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Abstract: In this paper, we study the global convergence of non-negative least squares

(ANLS) for NMF. By applying a modified strategy to guarantee the existence of the limit point,

we obtain the limit point is a stationary point of NMF. In addition, we give generalized modified

strategies. Numerical experimental results show the above strategies are effective.
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1 Introduction

Non-negative matrix factorization (NMF) [1] is different to other factorization methods
because non-negative constraints are imposed. This makes factorization results more sense
in the real word.

NMF attempts to decompose a given nonnegative matrix A into the product of a non-
negative basis matrix W and a non-negative coefficient matrix H, which can be interpreted
as follow

A ≈ W ×H, (1.1)

where A ∈ Rm×n, W ∈ Rm×r and H ∈ Rr×n. The factorization results show that NMF
can generate a reduced representation of the original date. In this sense, NMF is useful for
extracting parts-based representations.
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In recent years, NMF, as a parts-based representation of data, received considerable
attentions in machine learning, signal processing, computer vision and so on [2–5].

In order to decrease the approximation error between A and WH, NMF be expressed
as a constrained optimization problem

min
W,H

F (W,H) =
1
2
‖A−WH‖2

F s.t. W ≥ 0, H ≥ 0, (1.2)

where ‖ · ‖ is the Frobenius norm, and W ≥ 0 (H ≥ 0) means that all elements of the
matrix W (H) are nonnegative. Kush-Kuhn-Tucker (KKT) [6] conditions for problem (1.2)
are expressed as follows

W ≥ 0, H ≥ 0, 5W F (W,H) = (WH −A)HT ≥ 0,

5H F (W,H) = W T (WH −A) ≥ 0,

〈W,5W F (W,H)〉 = 0, 〈H,5HF (W,H)〉 = 0.

(1.3)

Alternating non-negative least squares (ANLS) [2, 7, 8] works well in practice, whose
convergent speed is fast and elements not be locked. Iterate the following until a stopping
criterion is satisfied

Hk+1 = arg min
H≥0

F (W k,H), (1.4)

W k+1 = arg min
W≥0

F (W,Hk+1). (1.5)

Clearly, F (W k,H) and F (W,Hk+1) is convex, respectively.
ANLS is widely used as an efficient computational method for NMF, but the ANLS has

a serious problem that its global convergence is not guaranteed in theory. In other words,
for any initial solution, the sequence of ANLS contains at least one limit point and this limit
point is a stationary point of NMF. The main difficulty in proving global convergence is that
the existence of the limit point.

In [9], authors proposed a modified strategy and applied it to ANLS. The modified
strategy is valid for proving global convergence. Motivated by the works of [9], we present
a modified strategy to guarantee the existence of the limit point, and the limit point is a
stationary point of NMF. In addition, we give generalized modified strategies. We can apply
it in reality.

The rest of this paper is organized as follows. Our modified strategy is given in Section
2. Convergence analysis is established in Section 3. In Section 4, we give two generalized
modified strategies. Finally, we conclude this paper in Section 5.

We sum up here briefly our notations. Let

A = (aij)m×n, ‖A‖F =
√∑

i

∑
j

a2
ij ,Tr(A) =

∑
i

aii.

Let B = Rm×n, 〈A,B〉 = Tr(ABT ). A·i denotes the i-th column of A, Ai· denotes the i-th
row of A. Let ‖x‖ denote any norm of a vector, and ‖x‖2 denote 2-norm of a vector x.
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2 Algorithm for Updating and Element of Matrix

In this section, based on the literature [9], we will present our modified strategy. Let
(W k,Hk) be generated by alternating non-negative least squares (ANLS).

First, we state the modified strategy of [9] be given as follows

W̄ k = W kΛ1, H̄
k = Λ2H

k,

where Λ1 = diag(λ1
j), Λ2 = diag(λ2

j), j = 1, 2, · · · , r,

λ1
j =





0, if ‖W k
·j‖ · ‖Hk

j·‖ = 0,√
α
‖Hk

j·‖
‖W k

·j‖
, otherwise,

(2.1)

λ2
j =





0, if ‖W k
·j‖ · ‖Hk

j·‖ = 0,√
‖W k

·j‖
α‖Hk

j·‖
, otherwise,

(2.2)

where α is a positive constant. The above strategy can ensure ANLS is convergent.
Motivated by the work of [9], we give another modified strategy. In NMF, we have the

fact that

WH =
r∑

j=1

W·jHj· =
∑

‖W k
·j‖·‖Hk

j·‖6=0

λjW·j · 1
λj

Hj·, ∀λj > 0.

For ‖W·j‖ · ‖Hj·‖ 6= 0, let W̄·j = λjW·j , H̄j· = 1
λj

Hj·. Furthermore, ‖W̄·j‖ = ‖H̄j·‖ + α

(α > 0). We have

λj =
α +

√
α2 + 4‖W·j‖ · ‖Hj·‖

2‖W·j‖ .

Hence, our modified strategy be described as follows: W̄ k = W kΛ1, H̄
k = Λ2H

k, where
Λ1 = diag(λ1

j), Λ2 = diag(λ2
j), j = 1, 2, · · · , r,

λ1
j =





0, if ‖W k
·j‖ · ‖Hk

j·‖ = 0,
α+
√

α2+4‖W k
·j‖·‖Hk

j·‖
2‖W k

·j‖
, otherwise,

(2.3)

λ2
j =





0, if ‖W k
·j‖ · ‖Hk

j·‖ = 0,
2‖W k

·j‖
α+
√

α2+4‖W k
·j‖·‖Hk

j·‖
, otherwise.

(2.4)

3 Algorithm

Based on the above analysis, in this section, we report ANLS with Strategy 1 for NMF
as follows.

Algorithm 1 (s.1) Give the starting point (W̄ 0, H̄0) ≥ 0 and α ≥ 0. Set k = 1.
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(s.2) Stop if (W̄ k, H̄k) satisfies (1.3),

W k+1 = arg min
W≥0

F (W, H̄k), (3.1)

Hk+1 = arg min
H≥0

F (W k+1,H). (3.2)

(s.3) Modified (W k+1,Hk+1) to (W̄ k+1, H̄k+1) using Strategy 1.
(s.4) Let k = k + 1. Go to s.2.

4 Convergence Analysis

Similar to [9], the function of (1.4) ((1.5)) has a global minimizer on Rn×r
+ . In this

section, we come to study the global convergence of the algorithm.
Lemma 4.1 Let {W̄ k, H̄k} be generated by Algorithm 1. Then {W̄ k, H̄k} is bounded.
Proof Hk is a stationary of F (W k,H), we have 〈(W k)T (W kHk −A),Hk = 0〉,

‖A−W kHk‖2
F = ‖A‖2

F − 2〈A,W kHk〉+ ‖W kHk‖2
F

= ‖A‖2
F − 2〈A−W kHk,W kHk〉 − ‖W kHk‖2

F

= ‖A‖2
F − ‖W kHk‖2

F ≥ 0.

Therefore, ‖W̄ kH̄k‖F = ‖W kHk‖F ≤ ‖A‖F .

Based on ‖W̄·j‖ = ‖H̄j·‖ + α, we deduce ‖W̄ k
·j‖ = ‖H̄k

j·‖ + α. Meanwhile there exist
c1, c2, c3, c4 > 0, such that

c2‖W̄ k
·j‖2 ≤ ‖W̄ k

·j‖ ≤ c1‖W̄ k
·j‖2, c3‖H̄k

j·‖2 ≤ ‖H̄k
j·‖ ≤ c4‖H̄k

j·‖2.

We can get

‖W̄ k
·j‖2 ≥

‖W̄ k
·j‖

c1

=
‖H̄k

j·‖+ α

c1

≥ ‖c3H̄
k
j·‖2 + α

c1

and

‖H̄k
j·‖2 ≥

‖H̄k
j·‖

c4

=
‖W̄ k

·j‖ − α

c1

≥ ‖c2W̄
k
·j‖2 − α

c4

.

Furthermore,

‖W̄ kH̄k‖2
F = 〈

r∑
j=1

W̄ k
·jH̄

k
j·,

r∑
j=1

W̄ k
·jH̄

k
j·〉 ≥

r∑
j=1

‖W̄ k
·jH̄

k
j·‖2

F =
r∑

j=1

‖W̄ k
·j‖‖H̄k

j·‖2
2

≥
r∑

j=1

(
‖c3H̄

k
j·‖2 + α

c1

)2‖H̄k
j·‖2

2 =
r∑

j=1

(‖c3H̄
k
j·‖2

2 + α‖H̄k
j·‖2)2

c2
1

,

where
r∑

j=1

(‖c3H̄
k
j·‖2

2 + α‖H̄k
j·‖2)2 ≥

r∑
j=1

(c2
3‖H̄k

j·‖4
2 + α2‖H̄k

j·‖2
2)

= c2
3

r∑
j=1

‖H̄k
j·‖4

2 + α2

r∑
j=1

‖H̄k
j·‖2

2 ≥ c2
3 ·

(
r∑

j=1

‖H̄k
j·‖2

2)
2

r
+ α2

r∑
j=1

‖H̄k
j·‖2

2.
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Suppose
r∑

j=1

‖H̄k
j·‖2

2 = m, we have c2
3 · m2

r
+ α2 ·m ≤ c2

1‖A‖2
F . By the nature of the quadratic

function, there must be a positive constant M , such that m ≤ M. Hence,

‖H̄k‖F =

√√√√
r∑

j=1

‖H̄k
j·‖2

2 = m ≤ M.

Similarly, we can get the conclusion that ‖W̄ k‖F is bounded. Therefore, {W̄ k, H̄k} is
bounded.

Lemma 4.2 Let {W̄ k, H̄k} be generated by Algorithm 1, and (W ∗,H∗) be a limit
point of {W̄ k, H̄k}. Then (W ∗,H∗) is a stationary point of problem (1.2).

Since the above theorem corresponds to [9, Theorem 2] and the proof is the same as
that in [9, Theorem 2], we will omit it here.

5 Generalized Modified Strategies

From the above results, α is a positive constant no matter Strategy 1 or the strategy of
[9]. We might as well replace α with g(α), in which g(α) is a function of α and g(α) > 0.
Thus, we can get two generalized modified strategies.

The convergence of ANLS also is established when g(α) > 0. In reality, we can let
g(α) = 1

α2 or g(α) = e−α and so on. For different application problems, the choose of g(α)
is different.

6 Numerical Experiments

In this section, we give some numerical experiments for the proposed modified strategies.
We apply these strategies to the following algorithms: SBBNMF [9], BBNMF [10] and
PGNMF [11]. All codes of the computer procedures are written in MATLAB and run in
MATLAB 7.10, and are carried out on a PC (CPU 2.13GHz, 2G memory) with Windows 7
operation system environment.

In experiments, we will compare the following statistics: the number of inner iterations
(Iter), the number of outer iterations (Oter), the objective function value (Fun), the residual
function value (Res), and the CPU time in second (Time). The Res formula is similar to [9],
and the initial parameters

ε = 10−6, Oter ≤ 10000, Iter ≤ 10000, Time ≤ 300.

In order to avoid the initial point affect the numerical result, in every experiment, we
use 30 initial points, and every initial point is randomly generated. We list the following
four experimental tables for different α.

The three tables indicates the proposed modified strategies are utility for these algo-
rithms (SBBNMF, BBNMF, and PGNMF) of ANLS framework. In some experiments, Iter
(Oter) is not an integer, because we test the average value the 30 initial point. In other
words, Iter (Oter) represents the average number of iterations.
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Table 1: A = abs(randn(m, r)) ∗ abs(randn(r, n)), α = 1
(m,n, r) Oter Iter Fun Res Time

(100,50,4) SBBNMF 30.50 438.00 1.94e+00 8.65e-03 0.05
BBNMF 27.00 564.50 2.24e+00 9.28e-03 0.06
PGNMF 29.50 1838.00 9.15e-01 5.94e-03 0.28

(50,50,8) SBBNMF 22.00 502.50 7.49e+00 1.37e-02 0.04
BBNMF 21.00 966.50 9.05e+00 1.51e-02 0.12
PGNMF 29.00 2968.00 5.44e+00 1.17e-02 0.44

(100,50,20) SBBNMF 12.00 413.50 7.09e+01 1.32e-02 0.19
BBNMF 17.00 1550.00 9.70e+01 1.55e-02 0.96
PGNMF 18.50 1351.00 7.55e+01 1.37e-02 0.70

(100,250,5) SBBNMF 26.00 415.50 1.11e+01 8.30e-03 0.16
BBNMF 22.00 791.00 1.63e+01 1.00e-02 0.41
PGNMF 69.50 1713.50 5.06e-01 1.77e-03 0.90

(200,300,8) SBBNMF 28.00 554.00 1.61e+02 1.31e-02 0.23
BBNMF 28.00 1503.50 3.01e+02 1.80e-02 0.82
PGNMF 27.50 1686.00 1.00e+02 1.04e-02 0.90

(400,400,5) SBBNMF 27.00 530.50 8.56e+01 8.82e-03 0.21
BBNMF 25.00 1178.50 1.14e+02 1.02e-02 0.55
PGNMF 34.00 1526.00 1.91e+01 3.75e-03 1.47

Table 2: A = abs(randn(m, r)) ∗ abs(randn(r, n)), α = 0
(m,n, r) Oter Iter Fun Res Time

(100,50,4) SBBNMF 17.50 357.50 5.45e+00 1.56e-02 0.02
BBNMF 16.00 495.50 6.15e+00 1.65e-02 0.03
PGNMF 20.50 1493.00 2.74e+00 1.09e-02 0.09

(50,50,8) SBBNMF 21.00 540.00 9.10e+00 1.51e-02 0.02
BBNMF 21.00 967.50 9.52e+00 1.54e-02 0.05
PGNMF 19.50 2003.50 9.41e+00 1.53e-02 0.12

(100,50,20) SBBNMF 14.00 454.50 9.77e+01 1.56e-02 0.09
BBNMF 17.00 1529.00 1.10e+02 1.66e-02 0.41
PGNMF 18.50 2185.50 1.05e+02 1.62e-02 0.53

(100,250,5) SBBNMF 16.00 393.00 4.03e+01 1.58e-02 0.06
BBNMF 16.00 991.00 5.79e+01 1.89e-02 0.23
PGNMF 15.00 2132.50 5.87e+01 1.90e-02 0.53

(200,300,8) SBBNMF 22.00 596.50 2.94e+02 1.79e-02 0.22
BBNMF 21.00 2658.50 4.28e+02 2.16e-02 1.15
PGNMF 20.00 1410.00 4.23e+02 2.15e-02 0.65
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Table 3: A = abs(randn(m, r)) ∗ abs(randn(r, n)), g(α) = e−α

(m,n, r) Oter Iter Fun Res Time
(100,50,4) SBBNMF 16.00 394.50 3.85e+00 1.19e-02 0.03

BBNMF 15.00 563.00 4.22e+00 1.25e-02 0.06
PGNMF 15.00 1512.50 3.81e+00 1.19e-02 0.17

(50,50,8) SBBNMF 20.00 492.50 1.21e+01 1.80e-02 0.02
BBNMF 19.00 893.50 1.21e+01 1.80e-02 0.06
PGNMF 18.50 2038.50 1.31e+01 1.87e-02 0.14

(100,250,5) SBBNMF 15.50 387.00 2.52e+01 1.22e-02 0.06
BBNMF 14.50 1003.00 3.50e+01 1.44e-02 0.25
PGNMF 14.50 2134.00 3.22e+01 1.38e-02 0.50

(200,300,8) SBBNMF 21.00 559.00 2.66e+02 1.69e-02 0.26
BBNMF 19.50 2655.00 4.03e+02 2.09e-02 1.44
PGNMF 19.00 1361.00 3.99e+02 2.07e-02 0.74

(400,400,8) SBBNMF 13.00 425.50 2.30e+02 1.50e-02 0.21
BBNMF 16.50 2722.00 3.27e+02 1.79e-02 1.29
PGNMF 21.50 848.50 3.19e+02 1.77e-02 0.81

7 Convergence Analysis

Nonnegative matrix factorization (NMF) is not only a well-known matrix decomposition
approach but also an utility and efficient feature extraction technique. In this paper, we
propose a modified strategy, which can ensure the convergence of ANLS. In addition, we
give generalized modified strategies.
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求解非负矩阵分解的交替非负最小二乘法的一种修正策略

李向利,张 雯,余江兰

(桂林电子科技大学数学与计算科学学院; 广西密码学与信息安全重点实验室;

广西自动检测技术与仪器重点实验室, 广西桂林 541004)

摘要: 本文研究了关于求解非负矩阵分解的交替非负最小二乘法的全局收敛性. 利用一种修正策略保

证了极限点的存在性, 得到了极限点为非负矩阵分解问题的稳定点. 此外, 给出了推广的修正策略. 数值实验

结果表明上述修正策略是有效的.
关键词: 非负矩阵分解; 交替非负最小二乘法; 修正策略
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