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1 Introduction

The complete metric measure space X = (X, d, µ) is equipped with a metric d and a
Borel regular outer measure µ such that 0 < µ(B(x, r)) < ∞ for all balls B(x, r) = {y ∈ X :
d(x, y) < r}. The measure µ is doubling, if there exists a doubling constant Cµ such that
for all balls B ⊂ X,

µ(2B) ≤ Cµµ(B).

Let (X, d) be a metric space and V an arbitrary Banach space of positive dimension.
We call that a measurable map F : X → V belongs to the Sobolev class N1,∞(X : V ) with
the norm

‖ F ‖N1,∞(X:V )=‖ F ‖L∞(X:V ) + inf
ρ
‖ ρ ‖L∞(X)

if F ∈ L∞(X : V ) and if there exists a Borel function ρ : X → [0,∞] so that ρ ∈ L∞(X)
and that

‖ F (γ(a))− F (γ(b)) ‖≤
∫

γ

ρds (1.1)
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for ∞-a.e rectifiable curve γ : [a, b] → X, where each function ρ is called an ∞-weak V -upper
gradient of F and the norm ‖ · ‖N1,∞(X:V ) satisfies the equivalence relation by F1 = F2 µ-a.e.
if and only if ‖ F1 − F2 ‖N1,∞(X:V )= 0. If ρ satisfies (1.1) for all rectifiable curves γ, then ρ

is called a V -upper gradient of F .
The map F : X → V is C-Lipschitz if there exists a constant C > 0 so that

‖ F (γ(x))− F (γ(y)) ‖≤ Cd(x, y) (1.2)

holds for x, y ∈ X, here ‖ · ‖ is the norm of element in V . Given a map F , the pointwise
Lipschitz constant of F at non-isolated point x ∈ X is defined as follows

LipF (x) = lim sup
y→x,y 6=x

‖ F (γ(x))− F (γ(y)) ‖
d(x, y)

. (1.3)

If x is an isolated point, we define LipF (x) = 0. LIP∞(X : V ) is the space of bounded
Lischitz maps F from X to V with the norm

‖ F ‖LIP∞(X:V )=‖ F ‖L∞(X:V ) +LIP(F ),

where
LIP(F ) = sup

x,y∈X;x6=y

‖ F (γ(x))− F (γ(y)) ‖
d(x, y)

. (1.4)

Let Λ = Λ(X) denote the family of all nonconstant rectifiable curves γ and ΓE the
family of all rectifiable curves γ such that γ ∩ E 6= φ. For Γ ⊂ Λ, define the ∞-modulus of
Γ by

Mod∞(Γ) = inf
ρ∈F(Γ)

{‖ ρ ‖L∞(X)} ∈ [0,∞], (1.5)

here F(Γ) is the family of all Borel measurable functions ρ : X → [0,∞] such that
∫

γ

ρds ≥ 1 for all γ ∈ Γ.

If some property holds for all γ ∈ Λ \ Γ with Mod∞(Γ) = 0, then we call that the property
holds for ∞-a.e. curve.

For each 1-Lipschitz function ϕ : V → R, the map ϕ ◦ F : X → R belongs to N1,∞(X),
and there exists ρ ∈ L∞(X) that is an upper gradient of ϕ◦F for all such ϕ. The ∞-capacity
of a set E ⊂ X with respect to the space N1,∞(X : V ) is defined by

Cap∞(E : V ) = inf
F
‖ F ‖N1,∞(X:V ),

where the infimum is taken over all maps F in N1,∞(X : V ) such that ϕ ◦ F |E≥ 1 for all
1-Lipschitz functions ϕ. We remark that if V = R and ϕ = 1, the definition is the classical
case for metric measure space (due to Cartagena [1]). Clearly, for E1 ⊂ E2, it satisfies that
Cap∞(E1 : V ) ≤ Cap∞(E2 : V ).



1014 Journal of Mathematics Vol. 38

In the paper, the aim is to consider the properties related to Sobolev classes of Banach
space-valued functions on metric measure space. In the classical Euclidean setting the gener-
alizations of the theory of Sobolev spaces were based on the distributional the derivatives, we
may refer to the books [2] and [3]. The definitions of Sobolev classes of real-valued functions
on metric measure spaces were given by Cheeger [4], Hajlasz [5, 6], Koskela [7], Romanovskǐi
[8], Shanmugalingam [9], etc. There were many applications in areas of analysis, particularly
the first order differential calculus, for example, nonlinear potential theory [10–12], quasi-
conformal and quasiregular theories [13, 14], Carnot groups [15] and fractal analysis [16].
To overcome the difficulties of derivatives and extra hypothesis on metric measure spaces,
Shanmugalingam [9] applied a nonnegative Borel function to take the place of distributional
derivatives and defined the Newtonian space N1,p(X) for 1 ≤ p < ∞. In addition, Hajlasz
[5] ever considered a integrable function named by Hajlasz gradient to play a role as the
same as upper gradient and introduced Hajlasz-Sobolev space M1,p(X) for 1 ≤ p < ∞.
Under the suitable conditions, Cartagena [1] pointed out that the all approaches to Sobolev
type spaces, even the spaces which support Poincaré inequality, turn to be equivalent. Thus
Cartagena et al. [1, 17] studied the Newtonian space N1,∞(X) and Hajlasz-Sobolev space
M1,∞(X) as well as the cases that Poincaré inequality holds. The works of Ambrosio [18],
Korevaar-Schoen [19] and Reshetnyak [20] etc., were about the Sobolev mappings from the
domains in Euclidean or Riemannian space into a complete metric space. Since every metric
space may be isometrically embedded in the Banach space `∞(·) of bounded functions, many
mathematicians focused on the case when the target is an arbitrary Banach space, refer to
Cheeger and Kleiner [21], Heinonen et al. [22], Järvenpää et al. [23], Wildrick and Zürcher
[24], and the references therein. Motivated by the studies of Cartagena and Heinonen et al.,
we prove the characterizations of N1,∞(X : V ) and its comparisons with LIP∞(X : V ) and
M1,∞(X : V ) (refer to the definition in Section 2).

The remainder of the paper is organized as follows: in Section 2 we will establish our
main theorems; in Section 3, some preliminary lemmas will be given; in Section 4, we will
prove the main results.

2 Statements of Main Results

Assume that Γ+
E is the family of all paths γ in Γ such that Lebeguse measure L1(γ−1(γ ∩ E))

is positive. Denote by V ∗ the dual space of V , which is endowed with the norm

‖ v∗ ‖= sup{| 〈v∗, v〉 |: v ∈ V, ‖ v ‖≤ 1}.

At first, we consider Newtion-Sobolev classes N1,∞(X : V ) of Banach space-valued functions
on metric measure space X.

Theorem 2.1 Let X = (X, d, µ) be a metric measure space of finite total measure and
V a Banach space. For each map F ∈ L∞(X : V ), there exists four equivalent results as
follows:

(I) F ∈ N1,∞(X : V );
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(II) for each 1-Lipschitz function ϕ : V → R, the map ϕ ◦ F : X → R belongs to
N1,∞(X), and there exists ρ ∈ L∞(X) that is an ∞-weak upper gradient of ϕ ◦ F for all
such ϕ;

(III) for each v∗ ∈ V ∗ with ‖ v∗ ‖≤ 1, the map 〈v∗, F 〉 : X → R belongs to N1,∞(X : V ),
and there exists ρ ∈ L∞(X) that is an ∞-weak upper gradient of 〈v∗, F 〉 for all such v∗;

(IV) for each z ∈ F (X), the map dzF : X → R defined by dzF (x) =‖ F (x) − z ‖
belongs to N1,∞(X : V ), and there exists ρ ∈ L∞(X) that is an ∞-weak upper gradient of
dzF for all such z.

It is well known that the space with the doubling measure can be isometrically embedded
into a separable Banach space. If X is equipped with the doubling measure, then we may
obtain three results being equivalent to the four ones above.

(V) for each 1-Lipschitz function ϕ : V → R, the map ϕ ◦ F : X → R belongs to
N1,∞(X), and there exists ρ̃ ∈ L∞(X) such that ρϕ◦F ≤ ρ̃ for all such ϕ;

(VI) for each v∗ ∈ V ∗ with ‖ v∗ ‖≤ 1, the map 〈v∗, F 〉 : X → R belongs to N1,∞(X : V ),
and there exists ρ ∈ L∞(X) such that ρϕ◦F ≤ ρ̃ for all such v∗;

(VII) for each z ∈ F (X), the map dzF : X → R defined by dzF (x) =‖ F (x) − z ‖
belongs to N1,∞(X : V ), and there exists ρ ∈ L∞(X) such that ρϕ◦F ≤ ρ̃ for all such z.

Following the ways of Cartagena (see [1]) and Shanmugalingam (see [9]), by some extra
techniques we may establish the next theorems on F ∈ N1,∞(X : V ).

Theorem 2.2 Let Fi ∈ N1,∞(X : V ) and ρi ∈ L∞(X) be an ∞-weak V -upper gradient
of Fi for i ∈ N. Suppose that there exist F ∈ L∞(X : V ) and ρ ∈ L∞(X) so that the
sequences {Fi} and {ρi} converge to F in L∞(X : V ) and ρ in L∞(X), respectively. Then
there exists a map F̃ = F µ-a.e. such that ρ is an ∞-weak V -upper gradient of F̃ . Moreover,
F̃ ∈ N1,∞(X : V ).

Theorem 2.3 N1,∞(X : V ) is a Banach space. Moreover, every map F ∈ N1,∞(X : V )
has a minimal ∞-weak V -upper gradient ρF in L∞(X).

For 1 ≤ p ≤ ∞, the Hajlasz-Sobolev space M1,p(X : V )) is the set of all maps F ∈
Lp(X : V ) with the norm

‖ F ‖M1,P (X:V )=‖ F ‖LP (X:V ) + inf
g
‖ g ‖Lp(X)

for which there exists a nonnegative function g ∈ Lp(X) such that

‖ F (γ(x))− F (γ(y)) ‖≤ d(x, y)(g(x) + g(y)) µ-a.e., (2.1)

here ‖ · ‖M1,p(X:V ) also satisfies the equivalence relation by F1 = F2 µ-a.e. if and only if
‖ F1 − F2 ‖M1,p(X:V )= 0.

For F ∈ L1(X : V ) and E ⊂ X with µ(E) > 0, define the mean value of F over the set
E by the vector

FE =
1

µ(E)

∫

E

F (x)dµ(x). (2.2)
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For λ ≥ 1 and an open ball B(x, r) in X, let F ∈ L1(λB(x, r) : V ) and ρ : λB(x, r) →
[0,∞] be a Borel measurable function. If there exists a constant Cp for 1 ≤ p < ∞ so that

1
µ(B(x, r))

∫

B(x,r)

‖ F − FB(x,r) ‖ dµ ≤ Cpr

(
1

µ(λB(x, r))

∫

λB(x,r)

ρpdµ

) 1
p

(2.3)

holds, then we call that the function pair (F, ρ) satisfies the weak p-Poincaré inequality in
λB(x, r). Next it shows the relations among LIP∞(X : V ), N1,∞(X : V ) and M1,∞(X : V )
in the sense of equivalent norm.

Theorem 2.4 Suppose that X supports a weak p-Poincaré inequality for 1 ≤ p < ∞
and the doubling Borel measure µ. Then LIP∞(X : V ) = N1,∞(X : V ) = M1,∞(X : V )
with equivalent norms.

3 Some Preliminary Lemmas

Before we continue to deal with our arguments, we will recall and prove the following
lemmas.

Lemma 3.1 (see [1], Lemma III.2.9 for p = ∞ and Fuglede [25] for 1 ≤ p < ∞) Let ρk :
X → [−∞,+∞] be a sequence of Borel functions which converge to a Borel representative
ρ in Lp(X). Then there exists a subsequence {ρkn

} of Borel functions such that
∫

γ

| ρkn
− ρ | ds → 0 as n →∞

for p-a.e. curve γ ∈ Λ, where 1 ≤ p ≤ ∞.
Lemma 3.2 (see [1], Lemma III.2.6) If µ(E) = 0 for E ⊂ X, then Mod∞(Γ+

E) = 0.
Lemma 3.3 If {Ek} is a sequence in X, then

Cap∞

( ∞⋃
k=1

Ek : V

)
≤

∞∑
k=1

Cap∞(Ek : V ).

Proof Obviously, we only need to consider the case for
∞∑

k=1

Cap∞(Ek : V ) < ∞. For

ε > 0 and positive integer k, we may choose a sequence of maps Uk ∈ N1,∞(X : V ) with
ϕ ◦Uk |Ek

≥ 1 for all 1-Lipschitz functions ϕ and ∞-weak V -upper gradient %k of ϕ ◦Uk such
that

‖ Uk ‖L∞(X:V ) + ‖ %k ‖L∞(X)≤ Cap∞(Ek : V ) +
ε

2k
.

Set

Fn =
n∑

k=1

‖ Uk ‖L∞(X:V ) and ρn =
n∑

k=1

%k,

where ρn is an ∞-weak V -upper gradient of ϕ ◦ Fn. Then
∞∑

k=1

‖ Uk ‖L∞(X:V ) and
∞∑

k=1

‖
%k ‖L∞(X) are finite. It implies that

‖ Fn − Fm ‖L∞(X:V )≤
n∑

k=m+1

‖ Uk ‖L∞(X:V )→ 0 as m →∞.
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Therefore, {Fn} is a Cauchy sequence which converges to F =
∞∑

k=1

‖ Uk ‖L∞(X:V ) in L∞(X :

V ). Similarly, {ρn} converges to ρ =
∞∑

k=1

%k in L∞(X). According to Theorem 2.2 there

exists a map F̃ = F µ-a.e. such that ρ is an ∞-weak V -upper gradient of F̃ . Moreover,

F̃ ∈ N1,∞(X : V ). Since ϕ ◦ F ≥ 1 in
∞⋃

k=1

Ek, we obtain that

Cap∞

( ∞⋃
k=1

Ek : V

)
≤‖ F̃ ‖N1,∞(X:V )

≤
∞∑

k=1

(‖ Uk ‖L∞(X:V ) + ‖ %k ‖L∞(X)

) ≤
∞∑

k=1

Cap∞(Ek : V ) + ε,

which is the desired result and so Lemma 3.3 holds.
Lemma 3.4 If Cap∞(E : V ) = 0 for E ⊂ X, then Mod∞(ΓE) = 0.
Proof For ε > 0 and positive integer k, we may choose a sequence of maps Uk ∈

N1,∞(X : V ) with ϕ◦Uk |E≥ 1 for all 1-Lipschitz functions ϕ and ∞-weak V -upper gradient
%k of ϕ ◦ Uk such that

‖ Uk ‖L∞(X:V ) + ‖ %k ‖L∞(X)≤ ε

2k
.

Put

Fn =
n∑

k=1

‖ Uk ‖L∞(X:V ) and ρn =
n∑

k=1

%k,

where ρn is an ∞-weak V -upper gradient of ϕ ◦ Fn. Following the procedure of proof in
Lemma 3.3 there exists a map F̃ = F µ-a.e. such that ρ is an ∞-weak V -upper gradient of
F̃ . Moreover, F̃ ∈ N1,∞(X : V ). By Theorem 2.2, we infer that

F (x) = lim
k→∞

Fk(x)

outside a set G satisfying Mod∞(ΓG) = 0. Since E ⊂ G, that is to say ΓE ⊂ ΓG, we have
Mod∞(ΓE) ≤ Mod∞(ΓG) and it follows Mod∞(ΓE) = 0.

Lemma 3.5 (see Cartagena [1], Lemma III.2.5) For Γ ∈ Λ, the following results are
equivalent:

(I) Mod∞(ΓE) = 0;

(II) there exists a nonnegative Borel function ρ ∈ L∞(X) such that
∫

γ

ρds = +∞ for

each γ ∈ Γ;

(III) there exists a nonnegative Borel function ρ ∈ L∞(X) such that
∫

γ

ρds = +∞ for

each γ ∈ Γ and ‖ ρ ‖L∞(X)= 0.
Lemma 3.6 (see Cartagena [1], Theorem III.3.3) Suppose that X supports a weak

p-Poincaré inequality for 1 ≤ p < ∞ and the doubling Borel measure µ which is nontrivial
and finite on balls. For nonnegative ρ ∈ L∞(X), there exists a set E ⊂ X of measure zero
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and positive constant K depending only on X such that for all x, y ∈ X \ E there exists a

rectifiable curve γ connecting x and y so that
∫

γ

ρds < +∞ and ~(γ) ≤ Kd(x, y).

4 Proofs of Main Theorems

Proof of Theorem 2.1 Assume that result (I) is true. Let ρ ∈ L∞(X) be an ∞-weak
V -upper gradient of F and ϕ : V → R be 1-Lipschitz function. If γ is a rectifiable curve in
X with the ends x and y, then

| ϕ ◦ F (x)− ϕ ◦ F (y) |≤‖ F (x)− F (y) ‖≤
∫

γ

ρds.

Since X has finite mass, we obtain that

‖ ϕ ◦ F ‖L∞(X)|≤‖ F ‖L∞(X:V ) + | ϕ(0) |≤‖ F ‖N1,∞(X:V ) + | ϕ(0) |< ∞.

Therefore, ϕ ◦ F is in N1,∞(X : V ) and ρ is an ∞-weak upper gradient of ϕ ◦ F which is
independent of ϕ. Hence, it follows result (II).

Since both the mappings 〈v∗, ·〉 : V → R with ‖ v∗ ‖≤ 1 for v∗ ∈ V ∗ and the mappings
dz : V → R with dz(v) =‖ v − z ‖ for z ∈ V are 1-Lipschitz, by (II), results (III) and (IV)
clearly hold.

Suppose that the map F ∈ L∞(X : V ) and ρ ∈ L∞(X) satisfy result (III). Let γ be
a rectifiable curve in X with the ends x and y. If F (x) = F (y), then the result is trivial.
Otherwise, we choose v∗ ∈ V ∗ satisfying

〈v∗, F (x)− F (y)〉 =‖ F (x)− F (y) ‖

with ‖ v∗ ‖≤ 1. Since ρ is an ∞-weak upper gradient of 〈v∗, F 〉 for all such v∗, we know that

‖ F (x)− F (y) ‖= 〈v∗, F (x)− F (y)〉 ≤
∫

γ

ρds.

Hence, ρ is an ∞-weak V -upper gradient of F and so F ∈ N1,∞(X : V ). Similarly, from
result (IV) it infers (I). When X is equipped with the doubling measure, we may assume
that F (X) is separable. For the equalities of (I), (V), (VI) and (VII), we only need repeat
the procedures of Heinonen et al. [22].

Proof of Theorem 2.2 Set

F̃ (x) =
1
2

(
lim sup

k→∞
Fk(x) + lim inf

k→∞
Fk(x)

)
.

Since Fi → F in L∞(X : V ), clearly it converges µ-a.e. Hence F̃ = F µ-a.e. and F̃ ∈
L∞(X : V ). Therefore, the map F̃ is well defined outside the zero-measurable set

E = {x : lim
k→∞

| ϕ ◦ Fk(x) |= ∞},
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where ϕ : V → R is 1-Lipschtiz function. Let Γ be the collection of paths γ ∈ Λ such that

either
∫

γ

ρds = ∞ or

lim
k→∞

∫

γ

ρkds 6=
∫

γ

ρds.

From Lemma 3.1, it easily infers that Mod∞(Γ) = 0. Since µ(E) = 0, by Lemma 3.2 we
know that Mod∞(Γ+

E) = 0. For any nonconstant path γ ∈ Λ \ (Γ ∪ Γ+
E), we may fix a point

y ∈| γ | \E, here | γ | is the image of γ. Since ρk is an ∞-weak V -upper gradient of Fk, we
know that for all points x ∈| γ |,

| ϕ ◦ Fk(x) | − | ϕ ◦ Fk(y) |≤| ϕ ◦ Fk(x)− ϕ ◦ Fk(y) |≤‖ Fk(x)− Fk(y) ‖≤
∫

γ

ρkds.

Hence,

| ϕ ◦ Fk(x) |≤| ϕ ◦ Fk(y) | +
∫

γ

ρkds.

Because γ ∈ Λ \ (Γ ∪ Γ+
E), we obtain that

lim
k→∞

| ϕ ◦ Fk(x) |≤ lim
k→∞

| ϕ ◦ Fk(y) | +
∫

γ

%ds < ∞,

and so x ∈ X \E. That is to say, γ ∈ ΓE fails and so ΓE ⊂ Γ∪Γ+
E . Further Mod∞(ΓE) = 0.

For γ ∈ Λ \ Γ, let x and y be the end of points of its images. Clearly, x, y don’t belong
to E, and so we know that

‖ F̃ (x)− F̃ (y) ‖ =< v∗, F̃ (x)− F̃ (y) >

=
1
2

< v∗, lim sup
k→∞

(Fk(x)− Fk(y)) > +
1
2

< v∗, lim inf
k→∞

(Fk(x)− Fk(y)) >

≤ 1
2

lim sup
k→∞

‖ Fk(x)− Fk(y) ‖ +
1
2

lim inf
k→∞

‖ Fk(x)− Fk(y) ‖

≤ 1
2

lim sup
k→∞

∫

γ

ρkds +
1
2

lim inf
k→∞

∫

γ

ρkds =
∫

γ

ρds,

where the map 〈v∗, ·〉 : V → R for v∗ with ‖ v∗ ‖≤ 1 is 1-lipschitz. Therefore, ρ is an ∞-weak
V -upper gradient of F̃ . Further, F̃ ∈ N1,∞(X : V ).

Proof of Theorem 2.3 For a Cauchy sequence {Fk} in N1,∞(X : V ), it can be
assumed that

‖ Fk+1 − Fk ‖N1,∞(X:V )< 4−k

and ‖ ρk+1,k ‖L∞(X:V )< 2−k, where ρk,` is an ∞-weak V -upper gradient of Fk − F`.
Let

Ek = {x ∈ X :‖ Fk+1(x)− Fk(x) ‖≥ 2−k}
and

G` =
∞⋃

k=`

Ek and G =
∞⋂

`=1

G`.
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If x ∈ G fails, then exists ` satisfying

‖ Fk+1(x)− Fk(x) ‖< 2−k for all k ≥ `,

and thus the Cauchy sequence {Fk(x)} converges in X. Here we put F (x) = lim
k→∞

Fk(x).

Now we claim that the set G is of ∞-capacity zero. Since 2k ‖ Fk+1(x)− Fk(x) ‖≥ 1 holds
on Ek, we know that

Cap∞(Ek : V ) ≤ 2k ‖ Fk+1 − Fk ‖N1,∞(X:V )≤ 2−k.

From the countably subadditivity of Cap∞(· : V ) in Lemma 3.3, we obtain that

Cap∞(G` : V ) ≤
∞∑

k=`

Cap∞(Ek : V ) ≤
∞∑

k=`

2k = 21−`.

Hence Cap∞(G : V ) = 0.
When x ∈ X \G, the sequence {Fk(x)} is convergent. Therefore, we know that

F (x) = lim
`→∞

F`(x) = Fk(x) +
∞∑

`=k

(F`+1(x)− F`(x)).

By Lemma 3.4, we get that Mod∞(ΓG) = 0. For γ ∈ Λ \ ΓG being connected x and y, we
have that

‖ (F − Fk)(x)− (F − Fk)(y) ‖ ≤
∞∑

`=k

‖ (F`+1 − F`)(x)− (F`+1 − F`)(y) ‖

≤
∞∑

`=k

∫

γ

g`+1,`ds =
∫

γ

∞∑
`=k

g`+1,`ds.

Therefore,
∞∑

`=k

g`+1,` is an ∞-weak V -upper gradient of F − Fk.

‖ F − Fk ‖N1,∞(X:V ) ≤‖ F − Fk ‖L∞(X:V ) +
∞∑

`=k

‖ g`+1,` ‖L∞(X)

≤‖ F − Fk ‖L∞(X:V ) +
∞∑

`=k

2`

≤‖ F − Fk ‖L∞(X:V ) +21−k as k →∞.

Hence, {Fk} converges into F in N1,∞(X : V ). That is to say, N1,∞(X : V ) is a Banach
space.

On the other hand, from Theorem 2.2, we may choose a sequence {ρk} satisfying ρk →
ρ = inf{%k} as k →∞ in L∞(X) so that there exists a map F̃ = F µ-a.e. such that ρ is an
∞-weak V -upper gradient of F̃ , that is to say, ρ is an ∞-weak V -upper gradient of F . Thus
Theorem 2.3 follows.
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Proof of Theorem 2.4 According to the definitions of LIP∞(X : V ) and M1,∞(X : V ),
we easily see that 1

2
‖ · ‖LIP∞(X:V )≤‖ · ‖M1,∞(X:V )≤‖ · ‖LIP1,∞(X:V ), and so LIP∞(X : V ) =

M1,∞(X : V ). Assume that F ∈ N1,∞(X : V ). Then there exists an ∞-weak V -upper
gradient ρ ∈ L∞(X) of F . Now we denote by ΓN the family of curves for which ρ is not
a V -upper gradient of F , and so Mod∞(ΓN ) = 0. From Lemma 3.5, we know that there

exists a nonnegative Borel function ρ̃ ∈ L∞(X) such that
∫

γ

ρ̃ds = +∞ for each γ ∈ ΓN

and ‖ ρ̃ ‖L∞(X)= 0. Hence, ρ + ρ̃ ∈ L∞(X) which is a V -upper gradient of F and satisfies

‖ ρ + ρ̃ ‖L∞(X)=‖ ρ ‖L∞(X). By Lemma 3.5 we remark that Γ = {γ ∈ Λ :
∫

γ

ρds = +∞} has

∞-modulus zero. Therefore, if
∫

γ

ρds < +∞, then
∫

γ

ρds ≤‖ ρ ‖L∞(X) ~(γ). From Lemma

3.6, there exists a set E ⊂ X of measure zero and positive constant K depending only on X

such that for all x, y ∈ X \ E there exists a rectifiable curve γ connecting x and y so that∫

γ

ρds < +∞ and ~(γ) ≤ Kd(x, y). Hence,

‖ F (x)− F (y) ‖≤
∫

γ

ρds ≤‖ ρ ‖L∞(X) ~(γ) ≤ K ‖ ρ ‖L∞(X) d(x, y).

Then F is K ‖ ρ ‖L∞(X)-Lischitz µ-a.e. That is to say, there exits a F̃ ∈ LIP∞(X : V ) so
that F = F̃ holds µ-a.e. Therefore, LIP∞(X : V ) = N1,∞(X : V ).
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[23] Järvenpää E, Järvenpää M, Rogovin K, Rogovin S, Shanmugalingam N. Measurability of equivalence

classes and MECp-property in metric spaces[J]. Rev. Mat. Iberoam., 2007, 23(3): 811–830.
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度量测度空间中Sobolev类Banach 空间值函数的刻画

龙品红,韩惠丽,汪文帅

(宁夏大学数学统计学院, 宁夏银川 750021)

摘要: 本文研究了在指标是无穷大时欧式空间情形下Sobolev函数类理论和指标是有限常数时度量空

间下Sobolev类Banach空间值函数理论. 利用Banach空间理论和位势理论的方法, 得到了在指标是无穷大

时度量测度空间中Sobolev类Banach空间值函数的各种刻画, 进而比较了该Sobolev类与对应的Lipschitz 类

和Hajlasz-Sobolev 类. 所获结果推广了欧式空间和度量测度空间中Sobolev函数类相应的结论.
关键词: Sobolev类; Banach 空间值函数; Lipschitz 函数; Poincaré 不等式; 度量测度空间
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