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Abstract: In the paper, we investigate the Sobolev function classes on Euclidean space when
the index is infinity and the ones of Banach space-valued functions on metric measure space when
the index is constant. By using the method of Banach space and potential theory, we give vari-
ous characterizations of Sobolev classes of Banach space-valued functions on metric measure space
when the index is infinity. Moreover, we compare the Sobolev classes with the corresponding Lips-
chitz and Hajlasz-Sobolev classes, which generalizes the related ones for Sobolev classes of Banach
space-valued functions on metric measure space as well as Euclidean setting.
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1 Introduction

The complete metric measure space X = (X, d, u) is equipped with a metric d and a
Borel regular outer measure p such that 0 < p(B(z,r)) < oo for all balls B(z,r) = {y € X :
d(z,y) < r}. The measure p is doubling, if there exists a doubling constant C,, such that
for all balls B C X,

4(2B) < Cou(B).

Let (X, d) be a metric space and V' an arbitrary Banach space of positive dimension.
We call that a measurable map F : X — V belongs to the Sobolev class N> (X : V) with
the norm

| F [ nreexy=[l F ||z (xv) “‘ir’}f 1o llzeex)
if e L>*(X : V) and if there exists a Borel function p : X — [0,00] so that p € L>(X)
and that

anm»—ﬂwwws/mh (L.1)
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for co-a.e rectifiable curve  : [a,b] — X, where each function p is called an oco-weak V-upper
gradient of ' and the norm || - || y1.(x.v) satisfies the equivalence relation by Fy = F; p-a.e.
if and only if || Fy — F5 ||n1.eo(x:v)= 0. If p satisfies (1.1) for all rectifiable curves vy, then p
is called a V-upper gradient of F.

The map F' : X — V is C-Lipschitz if there exists a constant C' > 0 so that

| F(v(z)) — F(v(y)) < Cd(z,y) (1.2)

holds for z,y € X, here || - || is the norm of element in V. Given a map F, the pointwise

Lipschitz constant of F' at non-isolated point x € X is defined as follows

e — i e L EO) = FO @) |

(1.3)

If = is an isolated point, we define LipF(x) = 0. LIP®(X : V) is the space of bounded
Lischitz maps F' from X to V with the norm

| F lluip=x:vy=l F ||z (x:vy +LIP(F),

where

F - F
z,y€X;x#y d(.’L’, y)
Let A = A(X) denote the family of all nonconstant rectifiable curves v and I'p the
family of all rectifiable curves v such that y N E # ¢. For I' C A, define the co-modulus of
I by

Mod, (T') = inf - .00l 1.
od (I') pég(r){llpIIL x)} € [0,00] (1.5)

here F(I') is the family of all Borel measurable functions p : X — [0, oo] such that

/pds > 1forallyel.
.
If some property holds for all v € A\ T' with Mod, (') = 0, then we call that the property
holds for co-a.e. curve.

For each 1-Lipschitz function ¢ : V' — R, the map ¢ o F': X — R belongs to N>°(X),
and there exists p € L>°(X) that is an upper gradient of o F' for all such ¢. The co-capacity
of a set £ C X with respect to the space N1>°(X : V) is defined by

Cap(E:V)= iI}f | F || ntoe (x:vys

where the infimum is taken over all maps F' in N'*°(X : V) such that po F |g> 1 for all
1-Lipschitz functions ¢. We remark that if V' =R and ¢ = 1, the definition is the classical
case for metric measure space (due to Cartagena [1]). Clearly, for E; C E», it satisfies that
Cap, (E1: V) < Cap (F2:V).
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In the paper, the aim is to consider the properties related to Sobolev classes of Banach
space-valued functions on metric measure space. In the classical Euclidean setting the gener-
alizations of the theory of Sobolev spaces were based on the distributional the derivatives, we
may refer to the books [2] and [3]. The definitions of Sobolev classes of real-valued functions
on metric measure spaces were given by Cheeger [4], Hajlasz [5, 6], Koskela [7], Romanovskii
[8], Shanmugalingam [9], etc. There were many applications in areas of analysis, particularly
the first order differential calculus, for example, nonlinear potential theory [10-12], quasi-
conformal and quasiregular theories [13, 14|, Carnot groups [15] and fractal analysis [16].
To overcome the difficulties of derivatives and extra hypothesis on metric measure spaces,
Shanmugalingam [9] applied a nonnegative Borel function to take the place of distributional
derivatives and defined the Newtonian space N1?(X) for 1 < p < oo. In addition, Hajlasz
[5] ever considered a integrable function named by Hajlasz gradient to play a role as the
same as upper gradient and introduced Hajlasz-Sobolev space M1?(X) for 1 < p < oc.
Under the suitable conditions, Cartagena [1] pointed out that the all approaches to Sobolev
type spaces, even the spaces which support Poincaré inequality, turn to be equivalent. Thus
Cartagena et al. [1, 17] studied the Newtonian space N°°(X) and Hajlasz-Sobolev space
M>=(X) as well as the cases that Poincaré inequality holds. The works of Ambrosio [18],
Korevaar-Schoen [19] and Reshetnyak [20] etc., were about the Sobolev mappings from the
domains in Euclidean or Riemannian space into a complete metric space. Since every metric
space may be isometrically embedded in the Banach space £°(-) of bounded functions, many
mathematicians focused on the case when the target is an arbitrary Banach space, refer to
Cheeger and Kleiner [21], Heinonen et al. [22], Jarvenpéd et al. [23], Wildrick and Ziircher
[24], and the references therein. Motivated by the studies of Cartagena and Heinonen et al.,
we prove the characterizations of N**°(X : V) and its comparisons with LIP*(X : V) and
M'>=(X : V) (refer to the definition in Section 2).

The remainder of the paper is organized as follows: in Section 2 we will establish our
main theorems; in Section 3, some preliminary lemmas will be given; in Section 4, we will

prove the main results.

2 Statements of Main Results

Assume that I'}; is the family of all paths « in I" such that Lebeguse measure £!(y~!(y N E))

is positive. Denote by V* the dual space of V', which is endowed with the norm
| v* |=sup{| (v",v) ;v € V,[|v[|<1}.

At first, we consider Newtion-Sobolev classes N1:°°(X : V') of Banach space-valued functions
on metric measure space X.

Theorem 2.1 Let X = (X, d, u) be a metric measure space of finite total measure and
V' a Banach space. For each map F € L>(X : V), there exists four equivalent results as
follows:

(I) Fe N2> (X :V);
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(IT) for each 1-Lipschitz function ¢ : V' — R, the map p o F' : X — R belongs to
Nb22(X), and there exists p € L>°(X) that is an oo-weak upper gradient of ¢ o F' for all
such ;

(IIT) for each v* € V* with || v* ||[< 1, the map (v*, F) : X — R belongs to N»*>°(X : V),
and there exists p € L>(X) that is an co-weak upper gradient of (v*, F') for all such v*;

(IV) for each z € F(X), the map d,F : X — R defined by d,F(x) =| F(z) — z ||
belongs to N>°(X : V), and there exists p € L°>°(X) that is an oo-weak upper gradient of
d,F for all such z.

It is well known that the space with the doubling measure can be isometrically embedded
into a separable Banach space. If X is equipped with the doubling measure, then we may
obtain three results being equivalent to the four ones above.

(V) for each 1-Lipschitz function ¢ : V. — R, the map p o F' : X — R belongs to
N'2°(X), and there exists p € L>(X) such that pyor < p for all such ¢;

(VI) for each v* € V* with || v* [|< 1, the map (v*, F) : X — R belongs to N»*°(X : V),
and there exists p € L>(X) such that p,.r < p for all such v*;

(VII) for each z € F(X), the map d.F : X — R defined by d,F(x) =|| F(z) — z ||
belongs to N'>°(X : V), and there exists p € L>(X) such that p,op < p for all such z.

Following the ways of Cartagena (see [1]) and Shanmugalingam (see [9]), by some extra
techniques we may establish the next theorems on F € NH>(X : V).

Theorem 2.2 Let F; € N»*°(X : V) and p; € L>=(X) be an oo-weak V-upper gradient
of F; for i € N. Suppose that there exist F' € L>*(X : V) and p € L>*(X) so that the
sequences {F;} and {p;} converge to F in L>°(X : V) and p in L>=°(X), respectively. Then
there exists a map F=F p-a.e. such that p is an oo-weak V-upper gradient of F. Moreover,
Fe NV (X:V).

Theorem 2.3 N'>(X : V) is a Banach space. Moreover, every map F' € N'>*(X : V)
has a minimal co-weak V-upper gradient pp in L>(X).

For 1 < p < oo, the Hajlasz-Sobolev space M*?(X : V)) is the set of all maps F €
LP(X : V) with the norm

| E {[arexony=| F l|lzrxv) +if;f 9 llzrex)
for which there exists a nonnegative function g € L?(X) such that

| F(y(z)) = F(v(y) [I< d(z,y)(9(z) + 9(y)) p-ae., (2.1)

here || - |[a10(x:v) also satisfies the equivalence relation by Fy = F, p-a.e. if and only if
| F1 — F5 || pex:vy= 0.
For F € L'(X : V) and E C X with u(E) > 0, define the mean value of F over the set
E by the vector
1

e =L

/EF(a:)d,u(:I:) (2.2)
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For A > 1 and an open ball B(x,7) in X, let ' € L*(AB(x,7) : V) and p : AB(z,7) —

[0, 00] be a Borel measurable function. If there exists a constant C), for 1 < p < oo so that

1 / 1 ’
L [ F-Fspn du<Cyr ( / ppdu) (2.3)
M(B($7 ’I")) B(z,r) Bl g /L()\B(l‘, T)) AB(z,r)

holds, then we call that the function pair (F, p) satisfies the weak p-Poincaré inequality in
AB(z, 7). Next it shows the relations among LIP*™(X : V), NY*°(X : V) and M»>(X : V)
in the sense of equivalent norm.

Theorem 2.4 Suppose that X supports a weak p-Poincaré inequality for 1 < p < oo
and the doubling Borel measure . Then LIP®(X : V) = NbV>°(X : V) = Mb>°(X : V)

with equivalent norms.

3 Some Preliminary Lemmas

Before we continue to deal with our arguments, we will recall and prove the following
lemmas.

Lemma 3.1 (see [1], Lemma II1.2.9 for p = co and Fuglede [25] for 1 < p < 00) Let py, :
X — [—o0, +o¢0] be a sequence of Borel functions which converge to a Borel representative
pin LP(X). Then there exists a subsequence {py, } of Borel functions such that

/|p;€"—p|ds—>0 as n — 0o
v

for p-a.e. curve v € A, where 1 < p < .
Lemma 3.2 (see [1], Lemma II11.2.6) If u(E) =0 for £ C X, then Mod,(I'}) = 0.
Lemma 3.3 If {E}} is a sequence in X, then

Cap, (U Ey : V) < ZCapoo(Ek V).
k=1 k=1

Proof Obviously, we only need to consider the case for Y Cap. (Ex : V) < oo. For

k=1
e > 0 and positive integer k, we may choose a sequence of maps U, € N»>°(X : V) with
poUy |g,> 1 for all 1-Lipschitz functions ¢ and co-weak V-upper gradient gy of ¢ o Uy, such

that
€

| Uk I xvy + [l 0k | x)< Capoo (By : V) + ot

Set

n

F, = Z H Uk HLw(X;v) and p, = Zle

k=1 k=1
where p, is an oo-weak V-upper gradient of ¢ o F,. Then Y || Uy ||re(x:v) and > ||
k=1 k=1
Ok ||z (x) are finite. It implies that

|| Fn - Fm HLOO(X:V)S Z || Uk ||L°°(X:V)_> 0 as m — oo.
k=m+1
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Therefore, {F),} is a Cauchy sequence which converges to F' = > || Uy ||p(x:v) in L>®(X :
k=1

V). Similarly, {p,} converges to p = > o in L*(X). According to Theorem 2.2 there
k=1

exists a map F=F p-a.e. such that p is an co-weak V-upper gradient of F. Moreover,

F e N (X :V). Since po F > 1in |J E, we obtain that
k=1

Capoo (U Ek . V) SH FV ||N1,oo(X:V)
k=1

< Z (1 Uk [z xovy + 1 ok Nl (x)) < anpoo(Ek V) +e,
k=1 k=1
which is the desired result and so Lemma 3.3 holds.

Lemma 3.4 If Cap_ (£ : V) =0 for E C X, then Mod(I'g) = 0.

Proof For ¢ > 0 and positive integer k, we may choose a sequence of maps U, €
NbLe2(X 1 V) with poUy |p> 1 for all 1-Lipschitz functions ¢ and co-weak V-upper gradient
ok of ¢ o Uy such that

€
| Uk |l x:vy 4+ 1] 0k [l ()< ok

Put

n n

Fo =) Uk l=xovy and po =Y ok,

k=1 k=1
where p,, is an oo-weak V-upper gradient of ¢ o F,,. Following the procedure of proof in
Lemma 3.3 there exists a map F' = F p-a.e. such that p is an co-weak V-upper gradient of
F. Moreover, F € N'*°(X : V). By Theorem 2.2, we infer that

F(x) = kli_)r{)lo Fy(x)
outside a set G satisfying Mod,,(I'¢) = 0. Since E C G, that is to say 'y C I'g, we have
Mod(I'g) < Modw(I'¢) and it follows Mod. (I'g) = 0.
Lemma 3.5 (see Cartagena [1], Lemma II1.2.5) For I' € A, the following results are
equivalent:
(I) Modoo(I'g) = 0;

(IT) there exists a nonnegative Borel function p € L>°(X) such that /pds = 400 for

¥
each v € T}

(III) there exists a nonnegative Borel function p € L*°(X) such that / pds = +oo for

8!
each y € I" and || p ||~ (x)= 0.

Lemma 3.6 (see Cartagena [1], Theorem III.3.3) Suppose that X supports a weak
p-Poincaré inequality for 1 < p < oo and the doubling Borel measure p which is nontrivial

and finite on balls. For nonnegative p € L*>°(X), there exists a set E C X of measure zero
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and positive constant K depending only on X such that for all z,y € X \ E there exists a
rectifiable curve v connecting x and y so that /pds < 400 and h(v) < Kd(x,y).

Y

4 Proofs of Main Theorems

Proof of Theorem 2.1 Assume that result (I) is true. Let p € L°°(X) be an oco-weak
V-upper gradient of F' and ¢ : V' — R be 1-Lipschitz function. If v is a rectifiable curve in
X with the ends z and y, then

IwON@—wmﬂwKHN@—F@MS/mh

v

Since X has finite mass, we obtain that
oo F [l < E Iz xovy + 1 @(0) [SIE [|ve vy + [ 9(0) < oc.

Therefore, p o F is in N»*(X : V) and p is an oo-weak upper gradient of ¢ o F' which is
independent of . Hence, it follows result (IT).

Since both the mappings (v*,-) : V — R with || v* ||< 1 for v* € V* and the mappings
d,:V — R with d,(v) =|| v—z || for z € V are 1-Lipschitz, by (IT), results (III) and (IV)
clearly hold.

Suppose that the map F € L=(X : V) and p € L*°(X) satisfy result (III). Let 7 be
a rectifiable curve in X with the ends z and y. If F(x) = F(y), then the result is trivial.

Otherwise, we choose v* € V* satisfying

(v, F(z) = F(y)) =l F(z) = F(y) |

with || v* ||< 1. Since p is an oco-weak upper gradient of (v*, F') for all such v*, we know that

| F@) = F@) 1= (" Fa) = ) < [ s
v
Hence, p is an oco-weak V-upper gradient of F and so F € NH°(X : V). Similarly, from
result (IV) it infers (I). When X is equipped with the doubling measure, we may assume
that F'(X) is separable. For the equalities of (I), (V), (VI) and (VII), we only need repeat
the procedures of Heinonen et al. [22].

Proof of Theorem 2.2 Set

~ 1
F(z) = 3 (limsuka(x) + li}{gi;}fFﬂx)) .

k—o0

Since F; — F in L*(X : V), clearly it converges p-a.e. Hence F=F p-a.e. and F e

L>(X : V). Therefore, the map F' is well defined outside the zero-measurable set

E={z: klim | ¢ 0 Fi(x) |= o0},
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where ¢ : V' — R is 1-Lipschtiz function. Let ' be the collection of paths v € A such that
either /pds =00 Oor
¥

k—oo

lim pkds#/pds.
v 2!

From Lemma 3.1, it easily infers that Mod..(I') = 0. Since u(E) = 0, by Lemma 3.2 we
know that Mod..(I'};) = 0. For any nonconstant path v € A\ (I' UT}), we may fix a point
y €] v | \F, here | v | is the image of . Since py is an oco-weak V-upper gradient of Fj,, we
know that for all points x €] 7 |,

[ poFu(z) | — | o Fi(y) I<| @o Fi(z) — o Fi(y) I<|| Fi(x) — Fi(y) < /pkd&

Hence,

| o Fu() |<| po Fi(y) | +/pkds.

g
Because v € A\ (I'UT'}), we obtain that

klim | po Fr(x)|< klim | o Fr(y) | +/gds < 0,
— 00 — 00 ’)’

and so z € X \ E. That is to say, v € I'g fails and so 'y C TUT'},. Further Mod.(I'g) = 0.
For v € A\ T, let = and y be the end of points of its images. Clearly, x,y don’t belong
to E/, and so we know that

| F(z) — F(y) | =< v*, F(z) - F(y) >

1 1
=5 < v*, limsup(Fy(z) — Fr(y)) > +5 < U*,ligninf(Fk(ac) — Fr(y)) >
k—oo o0

1., 1. .
< g limsup || Fi(z) — Fi(y) || +5 iminf || Fi(2) — Fi(y) |

k—o0

1limsup/pkds+1liminf/pkds:/pds,
2 koo Jy 2 k—oo J, 5
where the map (v*,-) : V' — R for v* with || v* ||< 1 is 1-lipschitz. Therefore, p is an co-weak
V-upper gradient of F. Further, F € Nbee(X 2 V).

Proof of Theorem 2.3 For a Cauchy sequence {F}} in N'>°(X : V), it can be
assumed that

IA

| Fr1 — By [[nroexan< 47F

and || pr41.x ||Leo(xv)< 27F, where pg ¢ is an co-weak V-upper gradient of Fj, — Fy.
Let
By = {w € X | Fon(2) — Fu(a) 2 27}

and

Gg: OEk and G = ﬁGz
k=t £=1
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If x € G fails, then exists ¢ satisfying
| Fryr(z) — Fi(z) |< 27" for all k> ¢,

and thus the Cauchy sequence {Fj(x)} converges in X. Here we put F(z) = klim Fy.(x).
Now we claim that the set G is of oo-capacity zero. Since 2% || Fjy1(x) — Fp(x) ||> 1 holds

on FEj, we know that
Capyo(By : V) <28 || For — Fy || vioe(xn< 27F

From the countably subadditivity of Cap..(- : V) in Lemma 3.3, we obtain that
Capo(Ge: V) <) Cap (B : V)<Y 2F =2
k=t k=t

Hence Cap_ (G : V) = 0.
When z € X \ G, the sequence {Fj(x)} is convergent. Therefore, we know that

M2

F(z) = lim Fy(z) = F.(z) +

{—00

(Feta (2) = Fo(@)).

I
>

By Lemma 3.4, we get that Mod(I'¢) = 0. For v € A\ I'¢ being connected z and y, we
have that

I (F = F)(@) = (F = F)@) | < D || (Fepr = F) (@) = (Fipa = F)() |

—k
< Z/yglJrl,EdS = /deﬂ,zd&
—k

Y =k

Therefore, Y gry1, is an co-weak V-upper gradient of F — F.
=k

| F— Fy [|nteexiv) S| F — Fi ||ne(x:v) +Z | ges1,e | Loe(x)
—k

<I| F = Fi =gy + 2
=k

<|| F = Fy ||re(xv) +2'7F ask — oo.

Hence, {F}} converges into F' in N'>°(X : V). That is to say, N>>*(X : V) is a Banach
space.

On the other hand, from Theorem 2.2, we may choose a sequence {py} satisfying p, —
p =1inf{or} as k — oo in L>°(X) so that there exists a map F = F p-a.e. such that p is an
oo-weak V-upper gradient of ﬁ, that is to say, p is an oco-weak V-upper gradient of F'. Thus
Theorem 2.3 follows.
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Proof of Theorem 2.4 According to the definitions of LIP®(X : V) and M1 (X : V),
we easily see that 1 || - [[Lipe(x:v)<|| - [l (xv)<| - et (x.v), and so LIP®(X : V) =
M1>°(X : V). Assume that F € N1>°(X : V). Then there exists an oo-weak V-upper
gradient p € L*°(X) of F. Now we denote by I'y the family of curves for which p is not
a V-upper gradient of F', and so Mod.(I'y) = 0. From Lemma 3.5, we know that there

exists a nonnegative Borel function p € L*°(X) such that / pds = +oo for each v € T'y
v

and || p ||z~ (x)= 0. Hence, p + p € L>(X) which is a V-upper gradient of F' and satisfies

| p4 7 |lzx)=|l p ||z (x)- By Lemma 3.5 we remark that I' = {y € A : /pds = +o0} has

Y

oo-modulus zero. Therefore, if /pds < 400, then /pds <|| p |z (x) A(7). From Lemma

v v
3.6, there exists a set £ C X of measure zero and positive constant K depending only on X

such that for all z,y € X \ F there exists a rectifiable curve 4 connecting x and y so that

/pds < 400 and h(vy) < Kd(x,y). Hence,

~

| F(z) - F(y) [I< /pds <l p ey A7) < K || p o x) d(,y).

Y

Then F is K || p || £ (x)-Lischitz p-a.e. That is to say, there exits a Fe LIP*(X : V) so
that F = F holds p-a.e. Therefore, LIP®(X : V)= Nb>(X : V).
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