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Abstract: In this paper, we consider the variable selection and parameter estimation in

high-dimensional linear models. We propose a generalized SELO (GSELO) method for solving the

penalized least-squares (PLS) problem. A coordinate descent algorithm coupled with a continuation

strategy and high-dimensional BIC on the tuning parameter are used to compute corresponding

GSELO-PLS estimators. Simulation studies and a real data analysis show the good performance

of the proposed method.
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1 Introduction

Consider the linear regression model

y = Xβ + ε, (1.1)

where y ∈ Rn is a response vector, X ∈ Rn×d is a design matrix, β ∈ Rd is an unknown
sparse coefficient vector of interest and ε ∈ Rn is a noise vector satisfying ε ∼ (0, σ2In). We
focus on the high-dimensional case d > n. Without loss of generality, we assume that y is
centered and the columns of X are centered and

√
n-normalized. To achieve sparsity, we

consider the following SELO-penalized least squares (PLS) problem

β̂ , β̂(λ, γ) = arg min
β∈Rd

{
Q(β) =

1
2n
‖y −Xβ‖2 +

d∑
j=1

qλ,γ(βj)

}
, (1.2)
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where

qλ,γ(βj) =
λ

log(2)
log

( |βj |
|βj |+ γ

+ 1
)

(1.3)

is the SELO penalty proposed by [1], λ and γ are two positive tuning (or regularization)
parameters. In particular, λ is the sparsity tuning parameter obtaining sparse solutions and
γ is the shape (or concavity) tuning parameter making SELO with small γ values mimic L0,
i.e., qλ,γ(βj) ≈ λI(|βj | 6= 0), when γ is small.

Intuitively, L0 penalized methods directly penalize the number of variables in regression
models, so they enjoy a nice interpretation of best subset selection [2]. The main challenge
in implementing L0 penalized methods is the discontinuity of the L0 penalty function, which
results in the lack of stability. As mentioned above, small γ values can make SELO mimic L0,
and the SELO penalty function is continuous, so SELO can largely retain the advantages
of L0 but yield a more stable model than L0. The SELO penalized regression method
was demonstrated theoretically and practically to be effective in nonconvex penalization for
variable selection, including but not limited to linear models [1], generalized linear models
[3], multivariate panel count data (proportional mean models) [4] and quantile regression
[5].

In this paper, we first propose a generalized SELO (GSELO) penalty [6] closely resem-
bling L0 and retaining good features of SELO, and then we use the GSELO-PLS procedure
to do variable selection and parameter estimation in high-dimensional linear models. Numer-
ically, when coupled with a continuation strategy and a high-dimensional BIC , our proposed
method is very accurate and efficient.

An outline for this paper is as follows. In Section 2, we introduce the GSELO method
and corresponding GSELO-PLS estimator. In Section 3, we present the algorithm for com-
puting the GSELO-PLS estimator, the standard error formulae for estimated coefficients
and the selection of the tuning parameter. The finite sample performance of GSELO-PLS
through simulation studies and a real data analysis are also demonstrated in Section 3. We
conclude the paper with Section 4.

2 Methodology

Let P denote all GSELO penalties, f is an arbitrary function that satisfies the following
two hypotheses:

(H1) f(x) is continuous with respect to x and has the first and second derivative in
[0, 1];

(H2) f ′(x) ≥ 0 for all x in [0, 1] and lim
x→0

f(x)
x

= 1.

Then a GSELO penalty qλ,γ(·) ∈ P is given by

qλ,γ(βj) =
λ

f(1)
f

( |βj |
|βj |+ γ

)
, (2.1)

where λ (sparsity) and γ (concavity) are two positive tunning parameters. It is noteworthy
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that qλ,γ(βj) is the SELO penalty when we take f(x) = log(x+1), and f(x) = x derives the
transformed L1 penalty [7]. Table 1 lists some representatives of P.

Table 1: GSELO penalty functions (LIN, SELO, EXP, SIN and ATN)
Name Types of functions f(x) qλ,γ(βj)

LIN linear x λ
|βj |
|βj |+γ

SELO logarithmic log(x + 1) λ
log(2) log

(
|βj |
|βj |+γ + 1

)

EXP exponential 1− exp(−x) λ
1−exp(−1)

[
1− exp

(
− |βj |
|βj |+γ

)]

SIN trigonometric sin(x) λ
sin(1) sin

(
|βj |
|βj |+γ

)

ATN inverse trigonometric arctan(x) λ
arctan(1) arctan

(
|βj |
|βj |+γ

)

The GSELO-PLS estimator for (1.1) is obtained via solving

β̂ , β̂(λ, γ) = arg min
β∈Rd

{
Q(β) =

1
2n
‖y −Xβ‖2 +

d∑
j=1

qλ,γ(βj)

}
, (2.2)

where qλ,γ(·) ∈ P.

3 Computation

3.1 Algorithm

For solving (2.2), we first employ the local linear approximation (LLA) [8] to qλ,γ(·) ∈ P:

qλ,γ(βj) ≈ qλ,γ(βk
j ) + q′λ,γ(βk

j )(|βj | − |βk
j |), (3.1)

where βk
j are the kth estimates of βj , j = 1, 2, · · · , d, and q′λ,γ(βj) means the derivative of

qλ,γ(βj) with respect to |βj |. Given βk of β, we find the next estimate via

βk+1 = arg min
β

{
1
2n
‖y −Xβ‖2

2 +
d∑

j=1

ωk+1
j |βj |

}
, (3.2)

where ωk+1
j = q′λ,γ(βk

j ). Then we use a Gauss-Seidel type coordinate descent (CD) algorithm
in [9] for solving (3.2). We summarize the LLA-CD procedure in Algorithm 1. Table 2 shows
the derivatives of qλ,γ(βj) in Table 1.

3.2 Covariance Estimation

Following [1], we estimate the covariance matrix for β̂ by using a sandwich formula

ĉov(β̂Â) = σ̂2
{
XT
ÂXÂ + n∆Â,Â(β̂)

}−1

XT
ÂXÂ

{
XT
ÂXÂ + n∆Â,Â(β̂)

}−1

, (3.3)

where
σ̂2 = (n− ŝ)−1‖y −Xβ̂‖2, ŝ = |Â|, Â =

{
j; β̂j 6= 0

}
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Algorithm 1 LLA-CD
Input: X ∈ Rn×d, y ∈ Rn, β0 ∈ Rd, γ, λ, δ (tolerance) and kmax (the maximum number of

iterations).
Output: β̂, the estimate of β in equation (3.2).
1: for k = 0, 1, 2, · · · do
2: while k < kmax do
3: for j = 1, 2, · · · , d do
4: Calculate zj = n−1xT

j r−j = n−1xT
j r + βk

j , where r = y −Xβk, r−j = y −X−jβ
k
−j ,

”−j” is introduced to refer to the portion that remains after the jth column or element
is removed, and r−j is the partial residuals of xj .

5: Update βk+1
j ← S(zj , ω

k+1
j ), where ωk+1

j = q′λ,γ(βk
j ) and S(t, λ) = sgn(t)(|t| − λ)+ is

the soft-thresholding operator.
6: Update r ← r− (βk+1

j − βk
j )xj .

7: end for
8: if ‖βk+1 − βk‖∞ < δ then
9: break, β̂ = βk+1.

10: else
11: Update k ← k + 1.
12: end if
13: end while
14: end for

and
∆(β) = diag{q′λ,γ(|β1|)/|β1|, · · · , q′λ,γ(|βd|)/|βd|}.

For variables with β̂j = 0, the estimated standard errors are 0.

3.3 Tuning Parameter Selection

Following [1], we fix γ = 0.01 and concentrate on tuning λ via a high-dimensional BIC
(HBIC) proposed by [10] to select the optimal tuning parameter λ̂, which is defined as

λ̂ = arg min
λ∈Λ

{
HBIC(λ) = log(‖y −Xβ̂(λ)‖2/n) +

Cn log(d)
n

|M(λ)|
}

, (3.4)

Table 2: Derivatives of GSELO penalty functions (LIN, SELO, EXP, SIN and ATN)
Name qλ,γ(βj) q′λ,γ(βj)
LIN λ

|βj |
|βj |+γ λ γ

(|βj |+γ)2

SELO λ
log(2) log

(
|βj |
|βj |+γ + 1

)
λ

log(2)
γ

(|βj |+γ)(2|βj |+γ)

EXP λ
1−exp(−1)

[
1− exp

(
− |βj |
|βj |+γ

)]
λ

1−exp(−1) exp
(
− |βj |
|βj |+γ

)
γ

(|βj |+γ)2

SIN λ
sin(1) sin

(
|βj |
|βj |+γ

)
λ

sin(1) cos
(

|βj |
|βj |+γ

)
γ

(|βj |+γ)2

ATN λ
arctan(1) arctan

(
|βj |
|βj |+γ

)
λ

arctan(1)
γ

|βj |2+(|βj |+γ)2
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where Λ is a subset of (0,+∞), M(λ) = {j : β̂j(λ) 6= 0} and |M(λ)| denotes the cardinality
of M(λ), and Cn = log(log n).

For SELO, it is shown in [1] that β̂(λ, γ) = 0 for (1.2) whenever λ > λmax, where

λmax :=
‖y‖2

2n
log(2)

{
log

( ‖y‖2

‖y‖2 + 2nγ‖XTy‖∞ + 1
)}−1

.

Taking qλ,γ(βj) = λI(|βj | 6= 0) (i.e., the L0 penalty) in (2.2), we have β̂(λ) = 0 whenever
λ > 1

2
‖XTy/n‖2

∞ (e.g., [11]). Since GSELO approaches L0 when γ is small, we set λmax =
1
2
‖XTy/n‖2

∞ for GSELO for simplicity and convenience. Then we set λmin = 1e − 10λmax

and divide the interval [λmin, λmax] into G (the number of grid points) equally distributed
subintervals in the logarithmic scale. For a given γ, we consider a range of values for
λ : λmax = λ0 > λ1 > · · · > λG = λmin, and apply the continuation strategy [11] on
the set Λ = {λ1, λ2, · · · , λG}, i.e., solving the λs+1-problem initialized with the solution of
λs-problem, then select the optimal λ from Λ using (3.4). For sufficient resolution of the
solution path, G usually takes G ≥ 50 (e.g., G = 100 or 200). Due to the continuation
strategy, one can set kmax ≤ 5 in Algorithm 1 to get an approximate solution with high
accuracy. Interested readers can refer to [11] for more details.

3.4 Simulation

In this subsection, we illustrate the finite sample properties of GSELO-PLS-HBIC with
simulation studies. All simulations are conducted using MATLAB codes.

We simulated 100 data sets from (1.1), where β ∈ Rd, with β1 = 3, β2 = 1.5, β3 = −2,
and βj = 0, if j 6= 1, 2, 3. The d covariates z = (z1, · · · , zd)T are marginally standard normal
with pairwise correlations corr(zj , zk) = ρ|j−k|. We assume moderate correlation between the
covariates by taking ρ = 0.5. The noise vector ε is generated independently from N(0, σ2In),
and two noise levels σ = 0.1 and 1 were considered. The sample size and the number of
regression coefficients are n = 100 and d = 400, respectively. The number of simulations is
N = 100.

To evaluate the model selection performance of GSELO-PLS-HBIC, we record the av-

erage estimated model size (MS) N−1
N∑

s=1

|Â(s)|, the proportion of correct models (CM)

N−1
N∑

s=1

I{Â(s) = A}, the average `∞ absolute error (AE) N−1
N∑

s=1

‖β̂(s) − β‖∞, the aver-

age `2 relative error (RE) N−1
N∑

s=1

(‖β̂(s) − β‖2/‖β‖2) and the median of the prediction mean

squared error (MPMSE) over N simulated datasets, where the prediction mean squared error

(PMSE) for each dataset is n−1
n∑

i=1

(ŷ(s)
i − yi)2, s = 1, 2, · · · , N. Table 3 summarizes simu-

lation results for variable selection. With respect to parameter estimation, Table 4 presents
the average of estimated nonzero coefficients (Mean), the average of estimated standard error
(ESE) and the sample standard deviations (SSD).
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Table 3: Simulation results for model selection. The numbers in parentheses are the
corresponding standard deviations of PMSE

σ Method MS CM AE RE MPMSE
0.1 LIN 3.05 96% 0.0164 0.0051 0.0098(0.0015)

SELO 3.08 94% 0.0165 0.0052 0.0096(0.0015)
EXP 3.04 97% 0.0165 0.0051 0.0098(0.0015)
SIN 3.05 96% 0.0163 0.0051 0.0097(0.0015)
ATN 3.05 96% 0.0164 0.0051 0.0098(0.0015)

1 LIN 3.27 86% 0.2406 0.0799 0.9452(0.1300)
SELO 3.25 83% 0.2390 0.0787 0.9501(0.1337)
EXP 3.29 84% 0.2423 0.0799 0.9431(0.1313)
SIN 3.24 87% 0.2379 0.0782 0.9494(0.1302)
ATN 3.24 87% 0.2384 0.0791 0.9499(0.1320)

Overall, from Table 3 and Table 4, we see that the performance of LIN, SELO, EXP,
SIN and ATN are quite similar, and these five GSELO penalties all can work efficiently in
all considered criteria. ESEs agree well with SSDs. In addition, all procedures have worse
performance in all metrics when the noise level σ increases from 0.1 to 1.

Table 4: Simulation results for parameter estimation
β1 = 3 β2 = 1.5 β3 = −2

σ Method Mean ESE SSD Mean ESE SSD Mean ESE SSD

0.1 LIN 2.9997 0.0117 0.0118 1.5006 0.0131 0.0134 -1.9997 0.0118 0.0124

SELO 2.9997 0.0117 0.0118 1.5006 0.0131 0.0134 -1.9997 0.0117 0.0125

EXP 2.9997 0.0117 0.0118 1.5006 0.0131 0.0134 -1.9997 0.0118 0.0124

SIN 2.9997 0.0117 0.0118 1.5006 0.0131 0.0134 -1.9997 0.0118 0.0124

ATN 2.9997 0.0117 0.0118 1.5006 0.0131 0.0134 -1.9997 0.0118 0.0124

1 LIN 3.1243 0.1164 0.1640 1.3703 0.1306 0.1897 -1.9596 0.1159 0.1338

SELO 3.1225 0.1167 0.1641 1.3667 0.1310 0.1893 -1.9598 0.1160 0.1296

EXP 3.1225 0.1163 0.1613 1.3716 0.1305 0.1866 -1.9601 0.1158 0.1333

SIN 3.1241 0.1168 0.1662 1.3667 0.1311 0.1889 -1.9598 0.1161 0.1301

ATN 3.1216 0.1165 0.1626 1.3710 0.1307 0.1900 -1.9591 0.1159 0.1344

3.5 Application

We analyze the NCI60 microarray data which is publicly available in R package ISLR
[12] to illustrate the application of GSELO-PLS-HBIC in high-dimensional settings. The
data contains expression levels on 6830 genes from 64 cancer cell lines. More information
can be obtained at http://genome-www.stanford.edu/nci60/. Suppose that our goal is to
assess the relationship between the firt gene and the rest under model (1.1). Then, the
response variable y is a numeric vector of length 64 giving expression level of the first gene,
and the design matrix X is a 64 × 6829 matrix which represents the remaining expression
values of 6829 genes. Since the exact solution for the NCI60 data is unknown, we consider an
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adaptive LASSO (ALASSO) [13] procedure using the glmnet package as the gold standard
in comparison with the proposed GSELO-PLS-HBIC method. The following commands
complete the main part of the ALASSO computation:

library(ISLR); X = NCI60$data[,-1]; y = NCI60$data[,1]

library(glmnet); set.seed(0); fit_ridge = cv.glmnet(X, y, alpha=0)

co_ridge = coef(fit_ridge, s = fit_ridge$lambda.min)[-1]

gamma=1;w= 1/abs(co_ridge)^gamma; w = pmin(w,1e10)

set.seed(0);fit_alasso= cv.glmnet(X, y, alpha=1, penalty.factor=w)

co_alasso = coef(fit_alasso, s = "lambda.min")

yhat=predict(fit_alasso, s = "lambda.min", newx=X,type="response")

Table 5: Gene selection results of the NCI60 data

Method MS PMSE Gene

ALASSO 63 0.0003 12, 114, 376, 461, 462, 532, 570, 571, 837, 977, 1016, 1088, 1131, 1138, 1187, 1207,

1225, 1262, 1539, 1571, 1622, 1643, 1663, 1852, 1921, 2232, 2238, 2278, 2279, 2353,

2358, 2396, 2484, 2497, 2568, 2950, 3087, 3233, 3350, 3461, 3715, 3751, 3832, 4408,

4708, 4817, 4972, 5035, 5036, 5037, 5038, 5089, 5119, 5162, 5230, 5258, 5289, 5426,

5653, 6575, 6608, 6620, 6738

LIN 29 0.0004 1, 115, 323, 363, 570, 601, 843, 1571, 1643, 1879, 2233, 2358, 2450, 2712, 2969,

3195, 3231, 3393, 3517, 3574, 3675, 3776, 4392, 4568, 5509, 6144, 6537, 6608, 6758

SELO 31 0.0002 2, 254, 523, 535, 560, 812, 1050, 1087, 1213, 1571, 1626, 1879, 2233, 2358, 2419,

2896, 3517, 3692, 3896, 4159, 4392, 4422, 4499, 4855, 4912, 5509, 6537, 6585, 6608,

6670, 6758

EXP 28 0.0004 523, 606, 640, 1571, 1879, 2101, 2233, 2358, 3077, 3437, 3491, 3517, 3796, 3935,

4392, 4499, 4644, 4653, 4661, 4733, 4822, 5223, 5456, 5509, 6409, 6608, 6695, 6758

SIN 30 0.0003 374, 510, 744, 1028, 1099, 1229, 1283, 1571, 1879, 2233, 2358, 2543, 2966, 3022,

3101, 3105, 3331, 3423, 3439, 3728, 4408, 4499, 4719, 5119, 5199, 5509, 6507, 6608,

6719, 6758

ATN 32 0.0001 115, 316, 702, 772, 1457, 1520, 1571, 1879, 2233, 2326, 2575, 2579, 2728, 2966,

3039, 3195, 3314, 3332, 3517, 3557, 3776, 3857, 3927, 3935, 4199, 4392, 4443, 4499,

4916, 5252, 5509, 6608

Table 6: Estimated coefficients for common genes

Gene ALASSO LIN SELO EXP SIN ATN

1571 -0.1039 -0.5946 -0.4941 -0.4003 -0.3779 -0.2796

6608 0.0245 0.1421 0.2464 0.1692 0.2182 0.2049

Table 5 lists the results of ALASSO and GSELO (LIN, SELO, EXP, SIN and ATN),
including the model size (MS), the prediction mean square errors (PMSE) and selected genes
(i.e., the column indices of the design matrix X). From Table 5, six sets identify 63, 29, 31,
28, 30 and 32 genes respectively and give similar PMSEs. The results indicate that GSELO-
PLS-HBIC is well suited to the considered sparse regression problem and can generate a
more parsimonious model while keeping almost the same prediction power. In particular,
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for 2 common genes shown in Table 6, although the magnitudes of estimates are not equal,
they have the same signs, which suggests similar biological conclusions.

4 Concluding Remarks

We have focused on the GSELO method in the context of linear regression models. This
method can be applied to other models, such as the Cox models, by using arguments as those
used in [14, 15, 16, 17], which are left for future research.

References

[1] Dicker L, Huang B, Lin X. Variable selection and estimation with the seamless-L0 penalty[J]. Stat.

Sinica, 2013, 23: 929–962.

[2] Fan J, Lv J. A selective overview of variable selection in high dimensional feature space[J]. Stat.

Sinica, 2010, 20: 101–148.

[3] Li Z, Wang S, Lin X. Variable selection and estimation in generalized linear models with the seamless

L0 penalty[J]. Canad. J. Stat., 2012, 40(4): 745–769.

[4] Zhang H, Sun J, Wang D. Variable selection and estimation for multivariate panel count data via

the seamless-L0 penalty[J]. Canad. J. Stat., 2013, 41(2): 368–385.

[5] Ciuperca G. Model selection in high-dimensional quantile regression with seamless L0 penalty[J].

Stat. Prob. Lett., 2015, 107: 313–323.

[6] Shi Y, Cao Y, Yu J, Jiao Y. Variable selection via generalized SELO-penalized linear regression

models[J]. Appl. Math. J. Chinese Univ., 2018, 33(2): 145–162.

[7] Nikolova M. Local strong homogeneity of a regularized estimator[J]. SIAM J. Appl. Math., 2000,

61(2): 633–658.

[8] Zou H, Li R. One-step sparse estimates in nonconcave penalized likelihood models[J]. Ann. Stat.,

2008, 36(4): 1509–1533.

[9] Breheny P, Huang J. Coordinate descent algorithms for nonconvex penalized regression, with appli-

cations to biological feature selection[J]. Ann. Appl. Stat., 2011, 5(1): 232–253.

[10] Wang L, Kim Y, Li R. Calibrating nonconvex penalized regression in ultra-high dimension[J]. Ann.

Statist., 2013, 41(5): 2505–2536.

[11] Jiao Y, Jin B, Lu X. A primal dual active set with continuation algorithm for the `0-regularized

optimization problem[J]. Appl. Comput. Harmon. Anal., 2015, 39(3): 400–426.

[12] James G, Witten D, Hastie T, Tibshirani R. An introduction to statistical learning: with applications

in R[M]. New York: Springer, 2013.

[13] Zou H. The adaptive lasso and its oracle properties[J]. J. Amer. Statist. Assoc., 2006, 101(476):

1418–1429.

[14] Shi Y, Cao Y, Jiao Y, Liu, Y. SICA for Cox’s proportional hazards model with a diverging number

of parameters[J]. Acta Math. Appl. Sinica, English Ser., 2014, 30(4): 887–902.

[15] Shi Y, Jiao Y, Yan L, Cao Y. A modified BIC tuning parameter selector for SICA-penalized Cox

regression models with diverging dimensionality[J]. J. Math., 2017, 37(4): 723–730.
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石跃勇1,3,曹永秀2,余吉昌2,焦雨领2

(1.中国地质大学(武汉)经济管理学院,湖北武汉 430074)

(2.中南财经政法大学统计与数学学院,湖北武汉 430073)

(3.中国地质大学(武汉)资源环境经济研究中心,湖北武汉 430074)

摘要: 本文考虑高维线性模型中的变量选择和参数估计. 提出了一种广义的SELO方法求解惩罚最小

二乘问题. 一种坐标下降算法结合调节参数的一种连续化策略和高维BIC被用来计算相应的GSELO-PLS估

计. 模拟研究和实际数据分析显示了提出方法的良好表现.
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