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OPTIMAL DIVIDENDS WITH EXPONENTIAL AND
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Abstract: In this paper, we consider the optimal dividend problem with penalty payments
in a dual model. We assume that the company doesn’t go bankrupt when the surplus becomes
negative, but penalty payments occur, and the penalty amounts are dependent on the level of the
surplus. By using the stochastic optimal control approach and dynamic programming principles,
we obtain the HJB equation and verification theorem for the optimal problem. Finally, when the
profits follow an exponential distribution, we obtain the optimal dividend strategies and explicit
solutions for exponential and linear penalty payments, respectively.
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1 Introduction

Recently, many papers were published on the dual risk model. The model is suitable
for describing companies whose capital reserves involve a constant flow of expenses and
occasional profits, such as petroleum, pharmaceutical or commission-based businesses. In
actuarial mathematics, the risk of a company is traditionally measured by the probability of
ruin, where the time of ruin is defined as the first time when the surplus becomes negative.
Classical ruin probability results for the dual model can be found in Grandell [1], Dong and
Wang [2], and Zhu and Yang [3].

Another measure considers the expected discounted dividend payments which are paid
to the shareholders until ruin. The dividend problem in the dual model was first introduced
by Avanzi et al. [4], and the optional dividend strategy in the dual model was a constant bar-
rier strategy. From then, many researchers studied the dual model under different dividend
strategies. See Avanzi and Gerber [5], Gerber and Smith [6], Ng [7] and so on. However,
the disadvantage of the dividend approach is that, under the optimal strategy, ruin occurs

almost surely. Therefore, the idea of capital injections rises. Whenever the surplus becomes
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negative, the shareholders have to inject capital in order to avoid ruin. See, for example,
Yao et al. [8, 9], Avanzi et al. [10] and so on.

All of the approaches above have one thing in common: if the surplus becomes negative,
the company either has to inject capital or ruin occurs. However, in practice, it can be
observed that some companies continue doing business although they had large losses for a
long period. The regulator often intervenes in order to avoid that a company goes out of
business. Therefore, it is more realistic to allow negative surplus. In the context of negative
surplus, Vierkotter and Schmidli [11] considered optimal dividend problem with penalty
payments in a diffusion model. Vierkotter and Schmidli assumed that insurer is not ruined
when the surplus becomes negative, but penalty payments occur, depending on the level of
the surplus.

Motivated by Vierkotter and Schmidli [11], we consider the optimal dividend problem
with penalty payments for a dual model. Similarly, we assume that bankruptcy does not
occur, but whenever the surplus is negative, penalty payments occur. These payments
reflect all costs which are necessary to prevent bankruptcy. For example, penalty payments
can occur if the company needs to borrow money, generate additional equity or additional
administrative measures have to be taken. These costs may also be extended to positive
surplus to penalise small surplus. The penalty payments are rather technical in order to avoid
that the surplus becomes small or even negative. Different from Vierkotter and Schmidli
[11], we assume that the dividend payments have transaction costs.

The rest of this paper is organized as follows. In Section 2, the model is described and
basic concepts are introduced. In Section 3, the HJB equation and verification theorem for
the optimization problem are provided. In Section 4, we explicitly derive the optimal value
functions and corresponding optimal strategies for exponential and linear penalty payments

when the profits follow an exponential distribution.

2 The Model

Let (Q,F,{F:}+>0,P) be a filtered probability space on which all stochastic processes
and random variables introduced in the following are defined. The company’s uncontrolled

surplus process R = {R;};>0 is the dual model, which is described as
Rt :.CL'—Ct+St, (21)

where x > 0 is the initial surplus level; ¢ > 0 can be viewed as the rate of expenses;
N(t)

Sy = > Y, is a compound Poisson process representing the total income amount up to time
i=1

t, in which N(t) is a Poisson process with a gain arrival intensity A, and the sequence of

gain amounts {Y;};>; are independent and identically distributed (i.i.d.) positive random

variables with mean m; and a continuously differentiable distribution function F(y). In

addition, since E(R; —x) = t(Am; —¢), we assume that the net profit condition, Am; —c¢ > 0,

is valid.
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The manager of the company can control over the dividend payments and the controlled
surplus of the company evolves according to

RtD :x—ct—i—St —Dt, (22)

where D, is the cumulative amount of dividend paid out up to time ¢. The strategy D =
{D;}+>0 is said to be admissible if D is predictable and non-decreasing cadlag processes with
Dy = 0. The set of all admissible strategies is denoted by D. We assume that dividends are
paid according to a barrier strategy. Such a strategy has a parameter b > 0, the level of the
barrier. Whenever the surplus exceeds the barrier, the excess is paid out immediately as a
dividend. This means that

t
D, = (x — b)+ —|—/ I{Rszb}st»
0

where I, represents the indiction function of event A.

The value function of a strategy D is defined by

VD(x):E[/ ne—“th—/ e 'p(RPYAt|RY = x|, (2.3)
0 0

where 0 > 0 denotes the discount rate, 0 < 1 < 1 represents the net proportional of leakages
from the surplus received by shareholders after transaction costs are paid. The penalty
function ¢ is continuous, decreasing, and convex a function, satisfying ¢(z) — 0 as © — oo.
The manager’s objective is to find the optimal strategy D* € D such that

V(z) = sup VP(z) = VP (). (2.4)

DeD

We have to assume

/ e 'E[p(Ry)]dt < oo
0
Otherwise, the value function would be minus infinity. Moreover, we assume that

o(z) — o(y) > only — x) (2.5)

for x < y < x¢ and some zg € R in order that it is not optimal to pay an infinite amount
of dividends. Since ¢ is assumed to be convex, this means that there is an « € R such that

¢'(x) < —on.
3 The HJB Equation and the Verification Theorem

First, we verify some basic properties of the value function that will help us to prove
the following HJB equation.

Lemma 3.1 The function V(x) is concave.
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Proof Similarly to Vierkotter and Schmidli [11], let z,y € R and z = kz + (1 — k)y,
where k € (0,1). Applying the strategies D* and DY for initial capital = and y, respectively,
we define D, = kD?¥ + (1 — k)D} for the initial capital z. Since —¢ is concave and

RP =kx+(1—ky+(k+1—Fk)(—ct+S,) — kD —(1—k)D}
=kRP" + (1 - k)R,
we obtain
V(kx + (1 —Ek)y)

=V(z) >VP()=E [/OOO ne " (kdD? + (1 — k)dDY) — /OOO e‘”gb(RtD)dt]

> kE [ / h ne %tdD¥ — / h e‘“¢(RtDI)dt} + (1 - k)E [ / h ne %tdD} — / N e“”qﬁ(Rfy)dt]
0 0 0 0
= EVP (z) + (1 = k)VP" ().
Taking the supremum over all strategies D* and DY, we get
V(kz + (1 —k)y) > kV(z) + (1 - k)V ().

This completes the proof.

Remark 3.1 The concavity implies that V is differentiable from the left and from the
right and V'(z—) > V'(z+) > V'(y—) > V'(y+) for x < y. In particular, V is differentiable
almost everywhere. Moreover, the concavity implies that V is continuous.

Lemma 3.2 V(z) is increasing with V(y) — V(z) > n(y — x) for x < y and

_ / h e E[p(R,)|dt < V(z) < nz + ”A;”l. (3.1)

Proof Consider a strategy D with VP (z) > V(z)—¢ for an ¢ > 0. For y > z, we define
a new strategy as follows: y — x is paid immediately as dividend and then the strategy D
with initial capital z is followed. Then for any £ > 0, it holds that

V(y) >nly—=z)+VP(@) >nly—z)+V(z)—e.

Since ¢ is arbitrary, we get V(y) > V(z) +n(y — x). Hence V is increasing.
Let V9 be the value of the strategy where no dividends are paid. Then, Fubini’s theorem

implies
V(z)>V%z) = - / h e 'E[p(Ry)]dt.

On the other hand, consider another extreme case: there is no operating cost (i.e.,

¢ = 0), all initial surplus x and profits are paid out immediately as dividends. The company
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can run smoothly due to no operating costs, there is no penalty payments occur. We find,
using the fact that the n-th jump time T, is Gamma I'(\, n) distributed, the upper bound

it _ > A nam
V(x) §77x+17E[ZYne ] = x4 nmy Z(m) =02+ — L

n=1 n=1

The proof is completed.
Theorem 3.1 The function V (z) fulfils the Hamilton-Jacobi-Bellman (HJB) equation

max{(A - 0)V(z) - ¢(z), n— V'(z)} =0, (3.2)

where operator A is the infinitesimal generator given by
AV (z) = —cV'(z) — AV (z) + )\/ V(z+y)dF(y). (3.3)
0

Proof Let h > 0 and [ > 0. Consider the strategy D°, such that V" (z') > V(2') — ¢
for ' € (—oo0,x 4 (c+1)h] and € > 0. Then, we define the strategy

Dol 0<t<TiAh,
" D t>TiAR

For this strategy, we obtain

V(z) >VP(z)

Ty Ah
>E |:/ 6765(771 _ gb(RSD))dS 4 6*5(T1/\h)‘/DE (R’ZD“l/\h):|
0
TiAR
>E { / e~ % (nl — ¢(RP))ds + e“S(T“’L’V(RTDIAh)] G
0
Ty Ah
-E K/ e (nl — ¢(R2))ds + e‘“TlAh)V(RIT)Mh)) (Tizisny + I{T1<h})] —¢€
0
h
—e~ </ e—‘;s(nl —¢(x— (c+1)s))ds + e“shV(:v —(e+ l)h))
0

+ /0 e [/0 (nl — ¢p(z — (¢ +1)s))ds + e /000 V(e —(c+Dt+ y)dF(y)} dt
—e+V(z—(c+1)h)—V(z—(c+1)h).

Since ¢ is arbitrary we can let it tend to zero. Then, rearranging the terms and dividing by

h implies
0 ZV(J? —(c +;f)h) — V() 1- e;:Hé)hV(a: et
o~ ph
2 [ et - ot - e+ aas
h 0

h t o
+ ;/ e M [/ (nl — ¢z — (c+1)s))ds + 6_&/0 V(= (c+ 0t +y)dF(y)| dt.
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Let h — 0, we get
—(c+D)V'(x) = (A +0)V(z) +nl — d(x) + )\/ V(z+y)dF(y) <0.
0
Since [ is arbitrary, we obtain

sup {l(n —V'(x)) —cV'(x) = A+ )V (z) — d(x) + A /0‘>° V(r+ y)dF(y)} <0. (3.4)

1>0

If V'(x) < n, then (3.4) would be positive for [ large enough. Hence, we can get V'(z) > n.
In addition, when [ = 0, we obtain

—V'(z) — A+ 6V (2) — d(x) + A /OOO V(z +y)dF(y) <0.
Thus, we can get
max {—cV’(x) —A+0)V(z) —o(z) + A /OOO V(z+y)dF(y),n — V’(:I:)} =0.

This completes the proof.

Theorem 3.2 Assume that f is an increasing, concave and twice continuously dif-
ferentiable solution to (3.2), then f(z) > V(x). Moreover, if there exists b* € R™ such
that

(i) (A= 8)f(x) - dlx) = 0, f'(2) =,V < b

(ii) (A=0)f(z) —o(x) <0, f(x) = f(b") +n(z—b"), Ve > b7,
then f(x) = V(x) and b* is the corresponding optimal dividend barrier.

Proof (i) For an arbitrary constant n > 0 and admissible strategy D € D, define the
stopping times 7, = inf{t > 0 : |RP| > n}. Applying generalized 1t6’s formula yields

o f(RD) =f(a) — 6 [ e RPYdt—c [ e~ f'(RP)at
e (RD) =f(x) / F(RP) / F/(RP)

T" = st D _ D _ T st pD
T / A / R +y) — F(RD)AF (y)de / e~ f'(RP)dD,

+ > e MARE) ~ SRR, )~ /(R )(RP — B2 ). (35)

0<t<7y

Since f is concave, we have f(y) < f(z) + f'(2)(y — 2) for all y, z. Thus

> eMARY) - f(RE, ) — f(RP)(RP — RP)] < 0.

0<t<t,

Since f fulfils (3.2) and f'(z) > n, we obtain

f(z) >E [6_5“ FRD) + / " ne=3tdD, — / " e“”qﬁ(Rf)dt].
0 0
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Let b be the dividend barrier of strategy D, then R” < b a.s.. Since f is increasing, we have
e ™ f(RP) < e ®™ f(b). Because of lim E[e=°™ f(b)] = 0, so by bounded convergence

theorem, we have lim E[e*‘sT’Lf(Rfi)] = 0. Hence, we get f(z) > VP(z). Since D is

n—oo

arbitrary, we have f(z) > V(z).
(ii) With strategy D*, f'(RP") = n only if R, > b*, and {RP"} only jumps downwards
when RP* > b*. Thus

S e UARD) — F(RE) — f'(RE)(RP — RE)) =0,

0<t<ry,

Taking the expectation on both sides of (3.5) and letting n — oo, we get that

f(z)=E [ / ne %tdD; — / e—5t¢(RtD*)dt] = VP (x) < V().
0 0
This proves the result.

4 Examples

In our examples, we assume that the gain amounts are exponentially distributed. That

is Flyy =1—e, v > 0. Then, m; = % We obtain the explicit expressions of the

optimal value functions and corresponding optimal strategies for exponential and linear

penalty payments, respectively.
4.1 Exponential Penalty Payments

In this section, we consider the function ¢(z) = ae™#® with a, 3 > 0. Obviously, (2.5)
is fulfilled for z < y < 2 = —f ' max{Ind — In(aB3),0}. Let My (r) = E[e"] denote the

moment-generating function of the gain amounts. Then
E[e PR = exp[—B(z — ct) + M(My (—3) — 1) — 6t]. (4.1)

Putting the distribution function F(y) = 1 — e™7¥ and penalty function ¢(x) = ae™?* into
(A—=98)V(z)— ¢(x) =0 for z < b*, we obtain

—cV'(z) + Ny /OO eV (z 4+ y)dy — (A +6)V(z) — ae™?* = 0. (4.2)

Since V(z) = V(b*) + n(x — b*) for x > b* and let z = = + y, the above equation can be
written as

.
—cV'(z) + )\vew/ eV (2)dz + ATV (b)

-I—Me(_b“””)” —A+0)V(z) — e =0.
v

Applying the operator (v — %) to the above equation, yields

V" (@) + AN+6—cy)V'(z) — 69V (2) — (B +7)e P = 0. (4.3)
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This equation is solved by
F(z) = Cre8 4 Cacter — AP, (14)
where & < 0 < & are the roots of the equation

2+ AN+6—cy)E—6y=0, (4.5)
a(f+7)

A:_cﬂ2—()\—|—5—cv)ﬂ—76’

and C;, Cs are constants. Since

V(z) > —a/ooo E[e #R"dt = —a /000 exp[—0(z — ct) + Xt(My (—f) — 1) — dt]dt

(¢8> = (A +6 —cy)B —79)
B+

= —« /oo exp{—pfz + ! }dt
0

oo
——oze_ﬁr/ e~ Atdt,
0

we see that V(z) = oo if —f < &. We therefore assume —(3 > &, this means that A > 0,

V(z) > —a/ E[e PR dt = —Ae ", Now, since & > 0 > —f > &, we obtain that
0

V(x) is only increasing for z small enough if Cy < 0. Furthermore, if Co < 0, we have

V(z) < —Ae P for x small enough. Thus, it must hold that Cy = 0. Next, we only need to

look for b* and C;. By f/(b*) =n and f”(b*) = 0, that is,

Ci&re8Y 4 ABeP" =1,
O1€3e8 — AGe =,

we get
1 né1
b =——In—>——
B ABE+B)
and
AB? —(B+E&1)b"
o = AT
3
Our candidate solution becomes now
Cre5r” — Ae P x < b,
= . f - 4.7
/(@) { Cret?” — Ae PP +p(x —b*), x> 0b". (4.7)

Let G(z) = —Ae P*. For x < b*, we have

f//(x) :Clé'%eglﬂ? o Aﬂzeiﬁm _ A62(67(6+51)b*+51w B e*ﬁx)
:Aﬁze_ﬂx(e(ﬂc—b*)(ﬁ'i'fl) _ 1) < 07
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Figure 1: Value function for A\=vy=1,¢=0.8,6 =0.05,a =0.2,=0.3,7=0.9

so f'(z) > f'(b*) = n. And for x > b*, we have f”(z) =0, f'(x) = n. Therefore, by Theorem
3.2, we can get that f(x) = V(x) and b* is the optimal dividend barrier.

In Figure 1, the value function is shown for A = v = 1,¢ = 0.8, = 0.05,a = 0.2,
8 = 0.3 and n = 0.9. In this case we have b* = 5.47991. The solid line gives the optimal

value, the dotted line gives the value without dividend payments.
4.2 Linear Penalty Payments

In this section, we assume that the penalty payments occur only when the surplus
becomes negative. Therefore, we can let ¢(x) = —axl{y<op with o > 0.

Lemma 4.1 (i) If o < 7, an optimal strategy does not exist and V(z) = oc.

(i) For a > én it holds V(z) < W. Moreover, V(z) > w + C for
some C' < 0 if x <0.

(iii) Let o = dm, then V(z) = w.

Proof This lemma can be proved analogously as in the proof of [11, Lemma 5.1].

(i) Let D° € D with the barrier b = 0. We define the strategy D{"* = DY + at for some

a > 0. Now, we have R\"* < 0 and

E{ / ne“”th(O’a)]—é]E [ / ne“”Dt(O’a)dt] (4.8)
0 0

Hence, we get
V(z) > VD<0,a,>(m) =E [/ nefdtht(o,a) X a/ eétR?(O'a)dt}
0 0

=E [(517 - a)/ e D"y 4 a/ e_éthdt]
0 0

a(dn —a)  a(dr —c+ Amy)
T 52 '
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If @ < 9, let a — oo, we can get V(z) = oo.
(ii) Let D € D be an arbitrary strategy. We assume that tlim E[e~°'D;] = 0. Then

oo

ne~°tdD, +a/ e_‘“Rf)dt]
0

—F / neétht_a/ ezstDtdt:| +O[( X c+ ml)
0
X

52

ne=tdD, — 6 / e‘StDtdt] L ooz _§2+ Ama)
0

oo

—c+ /\ml)
52

a(

a(dx—c+Amq)
52

Since D is arbitrary, we have V(z) < . Now, let < 0, we have

V(z) >aFE [/OOO e %' min(Ry, o)dt] =aR [/OOO e“”%(Rt - |Rt|)dt]

1 a(dz —c+Amq) a/ e~ OE||R,[]dt
2 52 o

1 [ a(dz—c+ A X =
>z (a( r et Am) +a/ e~ (2 — ct + Amyt)dt
0

Z5 52
—a o: e oz —ct + )\mlt)dt>

_afdx incl;r Amy)  Amg — ¢ e

= 5 52

:a(éx —g;r Amy ) e

for some C' < 0.

(iii) Consider the same strategy as in (i). By o = o7, we obtain V(z) > W.

On the other hand, from (ii) we get V(x) < w.

The proof is completed.

From Lemma 4.1, when a = dn, we know that a barrier strategy with a barrier at
zero is optimal. So, in the following, we assume that o > dn. This is consistent with our
assumption in (2.5). In addition, the dividend barrier must be positive, because it can’t be
optimal to pay dividends if the surplus is negative.

Next, we use a similar method to obtain the explicit expression of the optimal value
functions and corresponding optimal strategy for linear penalty payments.

Now, writting the distribution function F(y) = 1 — e™7¥ and penalty function ¢(x) =
—az into (A — )V (z) — ¢(z) = 0 for z < b*, we obtain

—cV'(z) + Ny /Oo e "V(x+y)dy — (A+0)V(z) + ax = 0. (4.9)
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Since V(z) = V(b*) + n(xz — b*) for x > b*, and let z = x + y, the above equation can be

written as
b
—cV'(z) + )\’ye”/ eV V (2)dz + ATV () + >:Yn eCHEDY (N 48V (z) + az = 0.

Applying the operator (y — %) to the above equation, yields
V' @)+ AN+ —cy)V'(x) =V (z) + a(yz — 1) = 0. (4.10)

This equation is solved by

a(dx —c+ Amy)
92 ’

where By, By are constants and &;, &, are the roots of (4.5). Let G(z) = w

When z € (0,b*], we have ¢(2)=0. Putting the distribution function F(y) =1 —e "
and penalty function ¢(x) = 0 into (A — 0)V(z) — ¢(x) = 0, similarly, we obtain

fi(z) = Bie®'® + Boe" +

(4.11)

cV"(x)+ N+ 6 —cy)V'(z) — 09V (z) = 0. (4.12)
This equation is solved by
fo(x) = B3e'® + Bye®", (4.13)

where B3, B4 are constants and &1, & as above.

Now, fi(z) is increasing for x small enough only if By < 0. Furthermore, if By < 0,
we have fi(x) < W + C for x small enough. Thus, we let By = 0. Note that the
continuity of ¢ in z = 0 together with f1(0) = f2(0) and f;(0) = f(0) implies f;'(0) = f5/(0).
At the dividend barrier, we have f}(b*) = n and f5(b*) = 0. By these bounded conditions,

we obtain

e néie” "
Bs = By =
T a8 T eE-&)
B nee Y A nGe ™ a
' &6 — &) 56
and
b* = —gln— > 0.

Thus, we can get that B3 > 0, By < 0 and

—n&a(a/on)/e + ki (a/on) o ol — (afdn) /e

B, = - — = < 0.
' &6~ &) 66, 661(6 — &)
From the above, our candidate solution becomes now
fl (.’17), xr S 01

f2(b*) + n(x — b*), x > b*.
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By construction, we know that f(z) is twice continuously differentiable. Now,
o (x) = & B3eS" + &5 Bye®™ > 0.

Then, if 0 < z < b*, f(x) < fY(b*) = 0 and fj(z) > fi(b*) = n . Furthermore, f'(z) =
&2Bye®® < 0. Therefore, fi(z) > f1(0) = f3(0) > f3(b*) = n for x < 0. So f is concave and
f'(z) = n for all x < b*.

In conclusion, f(x) satisfies all of conditions of Theorem 3.2. Therefore, we can get that
f(x) = V(x) and b* is the optimal dividend barrier.

100

80 [ ~ 4

60 [ ~ 4

a0 | —~ 4

20 |- _ - I
_ - ///
o} -~ ////)/ -
-7
- V(x)
—zof - - - - G g
=

—ao0,

—10 —5 o 5 10 15 20

Figure 2: Value function for A\=~v=1,¢=0.8,6 = 0.05,a = 0.2,7 = 0.9

Figure 2 illustrates the value function for A =~y =1,¢=0.8,§ = 0.05 and a = 0.2. The
optimal dividend barrier is given by b* = 3.03070.
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