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Abstract: In this paper, we investigate functional limit for Lévy’s modulus of continuity of a
fractional Brownian motion. By using large deviation and small deviation for Brownian motion, a
liminf for Lévy’s modulus of continuity of a fractional Brownian motion is obtained, which extends
the corresponding result of Brownian motion.
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1 Introduction and Main Result

Let {X(t);t > 0} be a standard a-fractional Brownian motion with 0 < o < 1 and
X (0) =0. The {X(t);t > 0} has a covariance function

R(s,t) = E(X(s)X (1)) = %(520‘ 12— |5 — ]2

for s,t > 0, and representation

1 a— a—
X(t) —/ k—{|ac—t|(2 D/2 _|g|Ge=1)/2Y 4B (x)
Rt Fa

Where

) k2 = / {|37 t|(2a 1)/ 2—|x|(2a*1)/2}2dx,

(11 {B(t); —00 < t < 400} is a Brownian motion,

(i) - {|x — t|(2e=1/2 — ||(2e=1/2} g interpreted to be I(g When o = 3.
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{X(t);t > 0} has stationary increments with E(X (s +t) — X(s))? = t2%,5,¢t > 0 and is

a standard Brownian motion when o = %

Let Cy[0, 1] be the space of continuous functions from [0, 1] to R with value zero at the

origin, endowed with usual norm ||f|| = sup |f(¢)], and
0<t<1

1
H = {f € Co[0,1] : f is an absolutely continuous function, || f||3 = / (f(s))%ds < oo}.
0

Then H is a Hilbert space with respect to the scalar product

<fa9>—/0 f(x)g(x)dx for f,ge H.

Define a mapping I : Cy[0, 1] — [0, oo by

1(f) = 5%'“”‘” feH, (L1)

400, otherwise.

The limit set associated with functional laws of the iterated logarithm for {X (¢);¢ > 0} is
K, the subset of functions in Cy[0, 1] with the form

£ = [ o= = a2y aydn, 0 < i<,
here the function g(x) ranges over the unit ball of L?(R'), and hence / g*(s)ds < 1. The
subset K of Cy|0, 1] is defined by "
K={feH:feK,2I(f) <1}
ForO<h<1,0<s<1,0<t<1,let
I(h) = (2h**log(h™1))2, A(t,h)(s) = X (t + hs) — X(2).

In [1], Monrad and Rootzén gave a Chung’s functional law of the iterated logarithm for

fractional Brownian motion, as follows, for any f € K, (f, f) <1,

X (t)
(2t2> loglog t—1)1/2

lirtn ionf(log logt~1)e+1/2

aﬂ—vw>am

where (f) is a constant satifying 27%/2c*(1 — (f, £))™® < ~v(f) < 27Y20°(1 — (f, f))~*,
¢, C denote the positive constants in (2.13) of [1].

Inspired by the arguments of Monrad and Rootzén, in the present paper, we obtain a
liminf result for Lévy’s modulus of continuity of a fractional Brownian motion. The main

result is stated as follows.
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Theorem 1.1 For each f € K with (f, f) < 1, then

liminf(logh~')**? inf
fiptlosh T

N
i) —fH—b(f) a.s., (1.2)

where b(f) is a constant satisfying

272 (L= (f. )7 <) < 27PC A= ()

here ¢ and C denote the positive constants in (2.13) of [1].
Remark When o = 1, {X(¢);t > 0} is a standard Brownian motion, in this case
c=C = %2, the result in Theorem 1.1 is the exact approximation rate on the modulus of

continuity for Brownian motion.

2 Some Lemmas

Our proofs are based on the following lemmas.

In order to prove (3.1) below, we need the following Lemma 2.1.

Lemma 2.1 (see (3.14) of [2]) Let {X(¢);t > 0} be fractional Brownian motion as
above, 0%(u) = E(X(t +u) — X(t))?, we have that for any € > 0, there exists a positive
constant kg = ko(g) such that

P < sup sup |X(t+s)— X)) >0+ 5)xa(u)> < kO—TeXp (—xz)
0<t<T 0<s<u u 2
for any 7,0 < v < T and = > zy with some xzy > 0.

In order to prove (3.2) below, we need the following Lemma 2.2 and Lemma, 2.3.

Lemma 2.2 (see Lemma 2.3 1in [3]) Let 0 < a<1,0< ¢y <1 and fix 0 < gp < ¢ < av.
Let dj, = k**0-") s, =k * for k> 1and 0 <r < 1. Let

1
Yi(sk, t) = / - {|lz - st|2a1/2 |x|(2a_1)/2} dB(z), 0<t<I1, (2.1)
le| @I e

where I, = (spdy_1, sxd,]. Let 0 < 8 < r. Then, for
5 = min{26(a — q),7 — B, (1 — )(2 — 20), (20 — 2q)r}.
there is a constant C' > 0 depending only on « such that uniformly in ¢, u, k,
oi(t,u) = B{[Yi(sg, t +u) — Yi(sp, 1)]*} < C'u1s2k 0. (2.2)

Lemma 2.3 Let {I'(t) : t > 0} be a centred Gaussian process with stationary incre-
ments and T'(0) = 0. We assume that o%(u) = E(T(t +u) — I'(¢))?. Let T' > 0, we have, for

x large enough, any € > 0,

P{ sup |T(s)] > xa(T)} < Crexp (— z” > :

0<s<T 24¢
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where C; > 0 is a constant.

Proof This conclusion is from page 49 in [4].

3 The Proof of Theorem 1.1

We only need to show the following two claims:

.. _1yat+i A(t,h) ~1/2 o —a
— fll > - . :
lim inf (logh™") te[Ofl | 1(h) fll =277 (1= (. ) as.,  (3.1)
O‘+§ . ( h) —-1/2 o —a
— < — .S.. .
liminf (log h~") ok | 10 fl <272 (U= (f, /) as. (32
3.1 The Proof of (3.1)
Let hy, = n~?, p(h) = h(logh™)3"=. We further set k, = [s5], t; = ip(hn),i =
0,1,---, k. Then
A(t;, hy)
05112}621,+1H l(hy) -/l (3.3)
X(¢ —X(t A(t, h, '
s p wp KEEDX@] o AR
+€[0,2] s€[0,p(hn)] U(hn) tefo,1] " I(hn)

For any 0 < € < 1, choose ¢ > 0, such that n = -0 + (f, f) + = gﬁ?@ > 1. Then we have

1

P((logh gert g AU g )2”26“(1—<f,f>>a>

0<i<kn+1 ' I(hy,)

< ¥ p((loghnl)“+5|W—f||§(1—s)21/20“(1—<f,f>>“>

0<i<kn+1

X(h 1
<o+ k)P (| 20— rognito] < vaogh e - e - ()
By Proposition 4.2 in [1], we have for any § > 0 and n large enough
- X (hy,
(o) tox P (| X5 — 1oty | < VBog s 1 - e - (g )

< (tog) " toe P (| X0 < VBltog gty - e ) ) < () 4o

By Corollary 2.2 in [1],

(o) o (| X1 < VB0 o0 - e - (o)) < () 4o

< (logh; 1) " (—27H@e(1 — )2 2 (1 — (f, ) 7) V¥ log by t) — (fo f) + 8 = .
Thus

P<(logh;1)a+é min ||7A(ti’h")

0<i<kn+1  [(hy)
p(hn)

A< (-2 e (1 — <f,f>)“‘“>
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Choose d > (n —1)7!, then

S (14 i) <

n=1

which implies, by the Borel-Cantelli lemma,

Xt ho) = X(t) 2-1/2¢e

. _1yats .

A= e a.s.. (3.4)

On the other hand, for any § > 0,

P( (log h;l)aJr% sup  sup [X(t+5) - X(2)] > 5)

0<t<20<s<p(hn) [(hn)

—p(<<1°ghnl)a> sup sup | X(E+s) — X (1) za)

\@hg 0<t<20<s<p(hn)

:P( (log h;l)_m_1 sup  sup |[X(t+s)—X(t)] > \@5)

2 <s<
0<t< o2 0<s<1

§2+p(hn)p( (log hgl)fmfl sup sup | X(t+s)—X(t)| > ﬁé)

p(hn) 0<t<10<s<1
2 o
=+p(h")P< sup sup |X(t+s)—X(t)|225(logh;1)2 H).
P(hn> 0<t<10<s<1

By Lemma 2.1, we have that for any € > 0, there exists a positive kg = ko(g) such that

p< sup sup | X(t+s) — X (1) > V25 (loghnl)““*Q)

0<t<10<s<1

<k exp (- <(1 jg))Q (log h;1)4a+2) :

Taking into account log h,;! — oo as n — oo, we have

(oo}

2+ p(hn) , (ts5) (loghat) ™
k —— " h, Y < 0.
0; p(hy)
By the Borel-Cantelli lemma,
o+l X -X
lim sup (log h;l) Tz sup  sup [X(t+ ) ®)] =0 as.. (3.5)
n—oo 0<t<2 0<s<p(hny) l hn
By (3.3)-(3.5), we get
a+} X(t+h,)— X(t 271/2ce
lim (logh, )*"? inf | (t+ hn) (>—f|| > ¢ (3.6)

(= (f, )

Remark that h, is ultimately strictly decreasing to 0, so for any small h, there is a
unique n such that h € (hyy1, hy]. Let ¢y p(s) = W, s €[0,1],t € [0,1]. We define

&(h) = (logh™ M5+ inf [gon(-) — FC), &= inf  E(h).

te[0,1] hnt1<h<hs,

n—oo tG[O,l] l(h/n)
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By the definition of infimum, for any € > 0, there exists hl, € (hj41,hy,] such that &, >
§(hy,) —e.

For any r € [0,1], let x = % Then we have 0 < x < 1,

n

€[0,1] Whni1)

= inf sup |¢t,hn+1(r) — f(r)|

t€[0,1] o<r<1

% % (3.7)
< inf nox) — L
S ) ¢>t,hn+1(hn+1l‘) f(hnﬂx)
-1 / I—1\—a—1 / l(hn) h;z
<)1) (g hi )b e(h) + | s =1 IOl + |10 = FG2=) .
Noting that
h, [ 1
Dy <y J1— <\ J1-(- d 3.8
Iy~ sl < 1= < oo Ao (38)
{(h,) L dao
o1 < (14 )2 o 3.9
ek i <) (39)
By (3.6)—(3.9), we have
o , 271/2ca
Since liin iglf{(h) > liminf ¢, > liminf {(h!,) — &, which ends the proof.
3.2 The Proof of (3.2)
Note that
o _nati o A(t, h) o o+t X(h)
hin_}(l)lf (logh™") te%,l] I 1) —fl < hIhn_}glf (logh™") Hm —fll as.,
then it is sufficient to show that
at+i X (hy _ _
liminf (log by, )" | l((h )) —fll<27YV2C(1 = (f, f)™® as., (3.10)
where h,, = +.
For r =1,2,3,- -, we define
1 a— a—
Z.(t) = / . {|z — |~/ — |z|*=D/2} 4B (z), (3.11)
‘E|€(dr717dr] @
X, (t) = X(t) — Z.(t) (3.12)

for 0<t<1,d, =r"t1=7 5, =r=",0<~v <1 Then {Z,(-)},r =1,2,- - - are independent
and
o« D
{STXT()}:{YF(STﬂ )}7 (313)
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where Y,.(s,,-) is as in Lemma 2.2.

In order to prove (3.10), we need to prove that for any ¢ > 0,

ZP{ (loghy, )™ l(%) —fl < +e)27 20 (1 = (, f>)“} =00 (3.14)
and -
ZP{ log h;* ‘”% |XZ’E§Z;) | > 5} < 0. (3.15)

First of all, we prove (3.15).

Now using the argument as in Lemma 2.2, we have
ol (t,u) = E(Y,(sn,t +u) — Yy (s,,1))? < C'us?*n™°,

where ¢, are as in Lemma 2.2. For any € > 0, we have, by Lemma 2.3,

P{ logh ! ||Xlrzglh7;) | > 5}
=P {0l 2 V3(ogh, ")z}
P{Ozlipl 1 X, (t)] > V2(log b, ')~ } (3.16)

—P{ sup [Yo(sn,1)] > V2(C"2s5n="2) 0" 12 (log hﬁl)_anmé}
0<t<1

1,0 ~2
<Cexp (C;ZE (IOg hT_Ll)_2a> .

Cc'"'n 5/2 2
2+4¢

Taking n sufficiently large such that > 1, we get (3.15) by the definition of the
sequence {h, :n > 1}

Second, we prove (3.14).

For any e > 0, choose § > 0, such that ' = 1=(Af) (f,f)+0 < 1. Let g =

(14e)t/e
27120(1 = (f, f))~®, then

P{(loghnl)”% IZZ”((hh)) —fll<@ +2e)6}

>P { (1ogh;")"H [(21og ) 2X ()~ £l < (14 )5

— P {(togh") " [[(2loghy) 2K ()] > <6
:211 — Ig.

By Proposition 4.2 in [1], we have for any § > 0 and n large enough,
(tog ;") og P (|| X() = 2log ;) | < V2(0g k) (14 2)5)

> (logh;") " og P (IX ()] < Va(logh, ') (1 +2)8) — (£.£) -
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By Corollary 2.2 in [1],

(tog ;") " log P (IX ()] < V2(logh,") (1 +€)8) = (£.f) =6
> (loghy!) ™" (72—%0(1 t o) Vaglaeg h;l) () -

Thus

’

. "
1= P{ (1o k7)™ 1o k) VX () - £l < (14 )8} 2 (h) |
Similar to the proof of (3.15), we have the following estimate for I,

1= P{(logh; )™ | 200g b ) V2K, ()] = 25}

P
P{I%.()ll > V2(og ;") 6

= P{ SUp |V (snst)| > V2(C"V2500-9/2)0"=1/2(log hnl)“n5/265}
0<t<1
18 (9—1/2 (1 _ —\2.2 9
< Ciexp (C n e - L N (logh, ") 2 >
24«

Thus ) I, < co. The proof of (3.14) is completed.

n=1
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