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Abstract: In this paper, we consider the optimal dividend problem with penalty payments

in a dual model. We assume that the company doesn’t go bankrupt when the surplus becomes

negative, but penalty payments occur, and the penalty amounts are dependent on the level of the

surplus. By using the stochastic optimal control approach and dynamic programming principles,

we obtain the HJB equation and verification theorem for the optimal problem. Finally, when the

profits follow an exponential distribution, we obtain the optimal dividend strategies and explicit

solutions for exponential and linear penalty payments, respectively.
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1 Introduction

Recently, many papers were published on the dual risk model. The model is suitable
for describing companies whose capital reserves involve a constant flow of expenses and
occasional profits, such as petroleum, pharmaceutical or commission-based businesses. In
actuarial mathematics, the risk of a company is traditionally measured by the probability of
ruin, where the time of ruin is defined as the first time when the surplus becomes negative.
Classical ruin probability results for the dual model can be found in Grandell [1], Dong and
Wang [2], and Zhu and Yang [3].

Another measure considers the expected discounted dividend payments which are paid
to the shareholders until ruin. The dividend problem in the dual model was first introduced
by Avanzi et al. [4], and the optional dividend strategy in the dual model was a constant bar-
rier strategy. From then, many researchers studied the dual model under different dividend
strategies. See Avanzi and Gerber [5], Gerber and Smith [6], Ng [7] and so on. However,
the disadvantage of the dividend approach is that, under the optimal strategy, ruin occurs
almost surely. Therefore, the idea of capital injections rises. Whenever the surplus becomes
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negative, the shareholders have to inject capital in order to avoid ruin. See, for example,
Yao et al. [8, 9], Avanzi et al. [10] and so on.

All of the approaches above have one thing in common: if the surplus becomes negative,
the company either has to inject capital or ruin occurs. However, in practice, it can be
observed that some companies continue doing business although they had large losses for a
long period. The regulator often intervenes in order to avoid that a company goes out of
business. Therefore, it is more realistic to allow negative surplus. In the context of negative
surplus, Vierkotter and Schmidli [11] considered optimal dividend problem with penalty
payments in a diffusion model. Vierkotter and Schmidli assumed that insurer is not ruined
when the surplus becomes negative, but penalty payments occur, depending on the level of
the surplus.

Motivated by Vierkotter and Schmidli [11], we consider the optimal dividend problem
with penalty payments for a dual model. Similarly, we assume that bankruptcy does not
occur, but whenever the surplus is negative, penalty payments occur. These payments
reflect all costs which are necessary to prevent bankruptcy. For example, penalty payments
can occur if the company needs to borrow money, generate additional equity or additional
administrative measures have to be taken. These costs may also be extended to positive
surplus to penalise small surplus. The penalty payments are rather technical in order to avoid
that the surplus becomes small or even negative. Different from Vierkotter and Schmidli
[11], we assume that the dividend payments have transaction costs.

The rest of this paper is organized as follows. In Section 2, the model is described and
basic concepts are introduced. In Section 3, the HJB equation and verification theorem for
the optimization problem are provided. In Section 4, we explicitly derive the optimal value
functions and corresponding optimal strategies for exponential and linear penalty payments
when the profits follow an exponential distribution.

2 The Model

Let (Ω,F , {Ft}t≥0,P) be a filtered probability space on which all stochastic processes
and random variables introduced in the following are defined. The company’s uncontrolled
surplus process R = {Rt}t≥0 is the dual model, which is described as

Rt = x− ct + St, (2.1)

where x ≥ 0 is the initial surplus level; c > 0 can be viewed as the rate of expenses;

St =
N(t)∑
i=1

Yi is a compound Poisson process representing the total income amount up to time

t, in which N(t) is a Poisson process with a gain arrival intensity λ, and the sequence of
gain amounts {Yi}i≥1 are independent and identically distributed (i.i.d.) positive random
variables with mean m1 and a continuously differentiable distribution function F (y). In
addition, since E(Rt−x) = t(λm1−c), we assume that the net profit condition, λm1−c > 0,
is valid.
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The manager of the company can control over the dividend payments and the controlled
surplus of the company evolves according to

RD
t = x− ct + St −Dt, (2.2)

where Dt is the cumulative amount of dividend paid out up to time t. The strategy D =
{Dt}t≥0 is said to be admissible if D is predictable and non-decreasing cádlág processes with
D0 = 0. The set of all admissible strategies is denoted by D. We assume that dividends are
paid according to a barrier strategy. Such a strategy has a parameter b > 0, the level of the
barrier. Whenever the surplus exceeds the barrier, the excess is paid out immediately as a
dividend. This means that

Dt = (x− b)+ +
∫ t

0

I{Rs≥b}dDs,

where IA represents the indiction function of event A.
The value function of a strategy D is defined by

V D(x) = E
[∫ ∞

0

ηe−δtdDt −
∫ ∞

0

e−δtφ(RD
t )dt|RD

0 = x

]
, (2.3)

where δ > 0 denotes the discount rate, 0 < η ≤ 1 represents the net proportional of leakages
from the surplus received by shareholders after transaction costs are paid. The penalty
function φ is continuous, decreasing, and convex a function, satisfying φ(x) → 0 as x →∞.
The manager’s objective is to find the optimal strategy D∗ ∈ D such that

V (x) = sup
D∈D

V D(x) = V D∗
(x). (2.4)

We have to assume
∫ ∞

0

e−δtE[φ(Rt)]dt < ∞.

Otherwise, the value function would be minus infinity. Moreover, we assume that

φ(x)− φ(y) > δη(y − x) (2.5)

for x < y < x0 and some x0 ∈ R in order that it is not optimal to pay an infinite amount
of dividends. Since φ is assumed to be convex, this means that there is an x ∈ R such that
φ′(x) < −δη.

3 The HJB Equation and the Verification Theorem

First, we verify some basic properties of the value function that will help us to prove
the following HJB equation.

Lemma 3.1 The function V (x) is concave.
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Proof Similarly to Vierkotter and Schmidli [11], let x, y ∈ R and z = kx + (1 − k)y,
where k ∈ (0, 1). Applying the strategies Dx and Dy for initial capital x and y, respectively,
we define Dt = kDx

t + (1− k)Dy
t for the initial capital z. Since −φ is concave and

RD
t = kx + (1− k)y + (k + 1− k)(−ct + St)− kDx

t − (1− k)Dy
t

= kRDx

t + (1− k)RDy

t ,

we obtain

V (kx + (1− k)y)

= V (z) ≥ V D(z) = E
[∫ ∞

0

ηe−δt(kdDx
t + (1− k)dDy

t )−
∫ ∞

0

e−δtφ(RD
t )dt

]

≥ kE
[∫ ∞

0

ηe−δtdDx
t −

∫ ∞

0

e−δtφ(RDx

t )dt

]
+ (1− k)E

[∫ ∞

0

ηe−δtdDy
t −

∫ ∞

0

e−δtφ(RDy

t )dt

]

= kV Dx

(x) + (1− k)V Dy

(y).

Taking the supremum over all strategies Dx and Dy, we get

V (kx + (1− k)y) ≥ kV (x) + (1− k)V (y).

This completes the proof.
Remark 3.1 The concavity implies that V is differentiable from the left and from the

right and V ′(x−) ≥ V ′(x+) ≥ V ′(y−) ≥ V ′(y+) for x < y. In particular, V is differentiable
almost everywhere. Moreover, the concavity implies that V is continuous.

Lemma 3.2 V (x) is increasing with V (y)− V (x) ≥ η(y − x) for x ≤ y and

−
∫ ∞

0

e−δtE[φ(Rt)]dt ≤ V (x) ≤ ηx +
ηλm1

δ
. (3.1)

Proof Consider a strategy D with V D(x) ≥ V (x)−ε for an ε > 0. For y ≥ x, we define
a new strategy as follows: y − x is paid immediately as dividend and then the strategy D

with initial capital x is followed. Then for any ε > 0, it holds that

V (y) ≥ η(y − x) + V D(x) ≥ η(y − x) + V (x)− ε.

Since ε is arbitrary, we get V (y) ≥ V (x) + η(y − x). Hence V is increasing.
Let V 0 be the value of the strategy where no dividends are paid. Then, Fubini’s theorem

implies

V (x) ≥ V 0(x) = −
∫ ∞

0

e−δtE[φ(Rt)]dt.

On the other hand, consider another extreme case: there is no operating cost (i.e.,
c = 0), all initial surplus x and profits are paid out immediately as dividends. The company
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can run smoothly due to no operating costs, there is no penalty payments occur. We find,
using the fact that the n-th jump time Tn is Gamma Γ(λ, n) distributed, the upper bound

V (x) ≤ ηx + ηE[
∞∑

n=1

Yne−δTn ] = ηx + ηm1

∞∑
n=1

(
λ

λ + δ
)n = ηx +

ηλm1

δ
.

The proof is completed.
Theorem 3.1 The function V (x) fulfils the Hamilton-Jacobi-Bellman (HJB) equation

max{(A− δ)V (x)− φ(x), η − V ′(x)} = 0, (3.2)

where operator A is the infinitesimal generator given by

AV (x) = −cV ′(x)− λV (x) + λ

∫ ∞

0

V (x + y)dF (y). (3.3)

Proof Let h ≥ 0 and l ≥ 0. Consider the strategy Dε, such that V Dε

(x′) > V (x′)− ε

for x′ ∈ (−∞, x + (c + l)h] and ε > 0. Then, we define the strategy

Dt =

{
lt, 0 ≤ t < T1 ∧ h,

Dε
t−T1∧h, t ≥ T1 ∧ h.

For this strategy, we obtain

V (x) ≥V D(x)

≥E
[∫ T1∧h

0

e−δs(ηl − φ(RD
s ))ds + e−δ(T1∧h)V Dε

(RD
T1∧h)

]

>E
[∫ T1∧h

0

e−δs(ηl − φ(RD
s ))ds + e−δ(T1∧h)V (RD

T1∧h)
]
− ε

= E
[(∫ T1∧h

0

e−δs(ηl − φ(RD
s ))ds + e−δ(T1∧h)V (RD

T1∧h)
)(

I{T1>h} + I{T1≤h}
)]− ε

=e−λh

(∫ h

0

e−δs(ηl − φ(x− (c + l)s))ds + e−δhV (x− (c + l)h)
)

+
∫ h

0

λe−λt

[∫ t

0

(ηl − φ(x− (c + l)s))ds + e−δt

∫ ∞

0

V (x− (c + l)t + y)dF (y)
]

dt

− ε + V (x− (c + l)h)− V (x− (c + l)h).

Since ε is arbitrary we can let it tend to zero. Then, rearranging the terms and dividing by
h implies

0 ≥V (x− (c + l)h)− V (x)
h

− 1− e−(λ+δ)h

h
V (x− (c + l)h)

+
e−λh

h

∫ h

0

e−δs(ηl − φ(x− (c + l)s))ds

+
1
h

∫ h

0

λe−λt

[∫ t

0

(ηl − φ(x− (c + l)s))ds + e−δt

∫ ∞

0

V (x− (c + l)t + y)dF (y)
]

dt.
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Let h → 0, we get

−(c + l)V ′(x)− (λ + δ)V (x) + ηl − φ(x) + λ

∫ ∞

0

V (x + y)dF (y) ≤ 0.

Since l is arbitrary, we obtain

sup
l≥0

{
l(η − V ′(x))− cV ′(x)− (λ + δ)V (x)− φ(x) + λ

∫ ∞

0

V (x + y)dF (y)
}
≤ 0. (3.4)

If V ′(x) < η, then (3.4) would be positive for l large enough. Hence, we can get V ′(x) ≥ η.
In addition, when l = 0, we obtain

−cV ′(x)− (λ + δ)V (x)− φ(x) + λ

∫ ∞

0

V (x + y)dF (y) ≤ 0.

Thus, we can get

max
{
−cV ′(x)− (λ + δ)V (x)− φ(x) + λ

∫ ∞

0

V (x + y)dF (y), η − V ′(x)
}

= 0.

This completes the proof.
Theorem 3.2 Assume that f is an increasing, concave and twice continuously dif-

ferentiable solution to (3.2), then f(x) ≥ V (x). Moreover, if there exists b∗ ∈ R+ such
that

(i) (A− δ)f(x)− φ(x) = 0, f ′(x) ≥ η,∀x ≤ b∗;
(ii) (A− δ)f(x)− φ(x) < 0, f(x) = f(b∗) + η(x− b∗),∀x > b∗,

then f(x) = V (x) and b∗ is the corresponding optimal dividend barrier.
Proof (i) For an arbitrary constant n > 0 and admissible strategy D ∈ D, define the

stopping times τn = inf{t ≥ 0 : |RD
t | ≥ n}. Applying generalized Itô’s formula yields

e−δτnf(RD
τn

) =f(x)− δ

∫ τn

0

e−δtf(RD
t )dt− c

∫ τn

0

e−δtf ′(RD
t )dt

+
∫ τn

0

λ

∫ ∞

0

e−δt[f(RD
t− + y)− f(RD

t−)]dF (y)dt−
∫ τn

0

e−δtf ′(RD
t )dDt

+
∑

0≤t≤τn

e−δt[f(RD
t )− f(RD

Rt−)− f ′(RD
t−)(RD

t −RD
t−)]. (3.5)

Since f is concave, we have f(y) ≤ f(z) + f ′(z)(y − z) for all y, z. Thus

∑
0≤t≤τn

e−δt[f(RD
t )− f(RD

Rt−)− f ′(RD
t−)(RD

t −RD
t−)] ≤ 0.

Since f fulfils (3.2) and f ′(x) ≥ η, we obtain

f(x) ≥ E
[
e−δτnf(RD

τn
) +

∫ τn

0

ηe−δtdDt −
∫ τn

0

e−δtφ(RD
t )dt

]
.
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Let b be the dividend barrier of strategy D, then RD
t ≤ b a.s.. Since f is increasing, we have

e−δτnf(RD
τn

) ≤ e−δτnf(b). Because of lim
n→∞

E[e−δτnf(b)] = 0, so by bounded convergence

theorem, we have lim
n→∞

E[e−δτnf(RD
τn

)] = 0. Hence, we get f(x) ≥ V D(x). Since D is

arbitrary, we have f(x) ≥ V (x).
(ii) With strategy D∗, f ′(RD∗

t ) = η only if Rt ≥ b∗, and {RD∗
t } only jumps downwards

when RD∗
t− > b∗. Thus

∑
0≤t≤τn

e−δt[f(RD∗
t )− f(RD∗

Rt−)− f ′(RD∗
t− )(RD∗

t −RD∗
t− )] = 0.

Taking the expectation on both sides of (3.5) and letting n →∞, we get that

f(x) = E
[∫ ∞

0

ηe−δtdD∗
t −

∫ ∞

0

e−δtφ(RD∗
t )dt

]
= V D∗

(x) ≤ V (x).

This proves the result.

4 Examples

In our examples, we assume that the gain amounts are exponentially distributed. That
is F (y) = 1 − e−γy, γ > 0. Then, m1 = 1

γ
. We obtain the explicit expressions of the

optimal value functions and corresponding optimal strategies for exponential and linear
penalty payments, respectively.

4.1 Exponential Penalty Payments

In this section, we consider the function φ(x) = αe−βx with α, β > 0. Obviously, (2.5)
is fulfilled for x < y < x0 = −β−1 max{ln δ − ln(αβ), 0}. Let MY (r) = E[erY ] denote the
moment-generating function of the gain amounts. Then

E[e−βRt−δt] = exp[−β(x− ct) + λt(MY (−β)− 1)− δt]. (4.1)

Putting the distribution function F (y) = 1 − e−γy and penalty function φ(x) = αe−βx into
(A− δ)V (x)− φ(x) = 0 for x ≤ b∗, we obtain

−cV ′(x) + λγ

∫ ∞

0

e−γyV (x + y)dy − (λ + δ)V (x)− αe−βx = 0. (4.2)

Since V (x) = V (b∗) + η(x − b∗) for x > b∗ and let z = x + y, the above equation can be
written as

−cV ′(x) + λγeγx

∫ b∗

x

e−γzV (z)dz + λe(−b∗+x)γV (b∗)

+
λη

γ
e(−b∗+x)γ − (λ + δ)V (x)− αe−βx = 0.

Applying the operator (γ − d
dx

) to the above equation, yields

cV ′′(x) + (λ + δ − cγ)V ′(x)− δγV (x)− α(β + γ)e−βx = 0. (4.3)
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This equation is solved by

f(x) = C1e
ξ1x + C2e

ξ2x −Ae−βx, (4.4)

where ξ2 < 0 < ξ1 are the roots of the equation

cξ2 + (λ + δ − cγ)ξ − δγ = 0, (4.5)

A = − α(β + γ)
cβ2 − (λ + δ − cγ)β − γδ

, (4.6)

and C1, C2 are constants. Since

V (x) ≥ −α

∫ ∞

0

E[e−βRt−δt]dt = −α

∫ ∞

0

exp[−β(x− ct) + λt(MY (−β)− 1)− δt]dt

= −α

∫ ∞

0

exp{−βx +
t(cβ2 − (λ + δ − cγ)β − γδ)

β + γ
}dt

= −αe−βx

∫ ∞

0

e−
α
A tdt,

we see that V (x) = ∞ if −β ≤ ξ2. We therefore assume −β > ξ2, this means that A > 0,

V (x) ≥ −α

∫ ∞

0

E[e−βRt−δt]dt = −Ae−βx. Now, since ξ1 > 0 > −β > ξ2, we obtain that

V (x) is only increasing for x small enough if C2 ≤ 0. Furthermore, if C2 < 0, we have
V (x) < −Ae−βx for x small enough. Thus, it must hold that C2 = 0. Next, we only need to
look for b∗ and C1. By f ′(b∗) = η and f ′′(b∗) = 0, that is,

{
C1ξ1e

ξ1b∗ + Aβe−βb∗ = η,

C1ξ
2
1e

ξ1b∗ −Aβ2e−βb∗ = 0,

we get

b∗ = − 1
β

ln
ηξ1

Aβ(ξ1 + β)

and

C1 =
Aβ2e−(β+ξ1)b

∗

ξ2
1

.

Our candidate solution becomes now

f(x) =

{
C1e

ξ1x −Ae−βx, x ≤ b∗,

C1e
ξ1b∗ −Ae−βb∗ + η(x− b∗), x > b∗.

(4.7)

Let G(x) = −Ae−βx. For x ≤ b∗, we have

f ′′(x) =C1ξ
2
1e

ξ1x −Aβ2e−βx = Aβ2(e−(β+ξ1)b
∗+ξ1x − e−βx)

=Aβ2e−βx(e(x−b∗)(β+ξ1) − 1) < 0,
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Figure 1: Value function for λ = γ = 1, c = 0.8, δ = 0.05, α = 0.2, β = 0.3, η = 0.9

so f ′(x) > f ′(b∗) = η. And for x ≥ b∗, we have f ′′(x) = 0, f ′(x) = η. Therefore, by Theorem
3.2, we can get that f(x) = V (x) and b∗ is the optimal dividend barrier.

In Figure 1, the value function is shown for λ = γ = 1, c = 0.8, δ = 0.05, α = 0.2,
β = 0.3 and η = 0.9. In this case we have b∗ = 5.47991. The solid line gives the optimal
value, the dotted line gives the value without dividend payments.

4.2 Linear Penalty Payments

In this section, we assume that the penalty payments occur only when the surplus
becomes negative. Therefore, we can let φ(x) = −αxI{x<0} with α > 0.

Lemma 4.1 (i) If α < δη, an optimal strategy does not exist and V (x) = ∞.
(ii) For α > δη it holds V (x) ≤ α(δx−c+λm1)

δ2 . Moreover, V (x) ≥ α(δx−c+λm1)
δ2 + C for

some C < 0 if x ≤ 0.
(iii) Let α = δη, then V (x) = α(δx−c+λm1)

δ2 .
Proof This lemma can be proved analogously as in the proof of [11, Lemma 5.1].
(i) Let D0 ∈ D with the barrier b = 0. We define the strategy D

(0,a)
t = D0

t +at for some
a > 0. Now, we have R

(0,a)
t ≤ 0 and

E
[∫ ∞

0

ηe−δtdD
(0,a)
t

]
= δE

[∫ ∞

0

ηe−δtD
(0,a)
t dt

]
. (4.8)

Hence, we get

V (x) ≥ V D(0,a)
(x) = E

[∫ ∞

0

ηe−δtdD
(0,a)
t + α

∫ ∞

0

e−δtRD(0,a)

t dt

]

= E
[
(δη − α)

∫ ∞

0

e−δtD
(0,a)
t dt + α

∫ ∞

0

e−δtRtdt

]

>
a(δη − α)

δ2
+

α(δx− c + λm1)
δ2

.
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If α < δη, let a →∞, we can get V (x) = ∞.
(ii) Let D ∈ D be an arbitrary strategy. We assume that lim

t→∞
E[e−δtDt] = 0. Then

V D(x) ≤ E
[∫ ∞

0

ηe−δtdDt + α

∫ ∞

0

e−δtRD
t dt

]

= E
[∫ ∞

0

ηe−δtdDt − α

∫ ∞

0

e−δtDtdt

]
+

α(δx− c + λm1)
δ2

≤ E
[∫ ∞

0

ηe−δtdDt − δ

∫ ∞

0

e−δtDtdt

]
+

α(δx− c + λm1)
δ2

=
α(δx− c + λm1)

δ2
.

Since D is arbitrary, we have V (x) ≤ α(δx−c+λm1)
δ2 . Now, let x ≤ 0, we have

V (x) ≥αE
[∫ ∞

0

e−δt min(Rt, 0)dt

]
= αE

[∫ ∞

0

e−δt 1
2
(Rt − |Rt|)dt

]

=
1
2

(
α(δx− c + λm1)

δ2
− α

∫ ∞

0

e−δtE[|Rt|]dt

)

≥1
2

(
α(δx− c + λm1)

δ2
+ α

∫ −x
λm1−c

0

e−δt(x− ct + λm1t)dt

−α

∫ ∞

−x
λm1−c

e−δt(x− ct + λm1t)dt

)

=
α(δx− c + λm1)

δ2
− λm1 − c

δ2
e

δx
λm1−c

=
α(δx− c + λm1)

δ2
+ C

for some C < 0.
(iii) Consider the same strategy as in (i). By α = δη, we obtain V (x) ≥ α(δx−c+λm1)

δ2 .
On the other hand, from (ii) we get V (x) ≤ α(δx−c+λm1)

δ2 .
The proof is completed.
From Lemma 4.1, when α = δη, we know that a barrier strategy with a barrier at

zero is optimal. So, in the following, we assume that α > δη. This is consistent with our
assumption in (2.5). In addition, the dividend barrier must be positive, because it can’t be
optimal to pay dividends if the surplus is negative.

Next, we use a similar method to obtain the explicit expression of the optimal value
functions and corresponding optimal strategy for linear penalty payments.

Now, writting the distribution function F (y) = 1 − e−γy and penalty function φ(x) =
−αx into (A− δ)V (x)− φ(x) = 0 for x ≤ b∗, we obtain

−cV ′(x) + λγ

∫ ∞

0

e−γyV (x + y)dy − (λ + δ)V (x) + αx = 0. (4.9)
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Since V (x) = V (b∗) + η(x − b∗) for x > b∗, and let z = x + y, the above equation can be
written as

−cV ′(x) + λγeγx

∫ b∗

x

e−γzV (z)dz + λe(−b∗+x)γV (b∗) +
λη

γ
e(−b∗+x)γ − (λ + δ)V (x) + αx = 0.

Applying the operator (γ − d
dx

) to the above equation, yields

cV ′′(x) + (λ + δ − cγ)V ′(x)− δγV (x) + α(γx− 1) = 0. (4.10)

This equation is solved by

f1(x) = B1e
ξ1x + B2e

ξ2x +
α(δx− c + λm1)

δ2
, (4.11)

where B1, B2 are constants and ξ1, ξ2 are the roots of (4.5). Let G(x) = α(δx−c+λm1)
δ2 .

When x ∈ (0, b∗], we have φ(x)=0. Putting the distribution function F (y) = 1 − e−γy

and penalty function φ(x) = 0 into (A− δ)V (x)− φ(x) = 0, similarly, we obtain

cV ′′(x) + (λ + δ − cγ)V ′(x)− δγV (x) = 0. (4.12)

This equation is solved by

f2(x) = B3e
ξ1x + B4e

ξ2x, (4.13)

where B3, B4 are constants and ξ1, ξ2 as above.
Now, f1(x) is increasing for x small enough only if B2 ≤ 0. Furthermore, if B2 < 0,

we have f1(x) < α(δx−c+λm1)
δ2 + C for x small enough. Thus, we let B2 = 0. Note that the

continuity of φ in x = 0 together with f1(0) = f2(0) and f ′1(0) = f ′2(0) implies f ′′1 (0) = f ′′2 (0).
At the dividend barrier, we have f ′2(b

∗) = η and f ′′2 (b∗) = 0. By these bounded conditions,
we obtain

B3 = − ηξ2e
−ξ1b∗

ξ1(ξ1 − ξ2)
, B4 =

ηξ1e
−ξ2b∗

ξ2(ξ1 − ξ2)
,

B1 = −−ηξ2e
−ξ1b∗ + ηξ1e

−ξ2b∗

ξ1(ξ1 − ξ2)
− α

δξ1

,

and

b∗ = − 1
ξ2

ln
α

δη
> 0.

Thus, we can get that B3 > 0, B4 < 0 and

B1 =
−ηξ2(α/δη)ξ1/ξ2 + ηξ1(α/δη)

ξ1(ξ1 − ξ2)
− α

δξ1

=
αξ2(1− (α/δη)−1+ξ1/ξ2)

δξ1(ξ1 − ξ2)
< 0.

From the above, our candidate solution becomes now

f(x) =





f1(x), x ≤ 0,

f2(x), 0 < x ≤ b∗,

f2(b∗) + η(x− b∗), x > b∗.

(4.14)
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By construction, we know that f(x) is twice continuously differentiable. Now,

f ′′′2 (x) = ξ3
1B3e

ξ1x + ξ3
2B4e

ξ2x > 0.

Then, if 0 < x ≤ b∗, f ′′2 (x) ≤ f ′′2 (b∗) = 0 and f ′2(x) ≥ f ′2(b
∗) = η . Furthermore, f ′′1 (x) =

ξ2
1B1e

ξ1x < 0. Therefore, f ′1(x) ≥ f ′1(0) = f ′2(0) > f ′2(b
∗) = η for x ≤ 0. So f is concave and

f ′(x) ≥ η for all x ≤ b∗.
In conclusion, f(x) satisfies all of conditions of Theorem 3.2. Therefore, we can get that

f(x) = V (x) and b∗ is the optimal dividend barrier.
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Figure 2: Value function for λ = γ = 1, c = 0.8, δ = 0.05, α = 0.2, η = 0.9

Figure 2 illustrates the value function for λ = γ = 1, c = 0.8, δ = 0.05 and α = 0.2. The
optimal dividend barrier is given by b∗ = 3.03070.
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对偶模型中带指数或线性罚函数的最优分红问题

王晓繁,马世霞,李 桐

(河北工业大学理学院,天津 300401)

摘要: 本文研究了带罚函数的对偶模型的最优分红问题. 假设当公司的盈余资金为负值时, 公司不会

发生破产, 但是会进行相应的惩罚, 惩罚金额取决于公司的余额水平. 利用随机最优控制方法和动态规划原

则, 得到了最优化问题的HJB方程及其验证定理. 最后, 当收益服从指数分布时, 得到了带指数罚函数和带线

性罚函数两种情形各自的最优分红策略及最优值函数的解析式.
关键词: 对偶风险模型;分红;罚金; HJB方程
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