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Abstract: We study weighted mixed inequalities on product spaces with different Mucken-
houpt bases. Our approaches are mainly based on the abstract formalism of families of extrapolation
pairs and Minkowski’s integral inequality. Moreover, we can deduce the general case of our results
by induction.
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1 Introduction and Statements of Main Results

In this paper, we shall deal with spaces of measurable functions defined in the fol-
lowing way. Let (X;,S;, 1), for 1 < i < n, be totally o-finite measure spaces and P =
(p1,p2, - ,Pn) & given n-tuple with 1 < p; < co. We always suppose that none of the
spaces (X;,S;, p;) admits as the only measurable functions the constant ones. A function

f(x1, 22, -+ ,x,) measurable in the product space (X,S, ) = ([ Xi, [T Sis [] 1), is said
=1 i=1 =1

to belong to LT (X) if the number obtained after taking successively the p; norm in x;, the
po norm in g, - - -, the p, norm in x,, and in that order, is finite. The number so obtained,
finite or not, will be denoted by || f|l 7, [|f|l(p1,-- pn) OF || flIps,--
we have in particular

||f||P=(/ </ </ Flar, o, ) [Prdpan) Fodas) B - dpn) 7
X X X1

n

o~ When for every 4, p; < oo,

)

If further, each p; is equal to p :

1l = [l = ( /X s, e aa)Pda) = £,
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and LY (X) = L?(X) (see [1] for more information). In this paper, we only deal with the
case when every component space (X, S;, ;) is a d;-dimensional Euclidean space R% with
Lebesgue’s measure. Then, the product space (X, S, 1) is a d-dimensional Euclidean space
with Lebesgue’s measure, where d = dy +ds + -+ - + d,.

In the following, we consider weighted inequalities on these spaces. For simplicity of
notations, we only consider the case of n = 2 and our results can be extended to the general
case by induction.

Throughout, w will denote a weight, i.e., a nonnegative, locally integrable function. All
cubes in R% will be half open with sides parallel to the axes. Given a set E C R%, |E| will

denote the Lebesgue’s measure of F, w(E) = / w(z)dr the weighted measure of E, and

E
][ wdzr = |E|_1/ w(x)dr = w|(E|) the average of w over E.
B

To define théE classes of weights which we will consider, we first introduce the concept
of basis # and the maximal operator Mg defined with respect to % (see [2, 3] for more
information). A basis 2 is a collection of open sets B C R%. A weight w is associated with
the basis A, if w(B) < oo for every B € Z. Given a basis %, the corresponding maximal
operator is defined by

sup][ FWldy, iz e | ) B,
Mgf(x) = B3z/B BLEJ%

0, otherwise.

A weight w associated with 2 is in the Muckenhoupt class A4, z(R?), 1 < p < oo, if there
exists a constant C' such that for every B € 4,

(]{3 W(ﬂl?)déli)(]{3 w(x)_fjljd:v)p_l < C.

When p = 1, w belongs to A; »(R?) if Mgw(x) < Cw(zx) for almost every x € R? The
infimum of all such C, denoted by [w] 4, , a). For simplicity, A, (R?) is denoted by A, 4, if
no confusion can arise. Clearly, if 1 < g <p, then A, % C A, . Further, from the definitions
we get the following factorization property: if wi, wy € Ay g, then wlwé_p € A, . Finally,
we let Az = Ap.2-

p=>1
We are going to restrict our attention to the following class of bases. A basis & is a

Muckenhoupt basis if for each p, 1 < p < 0o, and for every w € A, %, the maximal operator
Mg is bounded on LP(w), that is,

/Rd Mg f(z)Pw(z)dr < C’/Rd |f(z)[Pw(z)dx. (1.1)

Let % be a Muckenhoupt basis. Let 1 < p < co and w be a weight. If there exists a
constant C' such that

/Rd Mg f(z)Pw(x)dx < C/Rd |f(x)|Pw(z)dz for all f € LP(w), (1.2)
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then standard arguments give w € A, 5.

Muckenhoupt bases were introduced and characterized in [3, Theorem 2.1]. Three im-
mediate examples of Muckenhoupt bases are 2, the set of dyadic cubes in R?; €, the set
of all cubes in R? whose sides are parallel to the coordinate axes, and %, the set of all
rectangles (i.e., parallelepipeds) in R¢ whose sides are parallel to the coordinate axes (see
[4, Theorem 7.14]). One advantage of these bases is that by using them we avoid any direct
appeal to the underlying geometry: the relevant properties are derived from (1.1), and we
do not use covering lemmas of any sort.

In this paper, we will use the Rubio de Francia extrapolation as our main tool to deal
with our inequalities. As is well known, the extrapolation theorem of Rubio de Francia is
one of the deepest results in the study of weighted norm inequalities in harmonic analysis
[5]. Recently, an approach to extrapolation is based on the abstract formalism of families
of extrapolation pairs and summarized by Cruz-Uribe [6]. This approach was introduced in
[7] and first fully developed in [8] (see [9] for more information). It was implicit from the
beginning that in extrapolating from an inequality of the form

/|Tf|pwdx§0/ |fPw dz,
R R4

the operator T' and its properties (positive, linear, etc.) played no role in the proof. Instead,
all that mattered was that there existed a pair of non-negative functions (|Tf],|f|) that
satisfied a given collection of norm inequalities. Therefore, the proof goes through working
with any pair (f,g) of non-negative functions.

Hereafter, we will adopt the following conventions. A family of extrapolation pairs F
will consist of pairs of non-negative, measurable functions (f,g) that are not equal to 0.
Given such a family F, 0 < p < 00, 1 < ¢ < o0 and w € A, »(R?), if we say

Rd R4

we mean that this inequality holds for all pairs (f, g) € F such that || f|| zrw) < 00, i.e., that
the left-hand side of the inequality is finite and the constant C' depends only upon p, ¢, d,
and the [w]a, constant of w. Moreover, given a family F, 0 < p < oo and w € A »(R?),

we always say

/ fPfwdx < C’/ gPw dzx, (f,g9) € F. (1.3)
R4 R4

Since Aoz = |J Ay %, there is ¢ > 1 such that w € A, z(R?). In (1.3), we mean that the
q>1

constant C' depends only upon p, d, ¢ and the [w]4, constant of w.

The key to the new approach is the family of extrapolation pairs F. If the family of
extrapolation pairs F seems abstract and mysterious, it may help to think of the particular
family

F={(TI.ISf]).f €N},
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where T and S are some operators that we are interested in and N is some “nice” family
of functions: L, C2°, etc. We refer to Cruz-Uribe [6, Sections 5 and 6] and Cruz-Uribe,
Martell and Pérez [9, Section 3.8] for more information.

Using the above conventions, we can give the following main results related with strong
maximal operator, Riesz potential and multiparameter fractional integral operators.

Let %, and %, be Muckenhoupt bases in R and R%, respectively. We consider the
space R™ x R% which identify with R%*% = R? and the product basis Z £ %, x B, =
{Qa, X Qua, : Qu, € A;}. The corresponding maximal operator is called strong maximal
operator and is denoted by M.

Let 1 < p < o0, w;(x;) be a weight in R% and w;(z;) € A, %, (R%). Then there is a
constant C' such that

/Rd M, fz)Pw(z)de < C/Rd \f(2)Pw(z)dz,

where w(z1, ) = wi(z1)wa(x2). Moreover, let B = €, x €5, it follows by Fubini’s theorem
that Z is a Muckenhoupt basis (see [8, Page 424]).

Then we have the following Theorem 1.1, which is a weighted version of [10, Theroerm
41].

Theorem 1.1 Let 1 < p; < 0o and w(x1,x2) = wi(z1)w2(x2). Let w;(z;) be a weight
in R%, then the following statements are equivalent.

1) There is a constant C, independing of f such that
(1) , indep g
(/ ( /\/lsf(wl,302)1)1001(951)1)1dﬂU1)%W2(952)p2d%2)é
Rd2 JR41
< o[ ([ 1ana) o) den) Fos(ear o) (1.4)
Rd2 JR91

(2) w‘fl € Apl,@l (Rdl) and wgz € AP27332 (Rdz)'
Let R? be the d-dimensional Euclidean space. The Riesz potential of order o, 0 < o < d,
of a function f is defined by

Rf(z) :/R @ 4 (1.5)

u |l‘ _ j‘d—a

We also define the fractional maximal operator M (¥ f(z) by

e 1 = =
M) = s oy [ @
where the supremum is over all cubes (), with sides parallel to the axes and containing x.
We extend [11, Theorem 1] to the case on mixed norm Lebesgue spaces. Let us consider
the d;-dimensional Euclidean space R% and the basis €, in it, where i = 1,2. For RY =
R% x R% | we consider two bases € and B = €, x 6, in it. It is clear that € C 46, x 6. For
%, Sjodin [12] obtained the following Theorem 1.2, which gave the weighted norm inequalities



No. 6 Weighted mixed inequalities on product spaces with Muckenhoupt bases 955

for Riesz potentials and fractional maximal functions in mixed norm Lebesgue spaces. We
reprove the theorem by the abstract formalism of families of extrapolation pairs as following.

Theorem 1.2 Let 0 < p; < 00 and w(xy,z2) = wi(21)wa(x2). Let w;(z;) be a weight
in R% and w;(x;)P* € As % (R%). Then there is a constant C such that

(/ (/ Rf(z1, 2)P wi(21)P da1) 7t wo(22)P2ds) 72
Rd2 JRd1

C(fRdQ(/ M(a)f(%,172)p1w1($1)p1d$1)%w2($2)p2d$2)é- (1.6)
R%1

Also we can consider the fractional integral operators in our case. We define a multi-
parameter version of the fractional integral operator of order 1 (see, e.g. [8, Page 423]): for
(x1,22) € RY x R, et

f(Z1,72) o
dz,dTs. 1.7
f(z1,22) / /Rd1 P N T1dTo (1.7)

Given (z1,79) € R™ x R% and a function f € L} (R% x R%), define the multi-parameter

fractional maximal operators

1 _ _
Uf(xhﬂfz)— sup _1/ |f(33173?2)|d$1;
Qa, 371 |Qd | i JQu,

1
M(l)f(:[,'17x2) = Sup 1/ |f(x1,j2)|di'2
Qd29$2 |Qd | Qd2

A simple estimate shows that M{" o MV f(zy,25) < C - Tf(21,2,) and similarly with
the order of composition reversed. As in the one-variable case, the reverse inequality does
not hold pointwise, but does hold in the sense of weighted LP norms. For the product 4,
we have the following theorem, which is an extension of [8, Proposition 3.5].

Theorem 1.3 Let 1 < p; < 00, 0 < py < 00 and w(z1,x2) = wy(x1)wa(22). Let w;(x;)
be a weight in R% and w;(z;)P" € A 4, (R%). Then there is a constant C such that

P2 Bl
(/ (/ T f (@1, ) [Prwn (1) dy ) 73 wp (w2) dar) 72 (1.8)
Ré2 JR%
< O / MzV(( / MY f (@, ) s (20)" dy) 7)) wa (2 das) 75
R42 R91
Throughout this paper, C' denote a constant not necessarily the same at each occurrence.

2 Proof of Main Results

In this section, we give the proofs of Theorems 1.1-1.3.
To prove Theorem 1.1, we need the following theorem which was proved by Cruz-Urible,
Martell and Pérez in [9)].
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Theorem 2.1 (see [6, Theorem 3.9]) Given a family of extrapolation pairs F, let %
be a Muckenhoupt basis. Suppose that for some pg, 1 < py < 0o, and every wy € A, =,

(Lﬁ@WwMMmSCAﬂ@VWMMW, (f.9) € F

Then for every p, 1 < p < 0o, and every w € A, 4,

Agm%umscéﬁwmmw, (f.9) € F.

Then, we can give the proof of Theorem 1.1 as follows.
Proof of Theorem 1.1 Suppose that (1.4) is valid. We prove w}* € A, 5, (R%) and
wh? € Ay, 2,(R®). For any h(z;) € LP*(w}") and Qg, € B, let

f(@1,22) = h(z1)Xq,, (22).

We have M. f(x1,72) = Mg, h(71)Xq,, (z2). Then, we rewrite (1.4) as

(/Rd Mg, h(a1)P wi (21)P day) 77 < C’(/ B2 P wy (01)P  day ) 7 (2.1)

R41

It follows from (1.2) that wi(z1)P* € A,, %, (R%). Similarly, we have wy(z2)P? € A, z,(R%®).
Conversely, to prove (1.4). Fix p; > 1 and w}* € A,, 5, (R%), let

Sy = {(f%gz)i f2(132> =( Msf(ﬂfl,$2)p1w1($1)p1d$1)ﬁ7

R1
onlen) = ([ | 1@zl dan) .
If py = py, then, for all wy(x2)P2 € A,, z,(R%), we have
w(zy, T2)" £ wi(21)P wa(22)P? € Ap, 5(R?).
It follows that

(/ Msf($1,f1/'2)p1(U(fE1,.’Eg)pldmldfﬂg)ﬁ
Rd2 JRd41

gcd’/|ﬂmmwmmuwmmmé
Rd2 JR91

Then, we have
/ fa(@2)P2wa(z2)P?das < C/ g2(z2)P2wa(x2)P2dxs, (f2,92) € So.
Rd2 Rd2

Thus, we check (2.1) of Theorem 2.1 with F £ S, and py £ p,. Using Theorem 2.1, we get,
for every 1 < py < 0o and every va(xs) € A, 2, (R%2),

/ fa(x2)P2va(22)dxs < C/ 92(22)P?va(22)dx2, (f2,92) € Sa.
R42

R42
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Note that wy(z)?? € A,, %,(R%). It follows from the above inequality that

/ fola)P P (z2)ds < C / 02(@2)P" 8 (22)da, (for g2) € So.
Rd2

R42

Thus
(/ (/ Msf(371>xz)plwl(ﬂfl)pldwl)%wz(ﬂcz)md@?z)%
Rd2 JR41

< C(/ (/ |f(x17552)|p1w1(331)p1d951)%w2(5'32)p2d$2)%-
Rd2 JR91

Kurtz [13] obtained Theorem 1.1 in the space R4 x R% involving €, x %> and Theorem
1.1 is a general case of [13, Theorem 1]. Here, it is natural to expect a more general result.
Let 4; be a Muckenhoupt basis in R%, i =1,2,--- ;n. Then Z = {[| Qu, : Qu, € B} is

i=1

a product basis in the space RY = [] R%. If 4; x %, is a Muckenhoupt basis in R% x R4i+1
i=1
i =1,2,--- ,n— 1, using our approach to Theorem 1.1, we have the following Corollary 2.2

by induction.
n

Corollary 2.2 Let 1 < p; < oo and w(xy, 22, -+ ,x,) = [] wi(z;). Let wi(x;) be a
i=1
weight in R% then the following statements are equivalent:

(1) There is a constant C, independing of f such that

( (/ Mf(@r, - )P wi (@7 day) 7 - - wp (2, )P da, ) o
Rdn R41

< C(/ (/ |f(zq,--- ’I")|p1w1<ml)pld$1)%"'Wn(l’n)p"dxn)p%.
Rdn R

(2) wfi € Api,@i(Rdi)v =12 T
Proof We only prove (2) = (1) and this is done by induction beginning with the case
n = 2. For n = 2, it is valid because of Theorem 1.1.

Assuming that the inequality is valid for n — 1, we set
Sn :{(frngn) :
P2 _1
fo(@n) = (/d ([ Maf(@nma, )P w(@)P da) 7 w(@ )P ) T
R%n—1 R%

en) = ([ ([ ) Pten ) de) B ol e, )75 ),
RIn—1 R41

If p,, = p,_1, then, for all w,(z,)P» € A, 2, (R%™), we have

anl(infl)pn_l = wn71($n71>pn_lwn<mn)pn S Apn,h:@n,p(%n (Rdn_l_ﬁ_dn)'
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It follows from the induction hypothesis that

( / e / Mf(@1, - m)Piwr (21)P dey) 7t - wy ()P dy, ) 77
Rdn R91

1

P2 _ _ —_—
= (/d a </ M f(@r, - By wi(z0)P o) 7t - vy 1 (T1)P ATy g Pt
Rén—174n RA1

1

P2 _ _ —
<o, U )P ) (@) e, )
Rén—1+dn Rd1

Then, we have

Jn(@n)Prwp (xn)Prda, < C/ Gn (T3P Wi (2)P ATy (fr, Gn) € S

Rdn Rdn

Using Theorem 2.1, we get, for every 1 < p, < oo and every v,(z,) € 4, a, (R™),

fn(xn)pnvn(xn)dwn < C/ gn(l'n)pnvn(irn)dxm (fmgn) S

Rdn Rdn

Note that w,(z,)P" € A, %, (R%™). It follows from the above inequality that

/ Jn(@n)Prwn ()P day, < C/ Gn (@)W (20)P"dpy (fris gn) € Sn-
Rdn

Rdn

ThUS
( (/ Msf(.’li‘l,-.. 7$n)11(,1(l‘1)p1dx1)‘£? ..-(,dn<$n)pn .73")1%"
Rdn Rd1 l
< C(/ (/ |f(l‘1, ,In)|11(71<ml)pld‘rl)£? n(x )Pn " >%
Rdn R41 w :l

This completes the induction step.

And therefore, we have the following remark.

Remark 2.3 Let %, = %;,i =1,2,--- ,n, in the assumption of Corollary 2.2, then
©; X €i11 is a Muckenhoupt basis in R% x R4+, j=1,2, ... ,n— 1.

In order to prove Theorem 1.2, we need make some preparations.

It was well known that Muckenhoupt and Wheeden [11, Theorem 1] proved the following
lemma.

Lemma 2.4 For every weight w € A, «(R%) and 0 < ¢ < oo,

/Rd |Rf(z)| w(x)dx < C’/Rd M@ f(z)iw(z)dz.

Also, we need the following theorem proved in [9].
Theorem 2.5 Given a family of extrapolation pairs F, let % be a Muckenhoupt

basis. Suppose that for some pg, 0 < py < 0o, and every wy € As, 2,

/R () < € / g@ue()ds,  (f.9) € F. (2.2)
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Then for every p, 0 < p < 0o, and every w € A %,

/Rd f(@)Pw(z)dx < C/Rd g(z)Pw(r)dz, (f,g9) € F.

Then, we can prove Theorem 1.2 in the following.
Proof of Theorem 1.2 Fix 0 < p; < 0o and wy(21)P* € A 4, (R™), let

So= {0 hloa) = ([ Rior o) don) 7,

R41

gaten) = ([ MO, aa)hen (o) de) 7 |
R41
If py = py, then, for all wy(22)P? € Ay 4, (R%), we have
w(zy, z2)" £ w1 (z1)Prwa(z2)P? € Aoofg(Rd).
It follows from Lemma 2.4 that
(/ / Rf(acl,332)"’1w(331,352)1"161lacld:1:2)ﬁ
R42 JR%
< C(/ M(a)f(zcl,x2)p1w(m1,m2)”1dm1d$2)ﬁ.
Rd2 JR%

Then, we have
/ fo(z2)P2wo(z2)P2dxy < C/ g2(x2) 2w (x2)P2dxs, (f2,092) € Sa.
Rd2 Rd2

Thus, we check (2.2) of Theorem 2.5 with F £ S, and py = p,. Using Theorem 2.5, we get,
for every 0 < py < oo and every vy(7s) € Ay 4, (R%),

/ fa(x2)P?va(w2)dxs < C/ ga(12)?va(w2)dx2, (f2,92) € Sa.
Rd2 Rd2
Note that wy(22)P? € Aso ., (R%). It follows from the above inequality that
/ fa(@o)P?wo(x0)?dwy < C/ g2 (w2)?wo(x2)P* dxa, (f2,92) € Sa-
Rd2 Rd2

Thus

(/ ( Rf(xlyib“z)plwl(xl)pldfﬁ)%wﬂzz)pzdﬂfz)%
Ri2 JR91

i(4)2(1!2)172611152)é.

< o (@)
Rz JR4
At last, we give the proof of Theorem 1.3. First, we should remind that Cruz-Uribe,
Martell and Pérez proved the following proposition in [8, Proposition 3.5], which is a special
case of Theorem 1.3.
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Proposition 2.6 [8, Proposition 3.5] For every weight w € A 4, x%, (R® x R%),

/ / |Tf (21, x2)|w(x1, 3)da1das < C/ MY o MV fay, 20)w (1, 2)dzdas.
do Rdl

R42 JR%

Now, we give the proof of Theorem 1.3 as follows.

Proof of Theorem 1.3 In view of the definition, we have

f(Z1, %) N
dz)dx
.’L'l)xQ /]Rd2 /Rdl |.CC1 —fL'1|d1 1‘([;2 —:U2|d2 1 1) 2
o dz dZs
= Xr1,2
/]1&42< R41 f( b 2)|xl _-i‘1|d171 |.%‘2 _-i'2|d271

dz, dz,
< T1,T .
< L e e e

Using Minkowski’s integral inequality, we obtain that

(/ (/ T f (1, w2)[Prwr (1) divy ) 4 wo (o) P2 dvy ) 72
Rd2 JR

o dif‘l dfg p1
<([ (L (L (] wear ) )
/ [ (L e ) =

P2 1

X wl(xl)pldx1> " wg(xg)p"’dx2> E

<( L (L (L, (L reaip—=2=)"

L

X wl(xl)pldxl) "

P2 P2
) WQ(.Z'Q)pzd.’E2> .

dZs
|2 — Zp|d2—1

Combining this estimate with Lemma 2.4, we have that
(/ (/ T f (21, 22) [P wy (1P dy ) 77w ()P ds) 2
Rd2 JR41
1 di‘ 1
<C( / ( / ( / MY f (@, To)P wn (1) iy ) 77— P2 (22) P2 ) 2
Rd2 JRd2 JR41 |$2

_ 1.2‘(12—1

Using Lemma 2.4 again, we prove that
( / ( / T (w1, o) P (22)P drs) B (e deva)
Rd2 JRA
<o(| (o / MO f (@1, o) wy (1) day )77 ) (a5) 2 wo (22)P? ds ) 72
Rd2 R41

:C(/Rdz (Mz(l)(/Rdl M1(1)f(3?1, ')pluh(xl)pld.%‘1)’%)(xg)pzwg(xg)mdxg) :
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