +

(ln t)2

Γ(α)(1− λA)

×
(

λ

∫ e

1

∫ s

1

(
ln

s

r

)α−1 h(r)
r

drds−
∫ e

1

(
ln

e

s

)α−1 h(s)
s

ds

)
.

Define

X(u,u) = {u ∈ C([1, e],R) : u(t) ≤ u(t) ≤ u(t), t ∈ [1, e], u is the solution of (2.6)}.

Theorem 3.3 Let f ∈ C([1, e] × R,R). Assume that u, u ∈ C([1, e],R) are upper
and lower solutions of fractional integral equation (2.6) with u(t) ≤ u(t) for t ∈ [1, e]. If
f is nondecreasing with respect to u that is f(t, u1) ≤ f(t, u2), u1 ≤ u2, then there exist
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maximal and minimal solutions uM , uL ∈ X(u,u) in X(u,u), moreover, for each u ∈ X(u,u), one
has

uL(t) ≤ u(t) ≤ uM (t), t ∈ [1, e].

Proof Constructing two sequences {pn}, {qn} as follows





p0 = u,

pn+1(t) =
1

Γ(α)

∫ t

1

(
ln

t

s

)α−1
f(s, pn(s))

s
ds +

(ln t)2

Γ(α)(1− λA)

×
(

λ

∫ e

1

∫ s

1

(
ln

s

r

)α−1 f(r, pn(r))
r

drds−
∫ e

1

(
ln

e

s

)α−1 f(s, pn(s))
s

ds

)
, n = 0, 1 · · · ,

(3.3)



q0 = u,

qn+1(t) =
1

Γ(α)

∫ t

1

(
ln

t

s

)α−1
f(s, qn(s))

s
ds +

(ln t)2

Γ(α)(1− λA)

×
(

λ

∫ e

1

∫ s

1

(
ln

s

r

)α−1 f(r, qn(r))
r

drds−
∫ e

1

(
ln

e

s

)α−1 f(s, qn(s))
s

ds

)
, n = 0, 1 · · · .

(3.4)

This proof divides into three steps.

Step 1 Finding the monotonicity of the two sequences, that is, the sequences {pn}, {qn}
satisfy the following relation

u(t) = p0(t) ≤ p1(t) · · · ≤ pn(t) ≤ qn(t) · · · ≤ q1(t) ≤ q0(t) = u(t) (3.5)

for t ∈ [1, e].

First, we verify that the sequence {pn} is nondecreasing and satisfies

pn(t) ≤ q0(t), t ∈ [1, e], ∀ n ∈ N.

Since u, u are upper and lower solutions respectively, we know that u(t) = p0(t) ≤
u(t) = q0(t) for t ∈ [1, e],

p0(t) ≤ 1
Γ(α)

∫ t

1

(
ln

t

s

)α−1
f(s, p0(s))

s
ds +

(ln t)2

Γ(α)(1− λA)

×
(

λ

∫ e

1

∫ s

1

(
ln

s

r

)α−1 f(r, p0(r))
r

drds−
∫ e

1

(
ln

e

s

)α−1 f(s, p0(s))
s

ds

)

=p1(t), t ∈ [1, e].

Since f is nondecreasing respect to the second variable, this implies that

f(s, p0(s)) ≤ f(s, q0(s)), s ∈ [1, e].
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This deduces

p1(t) =
1

Γ(α)

∫ t

1

(
ln

t

s

)α−1
f(s, p0(s))

s
ds +

(ln t)2

Γ(α)(1− λA)

×
(

λ

∫ e

1

∫ s

1

(
ln

s

r

)α−1 f(r, p0(r))
r

drds−
∫ e

1

(
ln

e

s

)α−1 f(s, p0(s))
s

ds

)

≤ 1
Γ(α)

∫ t

1

(
ln

t

s

)α−1
f(s, q0(s))

s
ds +

(ln t)2

Γ(α)(1− λA)

×
(

λ

∫ e

1

∫ s

1

(
ln

s

r

)α−1 f(r, q0(r))
r

drds−
∫ e

1

(
ln

e

s

)α−1 f(s, q0(s))
s

ds

)

=q0(t), t ∈ [1, e].

Therefore, we assume inductively

pn−1(t) ≤ pn(t) ≤ q0(t), t ∈ [1, e].

In view of definition of {pn}, {qn}, we have

pn(t) =
1

Γ(α)

∫ t

1

(
ln

t

s

)α−1
f(s, pn−1(s))

s
ds +

(ln t)2

Γ(α)(1− λA)

×
(

λ

∫ e

1

∫ s

1

(
ln

s

r

)α−1 f(r, pn−1(r))
r

drds−
∫ e

1

(
ln

e

s

)α−1 f(s, pn−1(s))
s

ds

)
,

pn+1(t) =
1

Γ(α)

∫ t

1

(
ln

t

s

)α−1
f(s, pn(s))

s
ds +

(ln t)2

Γ(α)(1− λA)

×
(

λ

∫ e

1

∫ s

1

(
ln

s

r

)α−1 f(r, pn(r))
r

drds−
∫ e

1

(
ln

e

s

)α−1 f(s, pn(s))
s

ds

)
.

By means of the monotonicity of f , it is obvious that

pn(t) ≤ pn+1(t) ≤ q0(t), t ∈ [1, e].

We show that

pn(t) ≤ qn(t), t ∈ [1, e], n ∈ N.

For n = 0, it is obvious that u(t) = p0(t) ≤ u(t) = q0(t) for all t ∈ [1, e]. Now, we also
suppose inductively

pn(t) ≤ qn(t), t ∈ [1, e].

Analogously, we easily conclude from the monotonicity of f with respect to the second
variables that

pn+1(t) ≤ qn+1(t).

In a similar way, we know that the sequence {qn} is nonincreasing.
Step 2 The sequences constructed by (3.3), (3.4) are both relatively compact in C([1, e],R).
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According to that f is continuous and u, u ∈ C([1, e],R), from Step 1, we have {pn}
and {qn} also belong to C([1, e],R). Moreover, it follows from (3.5) that {pn} and {qn} are
uniformly bounded. For any t1, t2 ∈ [1, e], without loss of generality, let t1 ≤ t2, we know
that

|pn+1(t1)− pn+1(t2)| = 1
Γ(α)

∣∣∣∣
∫ t1

1

[(
ln

t2
s

)α−1

−
(

ln
t1
s

)α−1]
f(s, pn(s))

s
ds

+
∫ t2

t1

(
ln

t2
s

)α−1
f(s, pn(s))

s
ds +

(ln t2)2 − (ln t1)2

(1− λA)[
λ

∫ e

1

∫ s

1

(
ln

s

r

)α−1 f(r, qn(r))
r

drds−
∫ e

1

(
ln

e

s

)α−1 f(s, qn(s))
s

ds

]∣∣∣∣

≤ W

Γ(α)

∣∣∣∣
∫ t1

1

1
s

[(
ln

t2
s

)α−1

−
(

ln
t1
s

)α−1]
ds

+
∫ t2

t1

1
s

(
ln

t2
s

)α−1

ds +
(ln t2)2 − (ln t1)2

(1− λA)[
1
s

(
λ

∫ e

1

∫ s

1

1
s

(
ln

s

r

)α−1

drds +
∫ e

1

(
ln

e

s

)α−1

ds

)]∣∣∣∣,

approaches zero as t2 − t1 → 0, where W > 0 is a constant independent of n, t1 and t2,
|f(t, pn(t))| ≤ W . It implies that {pn} is equicontinuous in C([1, e],R). By Arzelà-Ascoli
theorem, we imply that {pn} is relatively compact in C([1, e],R). In the same way, we
conclude that {qn} is also relatively compact in C([1, e],R).

Step 3 There exist maximal and minimal solutions in X(u,u).
The sequences {pn} and {qn} are both monotone and relatively compact in C([1, e],R)

by Step 1 and Step 2. There exist continuous functions p and q such that pn(t) ≤ p(t) ≤
q(t) ≤ qn(t) for all t ∈ [1, e] and n ∈ N. {pn} and {qn} converge uniformly to p and q in
C([1, e],R), severally. Therefore, p and q are two solutions of (2.6), i.e.,

p(t) =− 1
Γ(α)

∫ t

1

(
ln

t

s

)α−1
f(s, p(s))

s
ds +

(ln t)2

Γ(α)(1− λA)

×
(

λ

∫ e

1

∫ s

1

(
ln

s

r

)α−1 f(r, p(r))
r

drds−
∫ e

1

(
ln

e

s

)α−1 f(s, p(s))
s

ds

)
,

q(t) =− 1
Γ(α)

∫ t

1

(
ln

t

s

)α−1
f(s, q(s))

s
ds +

(ln t)2

Γ(α)(1− λA)

×
(

λ

∫ e

1

∫ s

1

(
ln

s

r

)α−1 f(r, q(r))
r

drds−
∫ e

1

(
ln

e

s

)α−1 f(s, q(s))
s

ds

)

for t ∈ [1, e]. However, fact (3.5) determines that

u(t) ≤ p(t) ≤ q(t) ≤ u(t), t ∈ [1, e].

Finally, we shall show that p and q are the minimal and maximal solutions in X(u,u),
respectively. For any u ∈ X(u,u), then we have

u(t) ≤ u(t) ≤ u(t), t ∈ [1, e].
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Because f is nondecreasing with respect to the second parameter, we conclude

u(t) ≤ pn(t) ≤ u(t) ≤ qn(t) ≤ u(t), t ∈ [1, e], n ∈ N.

Taking limits as n →∞ into the above inequality, we have

u(t) ≤ p(t) ≤ u(t) ≤ q(t) ≤ u(t), t ∈ [1, e],

which means that uL = p and uM = q are the minimal and maximal solutions in X(u,u).
This completes the proof.

Theorem 3.4 Assume that assumptions of Theorem 3.3 are satisfied. Then fractional
nonlinear differential equation (1.1) has at least one solution in C([1, e],R).

Proof By the hypotheses and Theorem 3.3, we induct X(u,u) 6= ∅, then the solution
set of fractional integral equation (2.6) is nonempty in C([1, e],R). It follows from the
solution set of (2.6) together with Lemma 2.5 that problem (1.1) has at least one solution
in C([1, e],R). This completes the proof.

4 Examples

In this section, we present two examples to explain our main results.
Example 1 Consider the following nonlinear Caputo-Hadamard fractional differential

equation 



C
HD

5
2
1+u(t) =

(
√

t + ln t)
(t + 3)3

u2

|u|+ 1
, 1 ≤ t ≤ e,

u(1) = u′(1) = 0, u(e) =
∫ e

1

u(s)ds,

(4.1)

here α = 5
2
, λ = 1, f(t, u) = (

√
t+ln t)

(t+3)3
u2

|u|+1
, 1 ≤ t ≤ e. One can easily calculate Q =

24
15
√

π(3−e)
≈ 3.2. Clearly f is a continuous function and we have

|f(t, u)− f(t, v)| ≤ 1
64

(
√

t + 1)|u− v| ≤ 1
32
|u− v|.

Therefore LQ < 1. Thus all conditions of Theorem 3.1 satisfy which implies the existence
of uniqueness solution of the the boundary value problem (4.1).

Example 2 Consider the problem




C
HD

5
2
1+u(t) =

t4

16
√

π
(|u|+ 1),

u(1) = u′(1) = 0, u(e) =
1

(6− 2e)

∫ e

1

u(s)ds.

(4.2)

Proof Where α = 5
2
, λ = 1

(6−2e)
, f(t, u) = t4

16
√

π
(|u|+ 1), t ∈ [1, e], f is continuous and

nondecreasing with respect to u. Thus

u(t) = HI
5
2
1+(f(t, u(t))) +

(ln t)2

Γ
(

5
2

)
1
λ

[
1
λ

∫ e

1

HI
5
2
1+(f(r, u(r)))dr − HI

5
2
1+(f(t, u(e)))

]
. (4.3)
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It is easy to check that (u(t), u(t)) = (0, (ln t)3) is a pair of upper and lower solutions of
(4.3) and that all assumptions of Theorem 3.2 are satisfied. So uL = p and uM = q are the
minimal and maximal solutions of the boundary problem (4.3), and the iteration sequences
is as follows





p0 = u(t),

pn+1 = HI
5
2
1+(f(t, pn(t))) +

(ln t)2

Γ
(

5
2

)
1
λ

[
1
λ

∫ e

1

HI
5
2
1+(f(r, pn(r)))dr − HI

5
2
1+(f(t, pn(e)))

]
,

(4.4)



q0 = u(t),

qn+1 = HI
5
2
1+(f(t, qn(t))) +

(ln t)2

Γ
(

5
2

)
1
λ

[
1
λ

∫ e

1

HI
5
2
1+(f(r, qn(r)))dr − HI

5
2
1+(f(t, qn(e)))

]
,

(4.5)
lim

n→∞
pn = p and lim

n→∞
qn = q. Applying Theorem 3.4, this boundary value problem (4.2) has

at least one solution.
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Caputo-Hadamard型分数阶微分方程边值问题解的存在唯一性

师琳斐,李成福

(湘潭大学数学与计算科学学院,湖南湘潭 411105)

摘要: 本文研究了一类Caputo-Hadamard型分数阶微分方程边值问题的解. 利用Banach不动点定理

和上下解方法, 获得了解的存在性和唯一性, 推广了常微分方程边值问题的一些结果. 作为应用, 给出了两个

例子来说明我们的主要结果.
关键词: 分数阶微分方程; Caputo-Hadamard导数; Banach不动点定理; 上下解
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