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Abstract: In this article, we study concepts of weak F -contraction of type (A) and weak

F -contraction of type (B) in generalized metric spaces. By using the method of iteration, we

obtain some fixed point theorems for these mappings in a complete generalized metric space, which

generalize the results of F -contraction in complete metric spaces.
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1 Introduction and Preliminaries

It is well known that Banach contraction mapping principle [1] which was published
in 1922 is one of the most important theorems in classical functional analysis. Indeed,
it was widely used as the source of metric fixed point theory, for more details see [2–8].
In 2012, Wardowski [2] introduced a new concept of contraction called F -contraction and
proved a fixed point theorem which generalized the Banach contraction principle. Later,
Wardowski and Van Dung [3] introduced the definition of an F -weak contraction and proved
a fixed point theorem for it. Dung and Hung [4] generalized an F -weak contraction to a
generalized F -contraction in 2015. Recently, Piri and Kumam [5, 6] described a large class
of functions by replacing condition (F3)′ instead of condition (F3) in the definition of F -
contraction. They introduced the concepts of modified generalized F -contraction of type (A)
and modified generalized F -contraction of type (B) and proved some fixed point theorems
for these contractions in a complete metric space.

Following this direction of research, in this paper, we introduce some F -contractions
which satisfy different conditions in generalized metric space and then we prove some fixed
point theorems for these contractions in a complete generalized metric space. Finally, we
give an example to support our result.

Throughout the article N, R+ and R will denote the set of natural numbers, non-negative
real numbers and real numbers, respectively.

∗ Received date: 2017-01-10 Accepted date: 2017-04-05

Biography: Gao Zhengying(1992.5-), female, born at Zaozhuang, Shandong, China, master, major

in the fixed point theory.

Biography: Ji Peisheng.



656 Journal of Mathematics Vol. 38

First, Wardowski [2] introduced the notion of a F -contraction and proved the Wardowski
fixed point theorem as the generalization of Banach contraction principle. Let F : (0,∞) →
R be a mapping satisfying

(F1) F is strictly increasing, that is, s < t ⇒ F (s) < F (t) for all s, t > 0;
(F2) for every sequence {sn} in R+, we have lim

n→∞
sn = 0 if and only if lim

n→∞
F (sn) = −∞;

(F3) there exists a number k ∈ (0, 1) such that lim
s→0+

skF (s) = 0.

(F3)′ F is continuous on (0,∞).
We denote with F1 the family of all functions F that satisfy conditions (F1)–(F3). Let z
denote the family of all functions F : R+ → R that satisfy conditions (F1), (F3) and F

denote the family of all functions F : R+ → R that satisfy conditions (F1), (F3)′.
Example 1 The following functions F : (0,∞) → R belongs to F1:
(i) F (t) = ln t with t > 0,
(ii) F (t) = ln t + t with t > 0.
Definition 1 [2] Let (X, d) be a metric space. A mapping T : X → X is called

an F -contraction on X if there exist F ∈ F1 and τ > 0 such that for all x, y ∈ X with
d (Tx, Ty) > 0, we have τ + F (d (Tx, Ty)) ≤ F (d (x, y)) .

Theorem 1 Let (X, d) be a complete metric space and T : X → X be an F -contraction.
Then T has a unique fixed point x∗ ∈ X and for every x ∈ X the sequence {T nx}n∈N
converges to x∗.

In 2000, Branciari [7] introduced the concept of rectangular metric space by replacing
the sum of the right hand side of the triangle inequality in metric space by a three-term
expression and proved an analog of the Banach contraction principle in such spaces.

Definition 2 [7] Let X be a nonempty set and d : X × X → [0,∞) satisfying the
following conditions, for all x, y ∈ X and all distinct u, v ∈ X each of which is different from
x and y:

(GMS1) d (x, y) = 0 if and only if x = y,
(GMS2) d (x, y) = d (y, x),
(GMS3) d (x, y) ≤ d (x, u) + d (u, v) + d (v, y).

Then the map d is called generalized metric and abbreviated as GM, here the pair (X, d) is
called a generalized metric space and abbreviated as GMS.

Definition 3 [7] Let (X, d) be a generalized metric space and {xn} be a sequence of
elements of X.

(1) A sequence {xn} is said to be GMS convergent to a limit x ∈ X if and only if
d (xn, x) → 0 as n →∞.

(2) A sequence {xn} is said to be GMS Cauchy sequence if and only if for every ε > 0
there exists a positive integer N (ε) such that d (xn, xm) < ε for all n > m > N (ε).

(3) A GMS (X, d) is called complete if every GMS Cauchy sequence in X is GMS
convergent.

(4) A mapping T : (X, d) → (X, d) is continuous if for any sequence {xn} in X such
that d (xn, x) → 0 as n →∞, we have d (Txn, Tx) → 0 as n →∞.
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Lemma 1 Let (X, d) be a GMS and let {xn} be a sequence in X. Assume that {xn}
is Cauchy sequence with xn 6= xm for all n,m ∈ N with n 6= m and lim

n→∞
xn = x. Then

lim
n→∞

d (xn, y) = d (x, y) for all y ∈ X.

2 Main Results

Definition 4 Let (X, d) be a GMS. A mapping T : X → X is called a weak F -
contraction of type (A) on X if there exist F ∈ z and τ > 0 such that

∀x, y ∈ X, [d (Tx, Ty) > 0 ⇒ τ + F (d (Tx, Ty)) ≤ F (d (x, y))] . (2.1)

Theorem 2 Let (X, d) be a complete GMS and T : X → X be a weak F -contraction
of type (A). Then T has a unique fixed point x∗ ∈ X and for every x ∈ X the sequence
{T nx}n∈N converges to x∗.

Proof Choose x0 ∈ X and define a sequence {xn}∞n=1 by

x1 = Tx0, x2 = Tx1 = T 2x0, · · · , xn = T nx0, ∀n ∈ N.

If there exists n ∈ N such that xn = xn+1. Then xn is a fixed point of T and we have nothing
to prove. Now we suppose that xn 6= xn+1, i.e., d (Txn−1, Txn) > 0 for all n ∈ N. It follows
from (2.1) that, for all n ∈ N,

τ + F (d (xn, xn+1))=τ + F (d (Txn−1, Txn)) ≤ F (d (xn−1, xn)) ,

i.e.,

F (d (xn, xn+1)) = F (d (Txn−1, Txn)) ≤ F (d (xn−1, xn))− τ. (2.2)

It follows from (2.2) and (F1) that

d (xn, xn+1) < d (xn−1, xn) , ∀n ∈ N.

Therefore {d (xn, xn+1)}n∈N is a nonnegative decreasing sequence of real numbers, and hence

lim
n→∞

d (xn, xn+1) = γ ≥ 0.

Now, we claim that γ=0. Arguing by contradiction, we assume that γ > 0.
Since {d (xn, xn+1)}n∈N is a nonnegative decreasing sequence of real numbers, for every

n ∈ N, we have

d (xn, xn+1) ≥ γ. (2.3)

From(2.2), (2.3) and (F1), we get

F (γ) ≤ F (d (xn, xn+1)) ≤ F (d (xn−1, xn))− τ ≤ · · · ≤ F (d (x0, x1))− nτ (2.4)
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for all n ∈ N. Since F (γ) ∈ R and lim
n→∞

[F (d (x0, x1))− nτ ] = −∞, there exists n1 ∈ N
such that

F (d (x0, x1))− nτ < F (γ) , ∀n > n1. (2.5)

It follows from (2.4) and (2.5) that F (γ) < F (d (x0, x1))− nτ < F (γ) , ∀n > n1. It is a
contraction. Therefore we have

lim
n→∞

d (xn, xn+1) = 0. (2.6)

From (F3), there exists k ∈ (0, 1) such that

lim
n→∞

(
(d (xn, xn+1))

k
F (d (xn, xn+1))

)
= 0. (2.7)

It follows from (2.4) that

(d (xn, xn+1))
k (F (d (xn, xn+1))− F (d (x0, x1))) ≤ −(d (xn, xn+1))

k
nτ ≤ 0 (2.8)

for all n ∈ N. By using (2.6), (2.7) and taking the limit as n →∞ in (2.8), we get

lim
n→∞

(
n(d (xn, xn+1))

k
)

= 0. (2.9)

Then there exists n2 ∈ N such that n(d (xn, xn+1))
k ≤ 1 for all n ≥ n2, that is,

d (xn, xn+1) ≤ 1
n

1
k

. (2.10)

Now, we shall prove that xn 6= xm, for all n 6= m. Assume on the contrary that xn = xm for
some m,n ∈ N with n 6= m. Since d (xp, xp+1) > 0 for each p ∈ N, without loss of generality,
we may assume that m > n + 1. Substitute again x = xn = xm, y = xn+1 = xm+1 in (2.1),
which yield

τ + F (d (xn, Txn))=τ + F (d (xm, Txm))=τ + F (d (Txm−1, Txm)) ≤ F (d (xm−1, xm)) ,

then

F (d (xn, xn+1)) ≤ F (d (xm−1, xm))− τ ≤ · · · ≤ F (d (xn+1, xn))− (m− n) τ.

Since τ > 0, we get a contradiction, therefore xn 6= xm, for all n 6= m. Now, we prove
lim

n→∞
d (xn, xn+2) = 0 for all n ∈ N. It follows from (2.1) that for all n ∈ N,

τ + F (d (xn, xn+2))=F (d (Txn−1, Txn+1)) ≤ F (d (xn−1, xn+1)) ,

i.e.,

F (d (xn, xn+2)) = F (d (Txn−1, Txn+1)) ≤ F (d (xn−1, xn+1))− τ. (2.11)
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It follows from (2.11) and (F1) that

d (xn, xn+2) < d (xn−1, xn+1) , ∀n ∈ N.

Therefore {d (xn, xn+2)}n∈N is a nonnegative decreasing sequence of real numbers, and hence

lim
n→∞

d (xn, xn+2) = γ ≥ 0.

Now, we claim that γ=0. Arguing by contradiction, we assume that γ > 0.
Since {d (xn, xn+2)}n∈N is a nonnegative decreasing sequence of real numbers, for every

n ∈ N, we have

d (xn, xn+2) ≥ γ. (2.12)

From(2.11), (2.12) and (F1), we get

F (γ) ≤ F (d (xn, xn+2)) ≤ F (d (xn−1, xn+2))− τ ≤ · · · ≤ F (d (x0, x2))− nτ (2.13)

for all n ∈ N. Since F (γ) ∈ R and lim
n→∞

[F (d (x0, x2))− nτ ] = −∞, there exists n3 ∈ N
such that

F (d (x0, x2))− nτ < F (γ) , ∀n > n3. (2.14)

It follows from (2.13) and (2.14) that F (γ) < F (d (x0, x2))− nτ < F (γ) , ∀n > n3. It is a
contraction. Therefore we have

lim
n→∞

d (xn, xn+2) = 0. (2.15)

Now, we shall prove that {xn} is a GMS Cauchy sequence in (X, d), that is, for ε > 0 and
N (ε) such that d (xn, xm) < ε, for all m,n ∈ N with m > n > N (ε). Assume that m = n+k,
where k > 2. We will consider the only two cases as follows.

Case 1 For k is odd. Let k = 2l+1, where l ∈ N. By using the quadrilateral inequality
(GMS3) and (2.10), we have

d(xn, xm) = d(xn, xn+2l+1)

≤ d(xn, xn+1) + d(xn+1, xn+2) + · · ·+ d(xn+2l, xn+2l+1)

<

∞∑
i=n

d (xi+1, xi) ≤
∑

n≥N(ε)

1
n

1
k

< ε.

Case 2 For k is even. Let k = 2l, where l ∈ N. By using the quadrilateral inequality
(GMS3) and (2.10), (2.15), we have

d(xn, xm) = d(xn, xn+2l)

≤ d(xn, xn+2) + d(xn+2, xn+3) + · · ·+ d(xn+2l−1, xn+2l)

< d(xn, xn+2) +
∞∑

i=n+2

d (xi+1, xi) ≤ d(xn, xn+2) +
∑

n≥N(ε)

1
n

1
k

< ε.
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Therefore we conclude that {xn} is a GMS Cauchy sequence in (X, d). By the completeness
of (X, d), there exists x∗ ∈ X such that

lim
n→∞

d (xn, x∗) = 0. (2.16)

Also, we suppose that T is continuous, we have

lim
n→∞

d (xn+1, Tx∗) = lim
n→∞

d (Txn, Tx∗) = 0. (2.17)

By Lemma 1, it follows that xn differs from both x∗ and Tx∗ for n sufficiently large. Hence,
we have d (x∗, Tx∗) ≤ d (x∗, xn) + d (xn, xn+1) + d (xn+1, Tx∗) , from (2.6), (2.16), (2.17),

we have d (x∗, Tx∗) ≤ lim
n→∞

d (x∗, xn) + d (xn, xn+1) + d (xn+1, Tx∗) = 0. So we obtain that
d (x∗, Tx∗) = 0, that is Tx∗ = x∗. Hence x∗ is a fixed point of T . Now let us show that T

has at most one fixed point. Indeed, if x∗, y∗ ∈ X are two distinct fixed points of T , that is,
Tx∗ = x∗ 6= y∗ = Ty∗, then d (Tx∗, T y∗) > 0. So from the assumption of the theorem, we
obtain

F (d (x∗, y∗)) = F (d (Tx∗, T y∗)) < τ + F (d (Tx∗, T y∗)) ≤ F (d (x∗, y∗)) ,

which is a contradiction. Thus T has a unique fixed point.
Now, we show another important result.
Definition 5 Let (X, d) be a GMS. A mapping T : X → X is called a weak F -

contraction of type (B) on X if there exist F ∈ F and τ > 0 such that

∀x, y ∈ X, [d (Tx, Ty) > 0 ⇒ τ + F (d (Tx, Ty)) ≤ F (d (x, y))] . (2.18)

Theorem 3 Let (X, d) be a complete GMS and T : X → X be a weak F -contraction
of type (B), then T has a unique fixed point x∗ ∈ X and for every x ∈ X the sequence
{T nx}n∈N converges to x∗.

Proof Choose x0 ∈ X and define a sequence {xn}∞n=1 by

x1 = Tx0, x2 = Tx1 = T 2x0, · · · , xn = T nx0, ∀n ∈ N.

By using the similar method in the proof of Theorem 2, we have

lim
n→∞

d (xn, xn+1) = 0 and lim
n→∞

d (xn, xn+2) = 0, xn 6= xm for all n 6= m. (2.19)

Now, we shall prove that {xn} is a GMS Cauchy sequence in (X, d). Suppose {xn} is
not a Cauchy sequence, then there exists ε > 0 for which we can find two subsequences{
xp(n)

}
and

{
xq(n)

}
of {xn} such that p (n) is the smallest index for which

p (n)− 3 ≥ q (n) > n, d
(
xp(n), xq(n)

) ≥ ε, d
(
xp(n)−2, xq(n)

)
< ε, ∀n ∈ N.

Since xm 6= xn for all m,n ∈ N with n 6= m, we have

ε ≤ d
(
xp(n), xq(n)

) ≤ d
(
xp(n), xp(n)−1

)
+ d

(
xp(n)−1, xp(n)−2

)
+ d

(
xp(n)−2, xq(n)

)

≤ d
(
xp(n), xp(n)−1

)
+ d

(
xp(n)−1, xp(n)−2

)
+ ε.



No. 4 Fixed point theorems for F -contraction in complete generalized metric spaces 661

By taking the limit in above inequality and using inequalities (2.19), we get

lim
n→∞

d
(
xp(n), xq(n)

)
= ε. (2.20)

Since

d
(
xp(n), xq(n)

) ≤ d
(
xp(n), xp(n)+1

)
+ d

(
xp(n)+1, xq(n)+1

)
+ d

(
xq(n)+1, xq(n)

)
,

we have

ε ≤ lim inf
n→∞

d
(
xp(n), xq(n)

)
,

ε ≤ lim inf
n→∞

(
d
(
xp(n), xp(n)+1

)
+ d

(
xp(n)+1, xq(n)+1

)
+ d

(
xq(n)+1, xq(n)

))

= lim inf
n→∞

d
(
xp(n)+1, xq(n)+1

)

and d
(
xp(n)+1, xq(n)+1

) ≤ d
(
xp(n)+1, xp(n)

)
+ d

(
xp(n), xq(n)

)
+ d

(
xq(n), xq(n)+1

)
, then we have

lim sup
n→∞

d
(
xp(n)+1, xq(n)+1

)

≤ lim sup
n→∞

d
(
xp(n)+1, xp(n)

)
+ d

(
xp(n), xq(n)

)
+ d

(
xq(n), xq(n)+1

)
= ε.

So we have

lim
n→∞

d
(
xp(n)+1, xq(n)+1

)
= ε. (2.21)

Thus τ + F
(
d
(
Txp(n), Txq(n)

)) ≤ F
(
d
(
xp(n), xq(n)

))
. So as n → ∞ and by (F3)′, (2.20),

(2.21), we get τ + F (ε) ≤ F (ε), which is a contraction. Hence {xn} is a GMS Cauchy
sequence in X. Since X is complete, there exists x∗ ∈ X such that lim

n→∞
xn = x∗. Therefore

lim
n→∞

d (xn, x∗) = 0. (2.22)

Finally, we claim that x∗=Tx∗, we only have the following two cases
(1) ∀n ∈ N,∃in ∈ N, in > in−1, i0 = 1 and xin+1 = Tx∗;
(2) ∃n4 ∈ N,∀n ≥ n4, d (Txn, Tx∗) > 0.

In the first case, we have x∗ = lim
n→∞

xin+1 = lim
n→∞

Tx∗ = Tx∗. In the second case from

(2.18), for all n ≥ n4, we have τ + F (d (Txn, Tx∗)) ≤ F (d (xn, x∗)) . From (F1) we obtain
d (Txn, Tx∗) < d (xn, x∗), since lim

n→∞
d (xn, x∗) = 0, so lim

n→∞
d (Txn, Tx∗) < lim

n→∞
d (xn, x∗) =

0. This is a contraction. Hence, x∗ = Tx∗. Again by using the similar method as used in
the proof Theorem 2, we can prove that T has a unique fixed point.

Example 2 Let X be a finite set defined as X = {1, 2, 3, 4}. Define d : X×X → [0,∞)
as

d (1, 1) = d (2, 2) = d (3, 3) = d (4, 4) = 0,

d (1, 2) = d (2, 1) = 3,

d (2, 3) = d (3, 2) = d (1, 3) = d (3, 1) = 1,

d (1, 4) = d (4, 1) = d (2, 4) = d (4, 2) = d (3, 4) = d (4, 3) = 4.



662 Journal of Mathematics Vol. 38

The function d is not a metric on X. Indeed, note that

3 = d (1, 2) ≥ d (1, 3) + d (3, 2) = 1 + 1 = 2,

that is, the triangle inequality is not satisfied. However d is a generalized metric on X,
moreover, (X, d) is a complete generalized metric space. Define T : X → X as

T1 = T2 = T3 = 2, T4 = 3.

For x ∈ {1, 2, 3} and y = 4, we have d (Tx, Ty) = d (2, 3) = 1 > 0, d (x, y) = 4. Therefore

d (Tx, Ty) ≤ 1
4
d (x, y) . So by choosing F (t) = ln (t) and τ = ln 1

4
, we see that T is a

F -contraction which satisfies Theorems 3.
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完备广义度量空间F压缩不动点定理

高正英,纪培胜

(青岛大学数学与统计学院,山东青岛 266071)

摘要: 本文研究了广义度量空间(A)型和(B)型弱F压缩的问题. 利用迭代的方法, 获得了在完备广义

度量空间关于这些映射的不动点定理的结果, 推广了完备度量空间F压缩的一些结果.
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