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1 Introduction and Statements of Main Results

In this paper, we shall deal with spaces of measurable functions defined in the fol-
lowing way. Let (Xi, Si, µi), for 1 ≤ i ≤ n, be totally σ-finite measure spaces and P =
(p1, p2, · · · , pn) a given n-tuple with 1 ≤ pi ≤ ∞. We always suppose that none of the
spaces (Xi, Si, µi) admits as the only measurable functions the constant ones. A function

f(x1, x2, · · · , xn) measurable in the product space (X, S, µ) = (
n∏

i=1

Xi,
n∏

i=1

Si,
n∏

i=1

µi), is said

to belong to LP (X) if the number obtained after taking successively the p1 norm in x1, the
p2 norm in x2, · · · , the pn norm in xn and in that order, is finite. The number so obtained,
finite or not, will be denoted by ‖f‖P , ‖f‖(p1,··· ,pn) or ‖f‖p1,··· ,pn

. When for every i, pi < ∞,

we have in particular

‖f‖P = (
∫

Xn

· · · (
∫

X2

(
∫

X1

|f(x1, x2, · · · , xn)|p1dµ1)
p2
p1 dµ2)

p3
p2 · · · dµn)

1
pn .

If further, each pi is equal to p :

‖f‖P = ‖f‖(p,··· ,p) = (
∫

X

|f(x1, x2, · · · , xn)|pdµ)
1
p = ‖f‖p
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and LP (X) = Lp(X) (see [1] for more information). In this paper, we only deal with the
case when every component space (Xi, Si, µi) is a di-dimensional Euclidean space Rdi with
Lebesgue’s measure. Then, the product space (X, S, µ) is a d-dimensional Euclidean space
with Lebesgue’s measure, where d = d1 + d2 + · · ·+ dn.

In the following, we consider weighted inequalities on these spaces. For simplicity of
notations, we only consider the case of n = 2 and our results can be extended to the general
case by induction.

Throughout, ω will denote a weight, i.e., a nonnegative, locally integrable function. All
cubes in Rdi will be half open with sides parallel to the axes. Given a set E ⊂ Rdi , |E| will

denote the Lebesgue’s measure of E, ω(E) =
∫

E

ω(x)dx the weighted measure of E, and

−
∫

E

ωdx = |E|−1

∫

E

ω(x)dx =
ω(E)
|E| the average of ω over E.

To define the classes of weights which we will consider, we first introduce the concept
of basis B and the maximal operator MB defined with respect to B (see [2, 3] for more
information). A basis B is a collection of open sets B ⊂ Rd. A weight ω is associated with
the basis B, if ω(B) < ∞ for every B ∈ B. Given a basis B, the corresponding maximal
operator is defined by

MBf(x) =





sup
B3x

−
∫

B

|f(y)|dy, if x ∈
⋃

B∈B

B,

0, otherwise.

A weight ω associated with B is in the Muckenhoupt class Ap,B(Rd), 1 < p < ∞, if there
exists a constant C such that for every B ∈ B,

(−
∫

B

ω(x)dx)(−
∫

B

ω(x)−
1

p−1 dx)p−1 < C.

When p = 1, ω belongs to A1,B(Rd) if MBω(x) ≤ Cω(x) for almost every x ∈ Rd. The
infimum of all such C, denoted by [ω]Ap,B(Rd). For simplicity, Ap,B(Rd) is denoted by Ap,B, if
no confusion can arise. Clearly, if 1 ≤ q ≤ p, then Aq,B ⊆ Ap,B. Further, from the definitions
we get the following factorization property: if ω1, ω2 ∈ A1,B, then ω1ω

1−p
2 ∈ Ap,B. Finally,

we let A∞,B =
⋃

p≥1

Ap,B.

We are going to restrict our attention to the following class of bases. A basis B is a
Muckenhoupt basis if for each p, 1 < p < ∞, and for every ω ∈ Ap,B, the maximal operator
MB is bounded on Lp(ω), that is,

∫

Rd

MBf(x)pω(x)dx ≤ C

∫

Rd

|f(x)|pω(x)dx. (1.1)

Let B be a Muckenhoupt basis. Let 1 < p < ∞ and ω be a weight. If there exists a
constant C such that∫

Rd

MBf(x)pω(x)dx ≤ C

∫

Rd

|f(x)|pω(x)dx for all f ∈ Lp(ω), (1.2)
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then standard arguments give ω ∈ Ap,B.

Muckenhoupt bases were introduced and characterized in [3, Theorem 2.1]. Three im-
mediate examples of Muckenhoupt bases are D , the set of dyadic cubes in Rd; C , the set
of all cubes in Rd whose sides are parallel to the coordinate axes, and R, the set of all
rectangles (i.e., parallelepipeds) in Rd whose sides are parallel to the coordinate axes (see
[4, Theorem 7.14]). One advantage of these bases is that by using them we avoid any direct
appeal to the underlying geometry: the relevant properties are derived from (1.1), and we
do not use covering lemmas of any sort.

In this paper, we will use the Rubio de Francia extrapolation as our main tool to deal
with our inequalities. As is well known, the extrapolation theorem of Rubio de Francia is
one of the deepest results in the study of weighted norm inequalities in harmonic analysis
[5]. Recently, an approach to extrapolation is based on the abstract formalism of families
of extrapolation pairs and summarized by Cruz-Uribe [6]. This approach was introduced in
[7] and first fully developed in [8] (see [9] for more information). It was implicit from the
beginning that in extrapolating from an inequality of the form

∫

Rd

|Tf |pw dx ≤ C

∫

Rd

|f |pw dx,

the operator T and its properties (positive, linear, etc.) played no role in the proof. Instead,
all that mattered was that there existed a pair of non-negative functions (|Tf |, |f |) that
satisfied a given collection of norm inequalities. Therefore, the proof goes through working
with any pair (f, g) of non-negative functions.

Hereafter, we will adopt the following conventions. A family of extrapolation pairs F
will consist of pairs of non-negative, measurable functions (f, g) that are not equal to 0.
Given such a family F , 0 < p < ∞, 1 ≤ q < ∞ and ω ∈ Aq,B(Rd), if we say

∫

Rd

fpw dx ≤ C

∫

Rd

gpw dx, (f, g) ∈ F ,

we mean that this inequality holds for all pairs (f, g) ∈ F such that ‖f‖Lp(w) < ∞, i.e., that
the left-hand side of the inequality is finite and the constant C depends only upon p, q, d,
and the [w]Aq

constant of w. Moreover, given a family F , 0 < p < ∞ and w ∈ A∞,B(Rd),
we always say ∫

Rd

fpw dx ≤ C

∫

Rd

gpw dx, (f, g) ∈ F . (1.3)

Since A∞,B =
⋃

q≥1

Aq,B, there is q ≥ 1 such that ω ∈ Aq,B(Rd). In (1.3), we mean that the

constant C depends only upon p, d, q and the [w]Aq
constant of w.

The key to the new approach is the family of extrapolation pairs F . If the family of
extrapolation pairs F seems abstract and mysterious, it may help to think of the particular
family

F =
{
(|Tf |, |Sf |), f ∈ N}

,
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where T and S are some operators that we are interested in and N is some “nice” family
of functions: L∞c , C∞

c , etc. We refer to Cruz-Uribe [6, Sections 5 and 6] and Cruz-Uribe,
Martell and Pérez [9, Section 3.8] for more information.

Using the above conventions, we can give the following main results related with strong
maximal operator, Riesz potential and multiparameter fractional integral operators.

Let B1 and B2 be Muckenhoupt bases in Rd1 and Rd2 , respectively. We consider the
space Rd1 × Rd2 which identify with Rd1+d2 = Rd and the product basis B , B1 ×B2 =
{Qd1 × Qd2 : Qdi

∈ Bi}. The corresponding maximal operator is called strong maximal
operator and is denoted by Ms.

Let 1 < p < ∞, ωi(xi) be a weight in Rdi and ωi(xi) ∈ Ap,Bi
(Rdi). Then there is a

constant C such that
∫

Rd

Msf(x)pω(x)dx ≤ C

∫

Rd

|f(x)|pω(x)dx,

where ω(x1, x2) = ω1(x1)ω2(x2). Moreover, let B , C1 × C2, it follows by Fubini’s theorem
that B is a Muckenhoupt basis (see [8, Page 424]).

Then we have the following Theorem 1.1, which is a weighted version of [10, Theroerm
4.1].

Theorem 1.1 Let 1 < pi < ∞ and ω(x1, x2) = ω1(x1)ω2(x2). Let ωi(xi) be a weight
in Rdi , then the following statements are equivalent.

(1) There is a constant C, independing of f such that

(
∫

Rd2

(
∫

Rd1

Msf(x1, x2)p1ω1(x1)p1dx1)
p2
p1 ω2(x2)p2dx2)

1
p2

≤ C(
∫

Rd2

(
∫

Rd1

|f(x1, x2)|p1ω1(x1)p1dx1)
p2
p1 ω2(x2)p2dx2)

1
p2 . (1.4)

(2) ωp1
1 ∈ Ap1,B1(Rd1) and ωp2

2 ∈ Ap2,B2(Rd2).
Let Rd be the d-dimensional Euc1idean space. The Riesz potential of order α, 0 < α < d,

of a function f is defined by

Rf(x) =
∫

Rd

f(x̄)
|x− x̄|d−α

dx̄. (1.5)

We also define the fractional maximal operator M (α)f(x) by

M (α)f(x) = sup
Qd3x

1
|Qd|1−α

d

∫

Qd

|f(x̄)|dx̄,

where the supremum is over all cubes Qd with sides parallel to the axes and containing x.

We extend [11, Theorem 1] to the case on mixed norm Lebesgue spaces. Let us consider
the di-dimensional Euclidean space Rdi and the basis Ci in it, where i = 1, 2. For Rd =
Rd1 ×Rd2 , we consider two bases C and B = C1×C2 in it. It is clear that C ⊆ C1×C2. For
C , Sjödin [12] obtained the following Theorem 1.2, which gave the weighted norm inequalities
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for Riesz potentials and fractional maximal functions in mixed norm Lebesgue spaces. We
reprove the theorem by the abstract formalism of families of extrapolation pairs as following.

Theorem 1.2 Let 0 < pi < ∞ and ω(x1, x2) = ω1(x1)ω2(x2). Let ωi(xi) be a weight
in Rdi and ωi(xi)pi ∈ A∞,Ci

(Rdi). Then there is a constant C such that

(
∫

Rd2

(
∫

Rd1

Rf(x1, x2)p1ω1(x1)p1dx1)
p2
p1 ω2(x2)p2dx2)

1
p2

≤ C(
∫
Rd2

(
∫

Rd1

M (α)f(x1, x2)p1ω1(x1)p1dx1)
p2
p1 ω2(x2)p2dx2)

1
p2 . (1.6)

Also we can consider the fractional integral operators in our case. We define a multi-
parameter version of the fractional integral operator of order 1 (see, e.g. [8, Page 423]): for
(x1, x2) ∈ Rd1 × Rd2 , let

Tf(x1, x2) =
∫

Rd2

∫

Rd1

f(x̄1, x̄2)
|x1 − x̄1|d1−1|x2 − x̄2|d2−1

dx̄1dx̄2. (1.7)

Given (x1, x2) ∈ Rd1 × Rd2 and a function f ∈ L1
loc(Rd1 × Rd2), define the multi-parameter

fractional maximal operators

M
(1)
1 f(x1, x2) = sup

Qd13x1

1

|Qd1 |1−
1

d1

∫

Qd1

|f(x̄1, x2)|dx̄1,

M
(1)
2 f(x1, x2) = sup

Qd23x2

1

|Qd2 |1−
1

d2

∫

Qd2

|f(x1, x̄2)|dx̄2.

A simple estimate shows that M
(1)
1 ◦M

(1)
2 f(x1, x2) ≤ C · Tf(x1, x2) and similarly with

the order of composition reversed. As in the one-variable case, the reverse inequality does
not hold pointwise, but does hold in the sense of weighted Lp norms. For the product B,

we have the following theorem, which is an extension of [8, Proposition 3.5].
Theorem 1.3 Let 1 ≤ p1 < ∞, 0 < p2 < ∞ and ω(x1, x2) = ω1(x1)ω2(x2). Let ωi(xi)

be a weight in Rdi and ωi(xi)pi ∈ A∞,Ci
(Rdi). Then there is a constant C such that

(
∫

Rd2

(
∫

Rd1

|Tf(x1, x2)|p1ω1(x1)p1dx1)
p2
p1 ω2(x2)p2dx2)

1
p2 (1.8)

≤ C(
∫

Rd2

M
(1)
2 ((

∫

Rd1

M
(1)
1 f(x1, ·)p1ω1(x1)p1dx1)

1
p1 )(x2)p2ω2(x2)p2dx2)

1
p2 .

Throughout this paper, C denote a constant not necessarily the same at each occurrence.

2 Proof of Main Results

In this section, we give the proofs of Theorems 1.1–1.3.
To prove Theorem 1.1, we need the following theorem which was proved by Cruz-Urible,

Martell and Pérez in [9].
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Theorem 2.1 (see [6, Theorem 3.9]) Given a family of extrapolation pairs F , let B

be a Muckenhoupt basis. Suppose that for some p0, 1 ≤ p0 < ∞, and every w0 ∈ Ap0,B,
∫

Rd

f(x)p0w0(x)dx ≤ C

∫

Rd

g(x)p0w0(x)dx, (f, g) ∈ F .

Then for every p, 1 < p < ∞, and every w ∈ Ap,B,
∫

Rd

f(x)pw(x)dx ≤ C

∫

Rd

g(x)pw(x)dx, (f, g) ∈ F .

Then, we can give the proof of Theorem 1.1 as follows.
Proof of Theorem 1.1 Suppose that (1.4) is valid. We prove ωp1

1 ∈ Ap1,B1(Rd1) and
ωp2

2 ∈ Ap2,B2(Rd2). For any h(x1) ∈ Lp1(ωp1
1 ) and Qd2 ∈ B2, let

f(x1, x2) = h(x1)χQd2
(x2).

We have Msf(x1, x2) = MB1h(x1)χQd2
(x2). Then, we rewrite (1.4) as

(
∫

Rd1

MB1h(x1)p1ω1(x1)p1dx1)
1

p1 ≤ C(
∫

Rd1

|h(x1)|p1ω1(x1)p1dx1)
1

p1 . (2.1)

It follows from (1.2) that ω1(x1)p1 ∈ Ap1,B1(Rd1). Similarly, we have ω2(x2)p2 ∈ Ap2,B2(Rd2).
Conversely, to prove (1.4). Fix p1 > 1 and ωp1

1 ∈ Ap1,B1(Rd1), let

S2 =
{

(f2, g2) : f2(x2) = (
∫

Rd1

Msf(x1, x2)p1ω1(x1)p1dx1)
1

p1 ,

g2(x2) = (
∫

Rd1

|f(x1, x2)|p1ω1(x1)p1dx1)
1

p1

}
.

If p2 = p1, then, for all ω2(x2)p2 ∈ Ap2,B2(Rd2), we have

ω(x1, x2)p1 , ω1(x1)p1ω2(x2)p2 ∈ Ap1,B(Rd).

It follows that

(
∫

Rd2

∫

Rd1

Msf(x1, x2)p1ω(x1, x2)p1dx1dx2)
1

p1

≤ C(
∫

Rd2

∫

Rd1

|f(x1, x2)|p1ω(x1, x2)p1dx1dx2)
1

p1 .

Then, we have
∫

Rd2

f2(x2)p2ω2(x2)p2dx2 ≤ C

∫

Rd2

g2(x2)p2ω2(x2)p2dx2, (f2, g2) ∈ S2.

Thus, we check (2.1) of Theorem 2.1 with F , S2 and p0 , p2. Using Theorem 2.1, we get,
for every 1 < p2 < ∞ and every v2(x2) ∈ Ap2,B2(Rd2),

∫

Rd2

f2(x2)p2v2(x2)dx2 ≤ C

∫

Rd2

g2(x2)p2v2(x2)dx2, (f2, g2) ∈ S2.
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Note that ω2(x2)p2 ∈ Ap2,B2(Rd2). It follows from the above inequality that

∫

Rd2

f2(x2)p2ωp2
2 (x2)dx2 ≤ C

∫

Rd2

g2(x2)p2ωp2
2 (x2)dx2, (f2, g2) ∈ S2.

Thus

(
∫

Rd2

(
∫

Rd1

Msf(x1, x2)p1ω1(x1)p1dx1)
p2
p1 ω2(x2)p2dx2)

1
p2

≤ C(
∫

Rd2

(
∫

Rd1

|f(x1, x2)|p1ω1(x1)p1dx1)
p2
p1 ω2(x2)p2dx2)

1
p2 .

Kurtz [13] obtained Theorem 1.1 in the space Rd1×Rd2 involving C1×C2 and Theorem
1.1 is a general case of [13, Theorem 1]. Here, it is natural to expect a more general result.

Let Bi be a Muckenhoupt basis in Rdi , i = 1, 2, · · · , n. Then B = {
n∏

i=1

Qdi
: Qdi

∈ Bi} is

a product basis in the space Rd =
n∏

i=1

Rdi . If Bi×Bi+1 is a Muckenhoupt basis in Rdi×Rdi+1 ,

i = 1, 2, · · · , n− 1, using our approach to Theorem 1.1, we have the following Corollary 2.2
by induction.

Corollary 2.2 Let 1 < pi < ∞ and ω(x1, x2, · · · , xn) =
n∏

i=1

ωi(xi). Let ωi(xi) be a

weight in Rdi , then the following statements are equivalent:

(1) There is a constant C, independing of f such that

(
∫

Rdn

· · · (
∫

Rd1

Msf(x1, · · · , xn)p1ω1(x1)p1dx1)
p2
p1 · · ·ωn(xn)pndxn)

1
pn

≤ C(
∫

Rdn

· · · (
∫

Rd1

|f(x1, · · · , xn)|p1ω1(x1)p1dx1)
p2
p1 · · ·ωn(xn)pndxn)

1
pn .

(2) ωpi

i ∈ Api,Bi
(Rdi), i = 1, 2 · · · , n.

Proof We only prove (2) ⇒ (1) and this is done by induction beginning with the case
n = 2. For n = 2, it is valid because of Theorem 1.1.

Assuming that the inequality is valid for n− 1, we set

Sn =
{

(fn, gn) :

fn(xn) = (
∫

Rdn−1

· · · (
∫

Rd1

Msf(x1, x2, · · · , xn)p1ω(x1)p1dx1)
p2
p1 · · ·ω(xn−1)pn−1dxn−1)

1
pn−1 ,

gn(xn) = (
∫

Rdn−1

· · · (
∫

Rd1

|f(x1, x2, · · · , xn)|p1ω(x1)p1dx1)
p2
p1 · · ·ω(xn−1)pn−1dxn−1)

1
pn−1

}
.

If pn = pn−1, then, for all ωn(xn)pn ∈ Apn,Bn
(Rdn), we have

νn−1(x̄n−1)pn−1 , ωn−1(xn−1)pn−1ωn(xn)pn ∈ Apn−1,Bn−1×Bn
(Rdn−1+dn).
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It follows from the induction hypothesis that

(
∫

Rdn

· · · (
∫

Rd1

Msf(x1, · · · , xn)p1ω1(x1)p1dx1)
p2
p1 · · ·ωn(xn)pndxn)

1
pn

= (
∫

Rdn−1+dn

· · · (
∫

Rd1

Msf(x1, · · · , x̄n−1)p1ω1(x1)p1dx1)
p2
p1 · · · νn−1(x̄n−1)pn−1dx̄n−1)

1
pn−1

≤ C(
∫

Rdn−1+dn

· · · (
∫

Rd1

|f(x1, · · · , x̄n−1)|p1ω1(x1)p1dx1)
p2
p1 · · · νn−1(x̄n−1)pn−1dx̄n−1)

1
pn−1 .

Then, we have
∫

Rdn

fn(xn)pnωn(xn)pndxn ≤ C

∫

Rdn

gn(xn)pnωn(xn)pndxn, (fn, gn) ∈ Sn.

Using Theorem 2.1, we get, for every 1 < pn < ∞ and every vn(xn) ∈ Apn,Bn
(Rdn),

∫

Rdn

fn(xn)pnvn(xn)dxn ≤ C

∫

Rdn

gn(xn)pnvn(xn)dxn, (fn, gn) ∈ Sn.

Note that ωn(xn)pn ∈ Apn,Bn
(Rdn). It follows from the above inequality that

∫

Rdn

fn(xn)pnωn(xn)pndxn ≤ C

∫

Rdn

gn(xn)pnωn(xn)pndxn, (fn, gn) ∈ Sn.

Thus

(
∫

Rdn

· · · (
∫

Rd1

Msf(x1, · · · , xn)p1ω1(x1)p1dx1)
p2
p1 · · ·ωn(xn)pndxn)

1
pn

≤ C(
∫

Rdn

· · · (
∫

Rd1

|f(x1, · · · , xn)|p1ω1(x1)p1dx1)
p2
p1 · · ·ωn(xn)pndxn)

1
pn .

This completes the induction step.
And therefore, we have the following remark.
Remark 2.3 Let Bi = Ci, i = 1, 2, · · · , n, in the assumption of Corollary 2.2, then

Ci × Ci+1 is a Muckenhoupt basis in Rdi × Rdi+1 , i = 1, 2, · · · , n− 1.

In order to prove Theorem 1.2, we need make some preparations.
It was well known that Muckenhoupt and Wheeden [11, Theorem 1] proved the following

lemma.
Lemma 2.4 For every weight ω ∈ A∞,C (Rd) and 0 < q < ∞,

∫

Rd

|Rf(x)|qω(x)dx ≤ C

∫

Rd

M (α)f(x)qω(x)dx.

Also, we need the following theorem proved in [9].
Theorem 2.5 Given a family of extrapolation pairs F , let B be a Muckenhoupt

basis. Suppose that for some p0, 0 < p0 < ∞, and every w0 ∈ A∞,B,
∫

Rd

f(x)p0w0(x)dx ≤ C

∫

Rd

g(x)p0w0(x)dx, (f, g) ∈ F . (2.2)
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Then for every p, 0 < p < ∞, and every w ∈ A∞,B,
∫

Rd

f(x)pw(x)dx ≤ C

∫

Rd

g(x)pw(x)dx, (f, g) ∈ F .

Then, we can prove Theorem 1.2 in the following.
Proof of Theorem 1.2 Fix 0 < p1 < ∞ and ω1(x1)p1 ∈ A∞,C1(Rd1), let

S2 =
{

(f2, g2) : f2(x2) = (
∫

Rd1

Rf(x1, x2)p1ω1(x1)p1dx1)
1

p1 ,

g2(x2) = (
∫

Rd1

M (α)f(x1, x2)p1ω1(x1)p1dx1)
1

p1

}
.

If p2 = p1, then, for all ω2(x2)p2 ∈ A∞,C2(Rd2), we have

ω(x1, x2)p1 , ω1(x1)p1ω2(x2)p2 ∈ A∞,C (Rd).

It follows from Lemma 2.4 that

(
∫

Rd2

∫

Rd1

Rf(x1, x2)p1ω(x1, x2)p1dx1dx2)
1

p1

≤ C(
∫

Rd2

∫

Rd1

M (α)f(x1, x2)p1ω(x1, x2)p1dx1dx2)
1

p1 .

Then, we have
∫

Rd2

f2(x2)p2ω2(x2)p2dx2 ≤ C

∫

Rd2

g2(x2)p2ω2(x2)p2dx2, (f2, g2) ∈ S2.

Thus, we check (2.2) of Theorem 2.5 with F , S2 and p0 , p2. Using Theorem 2.5, we get,
for every 0 < p2 < ∞ and every v2(x2) ∈ A∞,C2(Rd2),

∫

Rd2

f2(x2)p2v2(x2)dx2 ≤ C

∫

Rd2

g2(x2)p2v2(x2)dx2, (f2, g2) ∈ S2.

Note that ω2(x2)p2 ∈ A∞,C2(Rd2). It follows from the above inequality that
∫

Rd2

f2(x2)p2ω2(x2)p2dx2 ≤ C

∫

Rd2

g2(x2)p2ω2(x2)p2dx2, (f2, g2) ∈ S2.

Thus

(
∫

Rd2

(
∫

Rd1

Rf(x1, x2)p1ω1(x1)p1dx1)
p2
p1 ω2(x2)p2dx2)

1
p2

≤ C(
∫

Rd2

(
∫

Rd1

M (α)f(x1, x2)p1ω1(x1)p1dx1)
1

p1 ω2(x2)p2dx2)
1

p2 .

At last, we give the proof of Theorem 1.3. First, we should remind that Cruz-Uribe,
Martell and Pérez proved the following proposition in [8, Proposition 3.5], which is a special
case of Theorem 1.3.
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Proposition 2.6 [8, Proposition 3.5] For every weight ω ∈ A∞,C1×C2(Rd1 × Rd2),

∫

Rd2

∫

Rd1

|Tf(x1, x2)|ω(x1, x2)dx1dx2 ≤ C

∫

Rd2

∫

Rd1

M
(1)
1 ◦M

(1)
2 f(x1, x2)ω(x1, x2)dx1dx2.

Now, we give the proof of Theorem 1.3 as follows.

Proof of Theorem 1.3 In view of the definition, we have

Tf(x1, x2) =
∫

Rd2

(
∫

Rd1

f(x̄1, x̄2)
|x1 − x̄1|d1−1|x2 − x̄2|d2−1

dx̄1)dx̄2

=
∫

Rd2

(
∫

Rd1

f(x̄1, x̄2)
dx̄1

|x1 − x̄1|d1−1
)

dx̄2

|x2 − x̄2|d2−1

≤
∫

Rd2

(
∫

Rd1

|f(x̄1, x̄2)| dx̄1

|x1 − x̄1|d1−1
)

dx̄2

|x2 − x̄2|d2−1
.

Using Minkowski’s integral inequality, we obtain that

(
∫

Rd2

(
∫

Rd1

|Tf(x1, x2)|p1ω1(x1)p1dx1)
p2
p1 ω2(x2)p2dx2)

1
p2

≤
(∫

Rd2

(∫

Rd1

(∫

Rd2

(∫

Rd1

|f(x̄1, x̄2)| dx̄1

|x1 − x̄1|d1−1

) dx̄2

|x2 − x̄2|d2−1

)p1

× ω1(x1)p1dx1

) p2
p1

ω2(x2)p2dx2

) 1
p2

≤
(∫

Rd2

(∫

Rd2

(∫

Rd1

(∫

Rd1

|f(x̄1, x̄2)| dx̄1

|x1 − x̄1|d1−1

)p1

× ω1(x1)p1dx1

) 1
p1 dx̄2

|x2 − x̄2|d2−1

)p2

ω2(x2)p2dx2

) 1
p2

.

Combining this estimate with Lemma 2.4, we have that

(
∫

Rd2

(
∫

Rd1

|Tf(x1, x2)|p1ω1(x1)p1dx1)
p2
p1 ω2(x2)p2dx2)

1
p2

≤C(
∫

Rd2

(
∫

Rd2

(
∫

Rd1

M
(1)
1 f(x1, x̄2)p1ω1(x1)p1dx1)

1
p1

dx̄2

|x2 − x̄2|d2−1
)p2ω2(x2)p2dx2)

1
p2 .

Using Lemma 2.4 again, we prove that

(
∫

Rd2

(
∫

Rd1

|Tf(x1, x2)|p1ω1(x1)p1dx1)
p2
p1 ω2(x2)p2dx2)

1
p2

≤C(
∫

Rd2

(M (1)
2 (

∫

Rd1

M
(1)
1 f(x1, x̄2)p1ω1(x1)p1dx1)

1
p1 )(x2)p2ω2(x2)p2dx2)

1
p2

=C(
∫

Rd2

(M (1)
2 (

∫

Rd1

M
(1)
1 f(x1, ·)p1ω1(x1)p1dx1)

1
p1 )(x2)p2ω2(x2)p2dx2)

1
p2 .
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具有Muckenhoupt基的乘积空间上的混合加权不等式

陈 伟1, 朱春香1, 张 超2

(1. 扬州大学数学科学学院, 江苏扬州 225002)

(2. 浙江工商大学统计与数学学院, 浙江杭州 310018)

摘要: 本文研究了在具有Muckenhoupt基的乘积空间上混合加权问题. 利用外插函数族

和Minkowski不等式获得了混合加权不等式. 根据数学归纳法, 可以得到混合加权不等式的一般形式.
关键词: 混合范数Lebesgue空间; Muckenhoupt基; 外插
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