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Abstract: In this paper, we study a class of Caputo-Hadamard fractional differential equa-
tions with boundary value problems. By using Banach fixed point theorem and the method of
upper and lower solutions method, the existence and uniqueness results of the solutions are ob-
tained, which generalizes some results about ordinary differential equations with boundary value
problems. As an application, two examples are given to illustrate our main results.
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1 Introduction

Over the past few decades, the fractional calculus made great progress, and it was
widely used in various fields of science and engineering. There were numbers applications
in electromagnetics, control theory, viscoelasticity and so on. There was a high-speed devel-
opment in fractional differential equations in recent years, and we referred the reader to the
monographs Podlubny [1], Kilbas et al. [2] and Zhou [3]. In the current theory of fractional
differential equations, much of the work is based on Riemann-Liouville and Caputo fractional
derivatives, but the research of Caputo-Hadamard fractional derivatives of differential equa-
tions is very few, which includes logarithmic function and arbitrary exponents. Motivated
by this fact, we consider a class of Caputo-Hadamard fractional differential equations with
boundary value problems (BVPs).

Nowadays, some authors studied the existence and uniqueness of solutions for nonlinear
fractional differential equation with boundary value problems. For the recent development of
the topic, we referred the reader to a series papers by Ahmad et al. [4-6], Mahmudov et al.
[7] and the references therein. Details and properties of the Hadamard fractional derivative

and integral can be found in [8-12].
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Wafa Shammakh [13] studied the existence and uniqueness results for the following
three-point BVPs

GD%x(t) + f(t,z(t) =0, 1<t <e, 1<a <2,
2(1) =0, {Da(e) = v5Dx(€),

where ¢ D is the Caputo-Hadamard fractional derivative of order 1 < a < 2,0 < v < 1,
€ (le), GD =t and f:[1,¢] > [0,00).
Yacine Arioua and Nouredine Benhamidouche [14] studied the existence of solutions for

the following BVPs of nonlinear fractional differential equations

{gDﬁMﬂ+ﬂmMD:Q1<t<a2<a§&
u(l) =u'(1) =0, (5DY) ule) = (D7) ule) = 0,

where § D{, is the Caputo-Hadamard fractional derivative of order o, and f : [1,e] xR — R
is a given continuous function.
Yunru Bai and Hua Kong [15] used the method of upper and lower solutions, proved

the existence of solutions to nonlinear Caputo-Hadamard fractional differential equations

{%Ds+x<t> = f(t,=(t), P12 2(t)), t € [a,b],

z(a) = z,,

where D2, and #I, stand for the Caputo-Hadamard fractional derivative and Hadamard
integral operators, f:[a,b)] x RxR —Rand 1 <a <b< oco.
The purpose of this paper is to discuss the existence and uniqueness of solutions for

nonlinear Caputo-Hadamard fractional differential equations

GDut) = f(tut), 1<t<e 2<a<3,

u(1) =u'(1) =0, ule) = A/leu(s)ds, 1<A<2, (1)

where ng‘ﬂr is the Caputo-Hadamard fractional derivative of order 2 < o < 3, and f is a

continuous function.

2 Preliminaries

In this section, we introduce some necessary definitions, lemmas and notations that will
be used later.
Definition 2.1 [2] The Hadamard fractional integral of order o € R for a continuous

function g : [1,00) — R is given by

o 1 ! N\ g(s
It g(t) = F(a)/ (hl 8) %d&a >0,
1

where I'(+) stands for the Gamma function.
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Definition 2.2 [2] The Hadamard fractional derivative of order v € R for a continuous

function g : [1,00) — R is given by

wheren—1<a<n,n=|a]+1,6 = t%, and [o] denotes the integer part of the real number

.
Definition 2.3 [16, 17] The Caputo-Hadamard fractional derivative of order @ € R

for at least n-times differentiable function g : [1,00) — R is defined as

1 t AV g(s)
C Nna _ _ nJ\-/
Dt g(t) = Tn—a) /1 <ln s) ] S ds.

Lemma 2.4 [16, 17] Let u € C}([1, €], R), then

I
-

n

MY (GDY w) () = ult) — _ cj(lnt),

Il
o

here C¢([1,e],R) = {u:[l,e] = R: 6" tu € C([1,¢e],R)}.
Lemma 2.5 Let h € C([1,¢],R),u € CZ([1,¢],R).
linear Caputo-Hadamard fractional differential equation

Then the unique solution of the

GDY u(t) =h(t),1<t<e 2<a<3,
(2.2)

u(l) = u'(1) = 0,u(e) = /\/ u(s)ds, 1 <A <2
1
is equivalent to the following integral equation

_L E h(S) s (]nt)2
u(t) = / 8) s d +F(a)(l—AA) (2.3)

(o) <1n -
(0™ B [ )™ ).

t
1
X ()\/
1
where A = / (Int)?dt = (e — 2).
1
Proof In view of Lemma 2.4, applying #I¢, to both sides of (2.2),

u(t) = Hffjrh(t) +co+ci(Int) + Cg(lnt)z,

where cg, c1,c5 € R.
The boundary condition u(1) = «'(1) = 0 implies that ¢y = ¢; = 0. Thus

u(t) = TI{ (L) + co(Int)?. (2.4)
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In view of the boundary condition u(e) = )\/ u(s)ds, we conclude that
1

u(e) = I¢ hie) + o = )\/ e h(s)ds + )\02/ (Int)?dt,
1 1

o = ﬁ (/\ / Hpo h(s)ds Hffgh(e)) . (2.5)

Substituting (2.5) in (2.4), we obtain (2.3). This completes the proof.

Based on Lemma 2.5, the solution of problems (1.1)—(1.2) can be expressed as

o e\ G, u(s)) (Int)?
0=/ () T T -4

(// ln a 1fr“( ))drds—/ (ln§>a_lf(s’:(s))ds>.

3 Main Results

(2.6)

Let £ := C([1,€e],R) be the Banach space of all continuous functions from [1,e] to R

with the norm ||u|| = rn[ax] |u(t)|. Due to Lemma 2.5, we define an operator A : E — E as
te(l,e

[t f“f<s,u<s>> Y
Au(t)_F(a)/ (1 ) W o)1 - AA)

<// ln a lfru( Flrulr) 4, ds—/ (1n§)a1f(87:(8)>d8>.

It should be noticed that BVPs (1.1) has solutions if and only if the operator A has
fixed points.

(3.1)

First, we obtain the existence and uniqueness results via Banach fixed point theorem.

Theorem 3.1 Assume that f : [1,e] xR — R is a continuous function, and there exists
a constant L > 0 such that

(H1) |f(t,u) — f(t,v)] < Llu—v|,Vt € [1,e],u,v € R. If

1 N 1+ Xe—1)
T(@+1)  D(atD)|L— ]

<1, (3.2)

then problem (1.1) has a unique solution on [1,e].

Ae—
Proof Denote Q= a+1) + I‘(iilg\l 1;,4\ we set B, := {u € C([1,¢],R) : |Jul]| < r}

where M = max ]f(t 0)] < oo.
tefl

and choose r > 5

LQ’
Obviously it is concluded that

|f(87u(3))| = |f(57u(5)) - f(S,O) + f(870)| < Lr+ M.
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497
Now, we show that AB, C B,.. For any u € B,.,t € [1, e], we have

= max |(Au max L t nf ailMS (Int)?

s T(a)[T = 2]
x </\|/le/18 1n§ " Wdrds—i—/le (ln§>a_1f(8’u(8)>|ds>}

S
<(Lr+M)Q <,

which implies that AB,. C B,.. Let u,v € B,, and for each t € [1, ¢], we have

(b)) = (A0 <oy [ (mt) JELTIQIS KL PR

L - <|A| [ ] (n) ™ Hest = et
o [ () Mot f<s,v<s>>| d5>

<LQ[lu — .

+

Therefore,

[Au — Av|| < LQ[lu — vl.

From assumption (3.2), it follows that A is a contraction mapping. Hence problem (1.1)
has a unique solution by using Banach fixed point theorem. This completes the proof

Next, we will use the method of upper and lower solutions to obtain the existence result
of BVPs (1.1).
Definition 3.2 Functions w,u € C(]

,e],R) are called upper and lower solutions of
fractional integral equation (2.6), respactively, if it satisfies for any ¢ € [1,¢],

< () hf)cls + el
[ e ).
ST ) G P

x )\/1/1 (m;)a lhi)d ds — /1 (mi)alh(s)ds).

S

Define

Xwa ={ue C([1,e],R) :u(t) <u(t) <u(t),t € [1,e],u is the solution of (2.6)}.

Theorem 3.3 Let f € C([1,e] x R,R). Assume that u,u € C([1,e],R) are upper
and lower solutions of fractional integral equation (2.6) with w(t) < w(t) for ¢t € [1,e]. If
f is nondecreasing with respect to u that is f(¢,u;) < f(t,u2), u1 < ug, then there exist
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maximal and minimal solutions us, uy, € X(uz) in X(um), moreover, for each u € X, ), one

has

ur(t) <u(t) <wup(t), t€[l,el].

Proof Constructing two sequences {p, },{q.} as follows

Po = U,

e [ () B

x </\// (mr)a 1f(r’1;"<r))drds / (1 S)a G Z”( ))ds),nzo,l ,
s ' (3.3)

qo =1,

o= 55 / () e

< / / . 1f“ff( ))drds—/le<lnz)a_1st>,n—O,l---
(3.4)

This proof divides into three steps.

Step 1 Finding the monotonicity of the two sequences, that is, the sequences {p, }, {¢.}
satisfy the following relation

w(t) =po(t) < pi(t) - < pult) < qu(t) - < qu(t) < qo(t) =1u(t) (3:5)

for t € [1,€].

First, we verify that the sequence {p,} is nondecreasing and satisfies
pn(t) < qo(t), t € [le], VneN.

Since w,u are upper and lower solutions respectively, we know that wu(t) = po(t) <
(t) = qolt) for ¢ € [1, ],

1 t (s,p0(s)) (Int)?
po(t) _F(a)/ lns> s i —aa)

(
x <)\/ /1 (m ”;0( )>drds—/18 (ms)a ' f(5,po(s) 7;0( ))ds>

=pi(t), t [17 6]

Since f is nondecreasing respect to the second variable, this implies that

f(SvPO(S)) < f(s)qo(s))) s € [1)6]'
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This deduces

=gy (nt) it
(

() RO gy [ (1) Kol ds)

S

N\ (s, q0(s)) (Int)?
) Y

x )\/le /1 <ln§)a_1 Wdrds—/le (1n‘z)a_lf(s’zo(8))ds>

Therefore, we assume inductively
Pr—1(t) < pa(t) < qolt), t € [L,¢].

In view of definition of {p,}, {¢,}, we have

o =ty |, <I“t>a1 o i
( / / ln “ 1f(7"pn fpna(r) oo / (ln )“ (8, Pn-a(s ))d8>7
Wiy v PR

<// alf(”’" Foonr) g g / alfszn(»ds).

By means of the monotonicity of f, it is obvious that

pn(t) < pn+1(t) < q0(t)7 te [176]'

‘We show that
pn(t) < qn(t), t € [1,¢e], n € N.

(t) = qo(t) for all t € [1,e]. Now, we also

gl

For n = 0, it is obvious that u(t) = po(t) <
suppose inductively
pn(t) < qn(t), t €[1,¢].
Analogously, we easily conclude from the monotonicity of f with respect to the second

variables that
Prt1(t) < @y (t).

In a similar way, we know that the sequence {g,} is nonincreasing.
Step 2 The sequences constructed by (3.3), (3.4) are both relatively compact in C([1, ], R).
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According to that f is continuous and w,u € C([1,e],R), from Step 1, we have {p,}
and {g,} also belong to C([1,e],R). Moreover, it follows from (3.5) that {p,} and {q¢,} are

uniformly bounded. For any t1,ts € [1,e], without loss of generality, let t; < t3, we know

that
[ () el

ta\ 7 (s, pu(s)) (Inty)? — (Int;)?
n> . ds + (1= 2A)

(

/\/18 /1 (111 ;)CH Mdrds - /1 (111 3&4 st”
[
1

Do (fr) — Py (£2)] =F(1a)

1 a—1 a—1
1 [ <ln tQ) — (ln tl) ]ds
S S S

f2 ta\ (Inty)? — (Int;)?
+ <l > ds + (1= AA)

i( // (n? ) 1drds+/ (mi)alds)]

approaches zero as to — t; — 0, where W > 0 is a constant independent of n, ¢; and t,,
|f(t,pn(t))] < W. It implies that {p,} is equicontinuous in C([1,e],R). By Arzela-Ascoli
theorem, we imply that {p,} is relatively compact in C([1,€],R). In the same way, we

)

conclude that {g¢,} is also relatively compact in C([1, €], R).

Step 3 There exist maximal and minimal solutions in X, z).

The sequences {p,} and {¢,} are both monotone and relatively compact in C([1, €], R)
by Step 1 and Step 2. There exist continuous functions p and ¢ such that p,(t) < p(t) <
q(t) < qn(t) for all t € [1,e] and n € N. {p,} and {¢,} converge uniformly to p and ¢ in
C([1,€],R), severally. Therefore, p and ¢ are two solutions of (2.6), i.e

i () B i
( / / ) RAGYG ))drds/e (me)alf(‘s’ms))ds),
q(t) =~ F(la)/l (mi) i ;1( Das + p(aglﬁtfw

x <)\/1 /1 (in ;)‘H Wdrds—[ ( g)ail W@)

for t € [1,e]. However, fact (3.5) determines that

u(t) < p(t) < q(t) <u(t), t € [1,€].

Finally, we shall show that p and ¢ are the minimal and maximal solutions in X, z),

respectively. For any u € X(, ), then we have

u(t) <u(t) <a(t), t €[l,el.
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Because f is nondecreasing with respect to the second parameter, we conclude
u(t) < pp(t) <u(t) < gn(t) <u(t), t €[l,e], neN.
Taking limits as n — oo into the above inequality, we have
u(t) < p(t) < ult) < q(t) < T(E), ¢ € [1,6],

which means that u; = p and uy, = ¢ are the minimal and maximal solutions in X, ).
This completes the proof.

Theorem 3.4 Assume that assumptions of Theorem 3.3 are satisfied. Then fractional
nonlinear differential equation (1.1) has at least one solution in C([1,e],R).

Proof By the hypotheses and Theorem 3.3, we induct X,z # 0, then the solution
set of fractional integral equation (2.6) is nonempty in C([1,¢e],R). It follows from the
solution set of (2.6) together with Lemma 2.5 that problem (1.1) has at least one solution
in C([1,e¢],R). This completes the proof.

4 Examples

In this section, we present two examples to explain our main results.
Example 1 Consider the following nonlinear Caputo-Hadamard fractional differential

equation

(Vt+1Int) u? L<i<
e
(t+3)3 Jul+1° — — 7

w(l) =4'(1) = 0,u(e) = /1e u(s)ds,

gDﬂ_u(t) =
(4.1)

here o = %, A =1, f(t,u) = (\(/fﬁ;lgt) m‘il, 1 <t < e. One can easily calculate Q =

~ 3.2. Clearly f is a continuous function and we have

24
154/7(3—e)
F(t ) — F(t0)] <~ (VE+ Dlu— o] < = [u— o]
U , U <& uv_32u v|.

Therefore L@ < 1. Thus all conditions of Theorem 3.1 satisfy which implies the existence
of uniqueness solution of the the boundary value problem (4.1).
Example 2 Consider the problem

t4
16/

u(l) =u'(1) =0, u(e) = (6—126) /16 u(s)ds.

f Dy ult) = (lul + 1),

(4.2)

Proof Where oo = 2, A = ﬁ, f(t,u) =

nondecreasing with respect to w. Thus

ﬁﬂu’ +1),t€[l,e], fis continuous and

(Int)?
r3)s

ult) = "I (£t u(t)) + [i / L () PG| (43)
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It is easy to check that (u(t),u(t)) = (0, (Int)?3) is a pair of upper and lower solutions of

(4.3) and that all assumptions of Theorem 3.2 are satisfied. So uy, = p and uy = ¢ are the

minimal and maximal solutions of the boundary problem (4.3), and the iteration sequences

is as follows

Po = Q(t)v

o = ") + (|5 [ GO0~ e
v (4.4)

qo = ﬂ(t)7

b = ") + {5 5 [ GG e o)
v (4.5)

lim p, =p and lim ¢, = ¢q. Applying Theorem 3.4, this boundary value problem (4.2) has

at least one solution.

S

=
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