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Abstract: In this paper, the shock solution for a class of nonlinear singularly perturbed differ-

ential equation is considered. Using the method of matched asymptotic expansions, the asymptotic

expression of problem is constructed and the uniform validity of asymptotic solution is also proved

by the theory of differential inequalities.
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1 Introduction

Singular perturbation theory is a vast and rich ongoing area of exploration for math-
ematicians,physicists,and other researchers. There are various methods which are used to
tackle problems in this field. The more basics of these include the boundary layer method,
the methods of matched asymptotic expansion, the method of averaging and multiple scales.
During the past decade, many scholars such as O’Malley [1] and Bohé [2], Nayfeh [3] and
Howes [4] did a great deal of work. Some domestic scholars such as Jiang [5], Mo [6–11],
Ni [12], Tang [13], Han [14], Chen [15] etc. also studied a class of nonlinear boundary value
problems for the reaction diffusion equations, a class of activator inhibitor system, the shock
wave, the soliton, the laser pulse and the problems of atmospheric physics and so on. The
shock wave is an important behavior of solution to singularly perturbed problems. The shock
wave of solution implies that the function produces a rapid change and comes into being
the shock layer, as an independent variable near the boundary or some interior points of the
interval. And the location of shock layer has strong sensitivity with the domain of boundary
value. In quantum mechanics, hydrodynamics and electro magnetics, there are many models
whose solutions possess the shock behavior. In this paper, we construct asymptotic solution
for nonlinear singular perturbed boundary value problems and obtain some expressions of
shock solutions, and prove it’s uniformly valid.
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We consider the following nonlinear singular perturbed boundary value problems

εy′′ + yy′ = f(x, εy′), x ∈ (0, 1) (1)

y(0) = α, (2)

y(1) = β, (3)

where ε are positive constants and 0 < ε ¿ 1,α < 0 < β．We need the following hypotheses
[H1] f(x, y) > 0 is sufficiently smooth with respect to their arguments in corresponding

domains and fy(x, y) < −δ < 0, where δ is a positive constant;

[H2] 0 < β2 − α2 < 2
∫ 1

0

f(x, 0)dx.

2 The Outer and Inner Solutions

The reduced equation of (1) is

yy′ = f(x, 0) (4)

from the hypotheses, there exists a unique solution to (4),

yl
0(x) = −

√
2
∫ x

0

f(t, 0)dt + α2 (5)

or

yr
0(x) =

√
2
∫ 1

x

f(t, 0)dt + β2, (6)

where yl
0(x) and yr

0(x), respectively, satisfy the left and the right boundary value conditions
(2), (3). And clearly, because yl

0(x) 6= yr
0(x), there may exist a shock solution in interior

point of the interval (0, 1).
Let the stretched variable

ξ =
x− x∗

εν
, (7)

where x∗ is the shock location, and ν is a positive constant which will be determined below.
Substituting (7) into (1), we have

d2y

dξ2
+ εν−1y

dy

dξ
− ε2ν−1f

(
ενξ + x∗, ε1−ν dy

dξ

)
= 0,

noting that the special limit can be obtained as ν = 1, for inner solution is Y and we have

d2Y

dξ2
+ Y

dY

dξ
− εf

(
εξ + x∗,

dY

dξ

)
= 0, (8)

we assume the inner solution has the form Y =
∞∑

j=0

Yj(ξ)εj , so we have the equation satisfied

by the first order approximation Y0,

d2Y0

dξ2
+ Y0

dY0

dξ
= 0, (9)
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which upon integration gives　　　　

dY0

dξ
=

1
2
(c1 − Y 2

0 ), (10)

where c1 is a constant of integration. It must be positive, otherwise lim
ξ→±∞

Y0 = ∓∞ making

unmatchable with outer expansions of the solution. Then, separating variables and integrat-
ing (10) gives two branches of the first order inner solution Y0,

Y0 = k tanh
(

1
2
k(ξ + c2)

)
, Y 2

0 ≤ k2 (11)

and

Y0 = k coth
(

1
2
k(ξ + c2)

)
, Y 2

0 ≥ k2, (12)

where c1 is replaced with k2, c2 the constant of integration. We note that k maybe taken
to be positive because tanh and coth are odd. The constants k and c2 in either form of the
inner expansion need to be determined.

3 Matching the Inner and Outer Solutions

By the matching principle, we can determine k and c2 from matching the inner and
outer solutions. For the shock location x∗ in the interval (0, 1), combining (5) with (6), we
can obtain the zero-th order outer solution to problem (1) with (2), (3)

y0(x) =

{
yl
0, 0 ≤ x ≤ x∗,

yr
0, x∗ ≤ x ≤ 1.

(13)

Since the outer solutions must increases from yl
0(x

∗) to yr
0(x

∗), thus from (11) and (12)
we can obtain the interior solution must be (11), matching it with the zero-th order outer
solution (13). For the left zero-th order outer solution and the interior solution, note that
as ε → 0, ξ = x−x∗

ε
→ −∞. Clearly, the outer limit for left side of the interior solution is

(yl
0)

i = lim
x→x∗

(
−

√
2
∫ x

0

f(t, 0)dt + α2

)
= −

√
2
∫ x∗

0

f(t, 0)dt + α2,

the interior limit for the outer solution is

(Y0)o = lim
ξ→−∞

Y0 = lim
ξ→−∞

k tanh
(

1
2
k(ξ + c2)

)
= −k.

From matching principle, we have

k =

√
2
∫ x∗

0

f(t, 0)dt + α2. (14)
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Similarly, for the right zero-th order outer solution and the interior solution. Note that as
ε → 0, ξ = x−x∗

ε
→ +∞, the outer limit for right side of the interior solution is

(yr
0)

i = lim
x→x∗

(√
2
∫ 1

x

f(t, 0)dt + β2

)
=

√
2
∫ 1

x∗
f(t, 0)dt + β2,

the interior limit for the outer solution is

(Y0)o = lim
ξ→+∞

Y0 = lim
ξ→+∞

k tanh
(

1
2
k(ξ + c2)

)
= k.

From matching principle, we have

k =

√
2
∫ 1

x∗
f(t, 0)dt + β2. (15)

Comparing with (14), (15), we have
∫ x∗

0

f(t, 0)dt +
∫ x∗

1

f(t, 0)dt =
β2 − α2

2
. (16)

Using the zero theorem and monotonicity, we can prove that (16) has a uniqueness solution
x∗, where the shock location x∗ can be determined from (16). From the character of the
shock location x∗, it is not difficult to see that c2 = 0 and

k =

√
2
∫ x∗

0

f(t, 0)dt + α2 > 0.

So the zero-th order interior solution is Y0 = k tanh(k
2
ξ). Then the boundary value problem

(1) with (2), (3), exists a solution, and the solution can be asymptotically expanded as

y(x) = yl
0(x) + k

(
tanh

(k

2
(x− x∗

ε

))
+ 1

)
+ · · · , 0 < ε ¿ 1, x ∈ [0, x∗], (17)

y(x) = yr
0(x) + k

(
tanh

(k

2
(x− x∗

ε

))− 1
)

+ · · · , 0 < ε ¿ 1, x ∈ [x∗, 1]. (18)

4 Uniform Validity of the Asymptotic Solution

We have the following theorem.
Theorem Under hypotheses [H1]–[H2], there exists a solution y of the nonlinear

singular perturbed boundary value problems (1)–(3), and the solution y can be expanded
into the uniformly valid asymptotic expansion

y(x) = y0(x) + Y0 − (Y0)o + O(ε), 0 < ε ¿ 1, x ∈ [0, x∗] ∪ (x∗, 1],

where

y0(x) =

{
yl
0, 0 ≤ x ≤ x∗,

yr
0, x∗ ≤ x ≤ 1,
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Y0 = k tanh
(k

2
(x− x∗

ε

))
, (Y0)o =

{
−k, 0 ≤ x ≤ x∗,

k, x∗ ≤ x ≤ 1.

Proof The theorem includes two estimates

y(x) = yl
0(x) + k

(
tanh

(k

2
(x− x∗

ε

))
+ 1

)
+ O(ε), 0 < ε ¿ 1, x ∈ [0, x∗], (19)

y(x) = yr
0(x) + k

(
tanh

(k

2
(x− x∗

ε

))− 1
)

+ O(ε), 0 < ε ¿ 1, x ∈ [x∗, 1]. (20)

Now we prove estimate (19). Similarly, we can prove (20). We use the theory of differential
inequalities, first we construct the auxiliary functions y(x, ε) and y(x, ε),

y(x, ε) = yl
0(x) + Y0 − (Y0)o − γε, (21)

y(x, ε) = yl
0(x) + Y0 − (Y0)o + γε, (22)

where x ∈ [0, x∗],

yl
0(x) = −

√
2
∫ x

0

f(t, 0)dt + α2,

Y0 = k tanh
(k

2
(x− x∗

ε

))
, (Y0)o = −k,

γ is a large enough positive constant to be chosen below. Obviously, we have

y(x, ε) ≤ y(x, ε) (23)

and
y(0, ε) ≤ α ≤ y(0, ε), y(x∗, ε) ≤ 0 ≤ y(x∗, ε). (24)

Now we prove that
εy′′ + y y′ − f(x, εy′) ≥ 0, x ∈ [0, x∗], (25)

εy′′ + y y′ − f(x, εy′) ≤ 0, x ∈ [0, x∗]. (26)

From hypotheses [H1], [H2], and considering the character of the tanh, there exists a positive
constant M , such that

εy′′ + y y′ − f(x, εy′)

= ε
d2

dx2

(
yl
0(x) + Y0 − (Y0)o + γε

)
+

(
yl
0(x) + Y0 − (Y0)o + γε

) d

dx

(
yl
0(x) + Y0 − (Y0)o + γε

)

−f
(
x, ε

d

dx

(
yl
0(x) + Y0 − (Y0)o + γε

))

= Mε +
1
ε

(d2Y0

dξ2
+ Y0

dY0

dξ

)
+

(
yl
0(x)

d(yl
0(x))
dx

− f(x, 0)
)

+
(
Y0 − (Y0)o + γε

)d(yl
0(x))
dx

+
1
ε

(
yl
0(x)− (Y0)o + γε

)dY0

dξ
−

(
f
(
x, ε

d
(
yl
0(x) + Y0 − (Y0)o + γε

)

dx

)− f(x, 0)
)
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= Mε +
(
Y0 − (Y0)o + γε

)d(yl
0(x))
dx

− f ′y(x, ζ)
(
ε
d(yl

0(x))
dx

+ ε
dY0

dx

)

+
1
ε

(
yl
0(x)− (Y0)o + γε

)dY0

dξ

= Mε +
(
Y0 − (Y0)o + γε− εf ′y(x, ζ)

)d(yl
0(x))
dx

+
1
ε

(
yl
0(x)− (Y0)o + γε− εf ′y(x, ζ)

)dY0

dξ
,

where constant

ζ ∈
(

0, ε
d
(
yl
0(x)

)

dx
+ ε

dY0

dx

)

from hypothesis [H1], f ′y(x, y) < −δ < 0 and

yl
0(x) = −

√
2
∫ x

0

f(t, 0)dt + α2, Y0 = k tanh
(k

2
(x− x∗

ε

))
.

There exist a positive constant ρ,

d(yl
0(x))
dx

≤ −ρ < 0,

so selecting γ ≥ M
ρ
− δ, εy′′ + y y′ − f(x, εy′) ≤ Mε− ρ(γ + δ)ε ≤ 0.

We prove inequality (26). Similarly, we can prove inequality (25) too. Thus from
inequalities (23)–(26), by using the theorem of differential inequalities, there is a solution
y(x) of problems (1)–(3), such that

y(x, ε) ≤ y(x, ε) ≤ y(x, ε), x ∈ [0, x∗],

then we have equation (19). Similarly, we can prove (20). The proof of the theorem is
completed.
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一类非线性奇摄动边值问题的激波解

朱红宝,陈松林

(安徽工业大学数理科学与工程学院, 安徽马鞍山 243002)

摘要: 本文研究了一类非线性奇摄动微分方程的激波解. 利用匹配渐近展开法, 构造了问题的解的渐

近展开式, 并利用微分不等式理论, 证明了解的一致有效性.
关键词: 非线性; 激波; 边值; 匹配
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