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1 Introduction and Main Result

We study the existence of solutions to the following Chern-Simons-Schrödinger system
(CSS system) in H1(R2)





−∆u + V (x)u + A0u +
2∑

j=1

A2
ju = f(u),

∂1A0 = A2|u|2, ∂2A0 = −A1|u|2,
∂1A2 − ∂2A1 = − 1

2
u2, ∂1A1 + ∂2A2 = 0,

(1.1)

where V (x) and f(u) satisfy
(V1) V (x) ∈ C(R2,R) and V (x) ≥ V0 > 0 for all x ∈ R2;
(V2) the function [V (x)]−1 belongs to L1(R2);
(F1) f ∈ C(R,R) and f(0) = 0;
(F2) lim

s→+∞
f(s)

eαs2 = 0 for all α > 0;

(F3) there exist θ > 6 and s1 > 0 such that for all |s| ≥ s1,

0 < θF (s) .= θ

∫ s

0

f(t) dt ≤ sf(s);
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(F4) lim
s→0

2F (s)s−2 < λ1, where

λ1 = inf
u∈E\{0}

∫

R2

|∇u|2 + V (x)u2 dx
∫

R2

u2 dx

≥ V0 > 0,

E = {u ∈ H1(R2) :
∫

R2

V (x)u2 dx < ∞} is a subspace of H1(R2) and also a Hilbert space

endowed with the following inner product

〈u, v〉 =
∫

R2

(∇u · ∇v + V (x)uv) dx, ∀u, v ∈ E.

f(u) = λ(2s + s2)es for 0 < λ < λ1
2

is an example that f(u) satisfies assumptions
(F1)–(F4), which was given in [1].

The CSS system received much attention recently, which describes the dynamics of large
number of particles in a electromagnetic field. About the detail of its physical background,
we refer to the references we mentioned below and references therein.

The CSS system arises from the Euler-Lagrange equations which are given by




iD0φ + (D1D1 + D2D2)φ = f(φ),
∂0A1 − ∂1A0 = −Im(φ̄D2φ),
∂0A2 − ∂2A0 = Im(φ̄D1φ),
∂1A2 − ∂2A1 = − 1

2
|φ|2.

(1.2)

This system was proposed in [2–4]. Berge, De Bouard, Saut [5] and Huh [6] studied the
blowing up time-dependent solutions of problem (1.2) as well as Liu, Smith, Tataru [7]
considered the local wellposedness.

We assume that the Coulomb gauge condition ∂0A0 + ∂1A1 + ∂2A2 = 0 holds, then the
standing wave ψ(x, t) = eiωt u of problem (1.2) satisfies





−∆u + ωu + A0u + A2
1u + A2

2u = f(u),
∂1A0 = A2u

2, ∂2A0 = −A1u
2,

∂1A2 − ∂2A1 = − 1
2
|u|2, ∂1A1 + ∂2A2 = 0.

(1.3)

Under some radial assumptions, on the one hand, the existence, non-existence, and multi-
plicity of standing waves to the nonlinear CSS systems were investigated by [8–12] etc.

On the other hand, the existence of solitary waves was considered by [13–16] etc. For
problem (1.1) with f(u) = |u|p−2u, p > 4, without the radial assumptions we mentioned
above, by the concentration compactness principle with V (x) is a constant and the argument
of global compactness with V ∈ C(R2) and 0 < V0 < V (x) < V∞, the existence of nontrivial
solutions to Chern-Simons-Schrödinger systems (1.1) was obtained in [17].

Inspired by [1] and [17], the purpose of the present paper is to study the existence
of solutions for systems (1.1) with exponential nonlinearities. The main difficult of systems
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(1.1) is that the non-local term Aj , j = 0, 1, 2 depend on u and there is a lack of compactness
in R2. Using the mountain pass theorem, we have the following main result.

Theorem 1.1 Suppose (V1), (V2), (F1), (F2), (F3) and (F4) hold, then problem (1.1)
has a solution.

This paper is organized as follows. In Section 2 we introduce the workframe and some
technical lemmas. In Section 3 we prove the mountain pass construction and (PS) condition,
which yields Theorem 1.1.

2 Mathematical Framework

In this section, we outline the variational workframe for the future study.
Let H1(R2) denote the usual Sobolev space with

‖u‖ =
( ∫

R2

|∇u|2 + V (x)|u|2 dx
)1/2

.

We consider the following subspace of H1(R2),

E = {u ∈ H1(R2) :
∫

R2

V (x)u2 dx < ∞}.

Condition (V1) implies that the embedding E ↪→ H1(R2) is continuous. Assumption (V2)
and Hölder inequality yield that

‖u‖L1(R2) ≤
(∫

R2

V (x)−1 dx
) 1

2 ‖u‖. (2.1)

Consequently,

E ↪→ Lq(R2), 1 ≤ q < ∞ (2.2)

are continuous. Furthermore, by condition (V2), the above embeddings are compact (see
[18, 19]).

Define the functional

J(u) =
1
2

∫

R2

(
|∇u|2 + V (x)|u|2 + A2

1|u|2 + A2
2|u|2

)
dx−

∫

R2

F (u) dx,

where F (u) =
∫ u

0

f(t) dt. Note that

∫

R2

A0|u|2 dx = −2
∫

R2

A0(∂1A2 − ∂2A1) dx

=2
∫

R2

(A2∂1A0 −A1∂2A0) dx = 2
∫

R2

(A2
1 + A2

2)|u|2 dx. (2.3)
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We have the derivative of J in H1(R2) as follows

〈J ′(u), η〉

=
∫

R2

(
∇u∇η + V (x)uη + (A2

1(u) + A2
2(u))uη + A0uη − f(u)η

)
dx

for all η ∈ C∞
0 (R2). Especially, from (2.3), we obtain that

〈J ′(u), u〉 =
∫

R2

(
|∇u|2 + V (x)|u|2 + 3

(
A2

1(u)|u|2 + A2
2(u)

)|u|2 − f(u)u
)

dx.

By (1.1), we have that Aj satisfy

∆A1 = ∂2(
|u|2
2

), ∆A2 = −∂1(
|u|2
2

), ∆A0 = ∂1(A2|u|2)− ∂2(A1|u|2),

which provide

A1 = A1(u) = K2 ∗ (
|u|2
2

) = − 1
2π

∫

R2

x2 − y2

|x− y|2
|u|2(y)

2
dy, (2.4)

A2 = A2(u) = −K1 ∗ (
|u|2
2

) =
1
2π

∫

R2

x1 − y1

|x− y|2
|u|2(y)

2
dy, (2.5)

A0 = A0(u) = K1 ∗ (A1|u|2)−K2 ∗ (A2|u|2), (2.6)

where Kj = −xj

2π|x|2 for j = 1, 2 and ∗ denotes the convolution.
We know that J is well defined in H1(R2), J ∈ C1(H1(R2)), and the weak solution of

(1.1) is the critical point of the functional J from the following properties.
Proposition 2.1 (see [17]) Let 1 < s < 2 and 1

s
− 1

q
= 1

2
.

(i) Then there is a constant C depending only on s and q such that

( ∫

R2

∣∣Tu(x)
∣∣q dx

) 1
q ≤ C

( ∫

R2

|u(x)|s dx
) 1

s ,

where the integral operator T is given by

Tu(x) :=
∫

R2

u(y)
|x− y| dy.

(ii) If u ∈ H1(R2), then we have that for j = 1, 2, ‖A2
j(u)‖Lq(R2) ≤ C‖u‖2

L2s(R2) and

‖A0(u)‖Lq(R2) ≤ C‖u‖2
L2s(R2)‖u‖2

L4(R2).

(iii) For q′ = q
q−1

, j = 1, 2,

‖Aj(u)u‖L2(R2) ≤ ‖|Aj(u)|2‖Lq(R2)‖u‖2
L2q′ (R2)

.

We will use the following mountain pass theorem to obtain our main result.
Theorem 2.2 (see [20]) Let E be a real Banach space and suppose that I ∈ C1(E,R)

satisfies the following conditions
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(i) I(0) = 0 and there exist ρ > 0, α > 0 such that I∂Bρ(0) ≥ α;
(ii) there exists e ∈ E\Bρ(0) such that I(e) ≤ 0.
Let c = inf

γ∈Λ
max
0≤τ≤1

I(γ(τ)), where Λ = {γ ∈ C([0, 1],E) : γ(0) = 0, γ(1) = e} is the set of

continuous paths joining 0 and e. Then c ≥ α and there exists a sequence {uk} ⊂ E such
that

I(uk)
k→ c and ‖I ′(uk)‖E∗ k→ 0.

Moreover, if I satisfies (PS) condition, then c is a critical value of I in E.
The following result on Aj , j = 0, 1, 2 is important to prove the compactness.
Proposition 2.3 (see [17]) Suppose that un converges to u a.e. in R2 and un converges

weakly to u in H1(R2). Let Aj,n := Aj(un(x)), j = 0, 1, 2. Then
(i) Aj,n converges to Aj(u(x)) a.e. in R2.

(ii)
∫

R2

A2
i,nunu dx,

∫

R2

A2
i,n|u|2 dx and

∫

R2

A2
i,n|un|2 dx converge to

∫

R2

A2
i |u|2 dx for i =

1, 2;
∫

R2

A0,nunu dx and
∫

R2

A0,n|un|2 dx converge to
∫

R2

A0|u|2 dx.

(iii)
∫

R2

|Ai(un−u)|2|un−u|2 dx =
∫

R2

|Ai(un)|2|un|2 dx−
∫

R2

|Ai(u)|2|u|2 dx+on(1) for

i = 1, 2.
In order to prove the mountain pass construction, we need the following results in

[1, 21, 22].

Proposition 2.4 (i) If α > 0 and u ∈ H1(R2) then
∫

R2

(
eαu2 − 1

)
dx < ∞. Moreover,

if ‖∇u‖2
2 ≤ 1, ‖u‖2 ≤ M < ∞ and α < 4π, then there exists a constant C = C(M, α) such

that
∫

R2

(
eαu2 − 1

)
dx < C(M, α).

(ii) Let β > 0 and r > 1. Then for each α > r there exists a positive constant C = C(α)
such that for all s ∈ R,

(
eβs2 − 1

)r ≤ C
(
eαβs2 − 1

)
. In particular, if u ∈ H1(R2), then(

eβu2 − 1
)r

belongs to L1(R2).
(iii) If v ∈ E, β > 0, q > 0 and ‖v‖ ≤ M with βM2 < 4π, then there exists C =

C(β, M, q) > 0 such that ∫

R2

(
eβv2 − 1

)|v|q dx ≤ C‖v‖q. (2.7)

3 Proof of Main Theorem

First of all, we prove the mountain pass structure.
Lemma 3.1 Assume (F2), (F3), and (F4) hold. Then there exist ρ > 0, α > 0 such

that J(u) > α for all ‖u‖ = ρ.
Proof From (F4), there exist ε, δ > 0, such that

|F (s)| ≤ λ1 − ε

2
|s|2, ∀|s| ≤ δ. (3.1)
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By (F2) and (F3), we have ∀q > 2, there exists C = C(q, δ) such that

|F (s)| ≤ C|s|q(eαs2−1), ∀|s| ≥ δ. (3.2)

By (3.1) and (3.2), we have

|F (s)| ≤ λ1 − ε

2
|s|2 + C|s|q(eαs2−1), ∀s ∈ R, q > 2. (3.3)

From (iii) of Proposition 2.4, the definition of λ1, and the continuous embeddings (2.2), we
obtain

J(u) ≥ 1
2
‖u‖2 − λ1 − ε

2
‖u‖2 − C‖u‖q ≥ 1

2
(
1− λ1 − ε

λ1

)‖u‖2 − C‖u‖q.

Hence, we have

J(u) ≥ ‖u‖[1
2
(
1− λ1 − ε

λ1

)‖u‖ − c‖u‖q−1].

By ε > 0 and q > 2, we can choose ρ > 0 and α > 0 such that J∂Bρ(0) ≥ α > 0.

Lemma 3.2 Assume that f satisfies (F3). Then there exists e ∈ E with ‖e‖ > ρ such
that J(e) < 0.

Proof Let u ∈ H1(R2) such that u ≡ s1 in B1, u ≡ 0 in Bc
2 and u ≥ 0. Define

k = supp(u). From (F3), there exist positive constants C1, C2 such that for all s ∈ R,

F (s) ≥ C1|s|θ − C2. (3.4)

Then we have for t > 1,

J(tu) ≤ t2

2
‖u‖2 + Ct6‖u‖6 − Ctθ

∫

{x: t|u(x)|≥s1}

uθ dx + C1|k|.

Since θ > 6, we have J(tu) → −∞ as t → +∞. Let e = tu with t sufficiently large, the
proof is completed.

By Theorem 2.2, the functional J has a (PS)c sequence. Next, we show this (PS)c

sequence is bounded.
Lemma 3.3 Assume (F2) and (F3) hold. Let (un) is a (PS)c sequence of J in E, that

is, J(un) → c and J ′(un) → 0. Then ‖un‖ ≤ C for some positive constant C.
Proof We know

1
2
‖un‖2 +

1
2

∫

R2

(
A2

1,n|un|2 + A2
2,n|un|2

)
dx−

∫

R2

F (un) dx = c + on(1)

and for any ϕ ∈ E, we have
∫

R2

(∇un∇ϕ + V (x)unϕ
)
dx +

∫

R2

(
A2

1,n + A2
2,n + A0,n

)
unϕdx−

∫

R2

f(un)ϕdx = on(‖ϕ‖).
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By (F3) and θ > 6, we get

θc + εn‖un‖ ≥(
θ

2
− 1)‖un‖2 + (

θ

2
− 3)

∫

R2

(
A2

1,n|un|2 + A2
2,n|un|2

)
dx

−
∫

R2

(
θF (un)− f(un)un

)
dx

≥(
θ

2
− 1)‖un‖2 −

∫

{x:|un(x)|<s1}

(
θF (un)− f(un)un

)
dx,

where εn → 0 as n → ∞. From |f(s)s − F (s)| ≤ c1|s| for all |s| ≤ s1 and inequality (2.1),
we obtain θc + εn‖un‖ ≥ ( θ

2
− 1)‖un‖2 − c1‖un‖, which implies that ‖un‖ ≤ C.

Now we are going to prove (PS) condition.
Lemma 3.4 The functional J satisfies (PS) condition.
Proof Let {un} be a (PS)c sequence of J , that is, J(un) → c and J ′(un) = 0. By

Lemma 3.3, {un} is bounded, up to a subsequence, we may assume that un ⇀ u0 in E,
un → u0 in Lq(R2) for all q ≥ 1 and un → u0 almost everywhere in R2, as n → ∞. If f(s)
satisfies (F2) and (F4), we have for each α > 0, there exist b1, b2 > 0 such that for all s ∈ R,

|f(s)| ≤ b1|s|+ b2

(
eαs2 − 1

)
.

Then we have

|f(un)− f(u0)||un − u0| ≤ C[|un|+ |u0|+ (eαu2
n − 1) + (eαu2

0 − 1)]|un − u0|.

By (i) and (ii) of Proposition 2.4 and Hölder inequality, we obtain

lim
n→∞

∫

R2

(f(un)− f(u0))(un − u0) dx = 0. (3.5)

By Proposition 2.3, we have

lim
n→∞

∫

R2

[(A2
1(un) + A2

2(un))un − (A2
1(u0) + A2

2(u0))u0](un − u0) dx = 0, (3.6)

and

lim
n→∞

∫

R2

[(A0(un)un + A0(u0)u0)](un − u0) dx = 0. (3.7)

From (3.5), (3.6), and (3.7), we have

‖un − u0‖2
E =〈J ′(un)− J ′(u0), un − u0〉

+
∫

R2

[(A2
1(u0) + A2

2(u0))u0 − (A2
1(un) + A2

2(un))un](un − u0) dx

+
∫

R2

[(A0(u0)u0 −A0(un)un)](un − u0) dx

+
∫

R2

(f(un)− f(u0))(un − u0) dx.
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We obtain that un → u0 as n →∞ in E.
Proof of Theorem 1.1 By Theorem 2.2, Lemma 3.1, Lemma 3.2 and Lemma 3.4, we

obtain that functional J has a critical point u0 at the minimax level

c = inf
γ∈Λ

max
0≤τ≤1

I(γ(τ)),

where Λ = {γ ∈ C([0, 1],E) : γ(0) = 0, γ(1) = e}.
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含指数增长非线性项的Chern-Simons-Schrödinger方程组

解的存在性

张 灿,万优艳

(江汉大学数学系, 湖北武汉 430056)

摘要: 本文研究了带指数增长的非线性项的非线性Chern-Simons-Schrödinger方程组. 利用山路引理

的方法, 得到该方程组解的存在性.
关键词: Chern-Simons-Schrödinger方程组; 指数增长的非线性项; 变分法; 山路引理
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