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Abstract: Let A be an expansive dilation, α ∈ (0, 1), p := 1/α and function v satisfy

the anisotropic Muckenhoupt condition Ap,∞(A). In this paper, we study the boundedness of

anisotropic fractional integral operators. By L(p, ∞) Hölder’s inequality and the σ-subaddictive

property of ‖ · ‖p′, 1, we obtain some weighted norm inequalities for anisotropic fractional integral

operators associated with the weight vp, which are anisotropic extension of Muckenhoupt and

Wheeden [6].
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1 Introduction

Anisotropy is a common attribute of nature, which shows different characterizations in
different directions of all or part of the physical or chemical properties of an object. For
example, the elastic modulus, hardness or fracture strength of a crystal is different in different
directions, which shows the anisotropic property of the crystal. The anisotropic property,
in mathematics, can be expressed by a general discrete group of dilations {Ak : k ∈ Z},
where A is a real n × n matrix with all its eigenvalues λ satisfying |λ| > 1, which was first
introduced by Bownik [1] and who further introduced the anisotropic Hardy spaces [2]. We
point out that such spaces include the classical isotropic Hardy spaces of Fefferman-Stein
[3], the parabolic Hardy spaces of Calderón-Torchinsky [4, 5], and still maintain the main
properties of the corresponding classical Hardy spaces.

Fractional integrals played an important role in harmonic analysis and other fields,
such as PDE (see [6, 7]). Many scholars devoted to research the properties of fractional
integrals (for example, see [8–10]). The celebrated result of fractional integrals is the Hardy-
Littlewood-Sobolev inequality (see [11]). Hardy and Littlewood [12] proved that when n = 1,
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fractional integral operator is bounded from Lp(R) to Lq(R), where α ∈ (0, 1), p ∈ (1, ∞)
and q := (1/p−α)−1, and Sobolev [13] obtained that for general n this result also holds true.
The weighted (Lp(Rn), Lq(Rn))-boundedness of fractional integral operator was established
by Muckenhoupt and Wheeden [6], where α ∈ (0, n), p ∈ (1, n/α) and q := (1/p− α/n)−1.
Ding and Lan [14] introduced the anisotropic fractional integral operator and Lan et al. [15]
generalized the result of Muckenhoupt and Wheeden [6] to the anisotropic settings except
the case q = ∞.

Motivated by [1, 6, 15], we generalize the result of Muckenhoupt and Wheeden when
q = ∞ [6, Theorems 7 and 8] (see Theorem 2.8 below). It is worth pointing out that any
Schwartz function is an anisotropic fractional integral kernel (see Remark 2.6 (ii) (b) below).
Moreover, we also obtain that if v−1 is locally bounded, then Tα is bounded from Lp,∞

vp (Rn) to
the anisotropic bounded mean oscillation function space BMO(A) (see Theorem 2.10 below),
which is probably new even for classical fractional integral operator of Sobolev [13].

This article is organized as follows.
In Section 2, we recall some notations and definitions concerning expansive dilations,

anisotropic Muckenhoupt condition Ap, q(A), anisotropic fractional integral operator and
BMO(A) space and state the main results, the proofs of which are given in Section 3.

Finally, we make some conventions on notations. Let Z+ := {1, 2, · · · } and N := {0} ∪
Z+. Throughout the whole paper, we denote by C a positive constant which is independent
of the main parameters, but it may vary from line to line. The symbol D . F means that
D ≤ CF . If D . F and F . D, we then write D ∼ F . If there are no special instructions,
any space X (Rn) is simply denoted by X . For example, Lp(Rn) is simply denoted by Lp.
For sets E, F ⊂ Rn, we use E{ to denote the set Rn \ E, χE its characteristic function and
E + F the algebraic sum {x + y : x ∈ E, y ∈ F}. For any index q ∈ [1, ∞], we denote by q′

its conjugate index, namely, 1/q + 1/q′ = 1.

2 Notion and Main Results

First we recall the notion of expansive dilations on Rn, see [1, p. 5]. A real n×n matrix
A is called an expansive dilation, shortly a dilation, if min

λ∈σ(A)
|λ| > 1, where σ(A) denotes

the set of all eigenvalues of A. Let λ− and λ+ be two positive numbers such that

1 < λ− < min{|λ| : λ ∈ σ(A)} ≤ max{|λ| : λ ∈ σ(A)} < λ+.

In the case when A is diagonalizable over C, we can even take

λ− := min{|λ| : λ ∈ σ(A)} and λ+ := max{|λ| : λ ∈ σ(A)}.

Otherwise, we need to choose them sufficiently close to these equalities according to what
we need in our arguments.

It was proved in [1, p. 5, Lemma 2.2] that, for a given dilation A, there exist a number
r ∈ (1, ∞) and a set ∆ := {x ∈ Rn : |Px| < 1}, where P is some non-degenerate n × n



No. 4 Weighted norm inequalities for anisotropic fractional integral operators 645

matrix, such that ∆ ⊂ r∆ ⊂ A∆, and by a scailing, one can additionally assume that |∆| = 1,
where |∆| denotes the n-dimensional Lebesgue measure of the set ∆. Let Bk := Ak∆ for
k ∈ Z. Then Bk is open, convex, Bk ⊂ rBk ⊂ Bk+1 and |Bk| = bk, here and hereafter,
b := |detA|. Throughout the whole paper, let σ be the minimum positive integer such that
2B0 ⊂ AσB0 = Bσ. Then, for all k, j ∈ Z with k ≤ j, it holds true that

Bk + Bj ⊂ Bj+σ, (2.1)

Bk + (Bj+σ){ ⊂ (Bj){. (2.2)

Definition 2.1 A quasi-norm, associated with an expansive matrix A, is a Borel mea-
surable mapping ρA : Rn → [0,∞), for simplicity, denoted by ρ, satisfying

(i) ρ(x) > 0 for all x ∈ Rn \ {0n}, here and hereafter, 0n := (0, · · · , 0);
(ii) ρ(Ax) = bρ(x) for all x ∈ Rn, where, as above, b := |detA|;
(iii) ρ(x + y) ≤ H [ρ(x) + ρ(y)] for all x, y ∈ Rn, where H ∈ [1, ∞) is a constant

independent of x and y.
In the standard dyadic case A := 2In×n, ρ(x) := |x|n for all x ∈ Rn is an example of

quasi-norms associated with A, here and hereafter, | · | always denotes the Euclidean norm
in Rn.

It was proved in [1, p. 6, Lemma 2.4] that all quasi-norms associated with a given dilation
A are equivalent. Therefore, for a given expansive dilation A, in what follows, for simplicity,
we always use the step quasi-norm ρ defined by setting, for all x ∈ Rn,

ρ(x) :=
∑
k∈Z

bkχBk+1\Bk
(x) if x 6= 0n, or else ρ(0n) := 0.

By (2.1) and (2.2), we know that, for all x, y ∈ Rn,

ρ(x + y) ≤ bσ (max {ρ(x), ρ(y)}) ≤ bσ[ρ(x) + ρ(y)].

Moreover, (Rn, ρ, dx) is a space of homogeneous type in the sense of Coifman and Weiss
[16, 17], where dx denotes the n-dimensional Lebesgue measure.

In what follows, for convenience, we always define

B := {x + Bk : x ∈ Rn, k ∈ Z}.

Definition 2.2 Let

α ∈ (0, 1), p ∈ (1, 1/α), p′ := p/(p− 1), q := (1/p− α)−1.

A function v : Rn → [0, ∞) is said to satisfy the anisotropic Muckenhoupt condition Ap, q(A),
denoted by v ∈ Ap, q(A), if there exists a positive constant C such that, for any B ∈ B,

{
1
|B|

∫

B

[v(x)]q dx

}1/q {
1
|B|

∫

B

[v(x)]−p′ dx

}1/p′

≤ C,
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and when q = ∞,

[
ess sup

x∈B
v(x)

]{
1
|B|

∫

B

[v(x)]−p′ dx

}1/p′

≤ C.

Definition 2.3 Let p ∈ (0, ∞] and ω : Rn → [0, ∞) be a measurable function. The
weighted Lebesgue space Lp

ω is defined to be the space of all measurable functions f such
that

‖f‖Lp
ω

:=
[∫

Rn

|f(x)|pω(x) dx

]1/p

< ∞.

The weighted weak Lebesgue space Lp,∞
ω is defined to be the space of all measurable functions

f such that

‖f‖Lp,∞
ω

:= sup
λ>0

λ [ω ({x ∈ Rn : |f(x)| > λ})]1/p
< ∞,

here and here after, ω(E) :=
∫

E

ω(x) dx for any subset E ⊂ Rn.

Denote the space of all Schwartz functions on Rn by S, namely, the set of all C∞

functions φ satisfying that, for any α ∈ Nn and any ` ∈ N,

‖φ‖α, ` := sup
x∈Rn

|∂αφ(x)|[1 + ρ(x)]` < ∞.

The dual space of S, namely, the space of all tempered distributions, equipped with the
weak-∗ topology, is denoted by S ′.

Remark 2.4 By [1, p. 11, Lemma 3.2], we know that the Schwartz function space S,
equipped with the pseudo-norms {‖ · ‖α, `}α∈Nn, `∈N, is equivalent to the classical Schwartz
function space, equipped with the pseudo-norms {‖ · ‖∗α, `}α∈Nn, `∈N, where, for any α ∈ Nn,

` ∈ N and any φ ∈ S, ‖φ‖∗α, ` := sup
x∈Rn

|∂αφ(x)| [1 + |x|2]`/2
.

Now we recall the definition of anisotropic fractional integral operators associated with
a quasi-norm ρ, which comes from [15].

Definition 2.5 Let α ∈ (0, 1). A locally integrable function K on Ω := {(x, y) ∈
Rn ×Rn : x 6= y} is said to be an anisotropic fractional integrable kernel (with respect to a
dilation A and a quasi-norm ρ) if there exist positive constants C and γ such that

(i) for all (x, y) ∈ Ω, |K(x, y)| ≤ C
[ρ(x−y)]1−α ;

(ii) if (x, y) ∈ Ω and x′ ∈ Rn with ρ(x− y) ≥ b2σρ(x′ − x), then

|K(x′, y)−K(x, y)| ≤ C
[ρ(x′ − x)]γ

[ρ(x− y)]1−α+γ
; (2.3)

(iii) if (x, y) ∈ Ω and y′ ∈ Rn with ρ(x− y) ≥ b2σρ(y′ − y), then

|K(x, y′)−K(x, y)| ≤ C
[ρ(y′ − y)]γ

[ρ(x− y)]1−α+γ
.
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We call that Tα is an anisotropic fractional integrable operator if Tα is a continuous
linear operator maps S into S ′ and there exists an anisotropic fractional integrable kernel
K such that, for all f ∈ C∞

c and x 6∈ supp f ,

Tαf(x) :=
∫

Rn

K(x, y)f(y) dy.

In particular, if K(x, y) := [ρ(x − y)]−1+α with (x, y) ∈ Ω and α ∈ (0, 1), we denote the
corresponding fractional integral operator by T ρ

α .
Remark 2.6 (i) If K(x, y) = 1/|x − y|n−α with (x, y) ∈ Ω and α ∈ (0, n), then Tα

is reduced to the classical fractional integral operator [12] for the one dimensional case and
[13] for the n dimensional case.

(ii) If Tα is a fractional integral operator with convolutional kernel K(x) on Rn \ {0n},
then the above conditions (ii) and (iii) are reduced to

|K(x− y)−K(x)| ≤ C
[ρ(y)]γ

[ρ(x)]1−α+γ
when ρ(x) ≥ b2σρ(y). (2.4)

We give three examples for this case.
(a) if α ∈ (0, n), ρ(x) := |x|n and K(x) := 1/|x|n−α with x ∈ Rn \ {0n}, then K(x)

is a convolutional kernel. Moreover, Lan [15, p. 4] pointed out that, for any x ∈ Rn \ {0n}
and α ∈ (0, 1), K(x) := [ρ(x)]−1+α is also a convolutional kernel, or see [18, Lemma 2.3] for
more details.

(b) if K ∈ S, then the operator Tα : S → S ′ with such convolutional kernel K on
Rn \ {0n} is a fractional integral operator with α ∈ (0, 1) and γ ∈ (0, logb(λ−)]. In fact,
Definition 2.5(i) is obvious, we just need to prove (2.4) with α ∈ (0, 1) and γ ∈ (0, logb(λ−)].
There exist some l ∈ Z and m ∈ N such that ρ(y) = bl and ρ(x) = bl+m+2σ. By the mean
value theorem, we have

|K(x− y)−K(x)| ≤ |y| sup
θ∈(0, 1)

|∇K(x− θy)| . sup
θ∈(0, 1)

|y|
[1 + ρ(x− θy)]M

,

where M ∈ (0, ∞) to be fixed later. If l ≤ 0, for x ∈ (Bl+m+2σ){ and θy ∈ Bl+1 (since
y ∈ Bl+1 and Bl+1 is convex), by σ > 1, m ≥ 0 and (2.2), we obtain

x− θy ∈ (Bl+m+2σ){ −Bl+1 ⊂ (Bl+m+σ){,

which implies that

ρ(x− θy) ≥ bl+m+σ. (2.5)

From this, |y| . [ρ(y)]logb(λ−) when ρ(y) ≤ 1 (see [1, p. 11, Lemma 3.2]) and m ∈ N, it follows
that, for any γ ∈ (0, logb(λ−)] and by choosing M = 1− α + logb(λ−),

|y|
[1 + ρ(x− θy)]M

. bl logb(λ−)

bM(l+m+σ)
. 1

b(l+m)(1−α)

(
bl

bl+m

)logb(λ−)

. [ρ(y)]γ

[ρ(x)]1−α+γ
.
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If l > 0, by (2.5), |y| . [ρ(y)]logb(λ+) when ρ(y) > 1 (see [1, p. 11. Lemma 3.2]), m ∈ N
and logb(λ+) ≥ logb(λ−), we see that, for any γ ∈ (0, logb(λ−)] and by choosing M =
1− α + logb(λ+),

|y|
[1 + ρ(x− θy)]M

. bl logb(λ+)

bM(l+m+σ)
. 1

b(l+m)(1−α)

(
bl

bl+m

)logb(λ−)

. [ρ(y)]γ

[ρ(x)]1−α+γ
.

Definition 2.7 A locally integrable function b is said to be in anisotropic bounded
mean oscillation function space BMO(A) if

‖b‖BMO(A) := sup
B∈B

1
|B|

∫

B

|b(x)− bB| dx < ∞,

where bB := 1
|B|

∫

B

b(x) dx.

The main results of this article are the following two theorems, the proofs of which are
given in Section 3.

Theorem 2.8 Let α ∈ (0, 1), p := 1/α and v(x) be a nonnegative function on Rn. If
v ∈ Ap,∞(A), then there exists a positive constant C such that, for every B ∈ B,

[
ess sup

x∈B
v(x)

]
1
|B|

∫

B

|Tαf(x)− (Tαf)B| dx ≤ C‖f‖Lp,∞
vp

. (2.6)

In particular, when Tα = T ρ
α satisfies (2.6) if and only if v ∈ Ap,∞(A).

Remark 2.9 Lan [15, Theorems 1.3 and 1.4] obtained the weighted boundedness of
anisotropic fractional singular integral operator associated with Ap, q(A), where q < ∞. The
above Theorem 2.8 considers the case q = ∞, which is also an anisotropic extension of
Muckenhoupt and Wheeden [6, Theorems 7 and 8].

Theorem 2.10 Let α ∈ (0, 1), p := 1/α and v(x) be a nonnegative function on Rn. If
v−1 is locally bounded, then Tα is bounded from Lp,∞

vp to BMO(A).

3 Proofs of Theorems 2.8 and 2.10

Proof of Theorem 2.8 Let α ∈ (0, 1). Fix a dilated ball B := x0 + Bj ∈ B with
some x0 ∈ Rn and j ∈ Z, and B∗ := x0 + Bj+4σ. Then

Tαf(x) =
∫

B∗
f(y)K(x, y) dy +

∫

(B∗){
f(y)K(x, y) dy =: I1 + I2

and
[

ess sup
x∈B

v(x)
]

1
|B|

∫

B

|Tαf(x)− (Tαf)B| dx

≤
[

ess sup
x∈B

v(x)
]

1
|B|

∫

B

|I1 − (I1)B| dx +
[

ess sup
x∈B

v(x)
]

1
|B|

∫

B

|I2 − (I2)B| dx

= : II1 + II2.
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To prove (2.6) holds true, it is sufficient to prove II1 . ‖f‖Lp,∞
vp

and II2 . ‖f‖Lp,∞
vp

.
Let E := ess sup

x∈B
v(x). By (2.1) with x ∈ B and y ∈ B∗, we have x−y ∈ B−B∗ ⊂ Bj+5σ.

From this and Definition 2.5 (i), we deduce that

II1 ≤ E

|B|
∫

B

∫

B∗
|f(y)K(x, y)| dy dx +

E

|B|
∫

B

1
|B|

∫

B

∫

B∗
|f(y)K(z, y)| dy dz dx

. E

|B|
∫

B∗
|f(y)|

∫

B

|K(x, y)| dx dy . E

|B|
∫

B∗
|f(y)|

∫

Bj+5σ

1
[ρ(z)]1−α

dz dy

∼ E

|B|
∫

B∗
|f(y)|

∞∑
i=0

∫

Bj+5σ−i\Bj+5σ−i−1

1
[ρ(z)]1−α

dz dy

. bjα

∞∑
i=0

b−iα E

|B|
∫

B∗
|f(y)| dy . E|B|−1+α

∫

B∗
|f(y)| dy.

By p = 1/α, 1/p′ = 1 − α, L(p, ∞) Hölder’s inequality (see [19, p. 262]), ‖ · ‖p′,1 ∼ ‖ · ‖∗p′,1
(see [19, (2.2)]), ‖χB∗/v‖p′,1 . {

∫

B∗
[v(x)]−p′dx}1/p′ , the proof of which is identity to that of

[6, Lemma 2], and v ∈ Ap,∞(A) , we see that

E|B|−1+α

∫

B∗
|f(y)|dy . E

|B|1/p′

∥∥∥χB∗

v

∥∥∥
∗

p′,1
‖f‖Lp,∞

vp

. E

|B|1/p′

∥∥∥χB∗

v

∥∥∥
p′,1

‖f‖Lp,∞
vp

. E

|B|1/p′

{∫

B∗
[v(x)]−p′dx

}1/p′

‖f‖Lp,∞
vp

.
[

sup
B∗∈B

v(x)
]{

1
|B∗|

∫

B∗
[v(x)]−p′dx

}1/p′

‖f‖Lp,∞
vp

. ‖f‖Lp,∞
vp

, (3.1)

which implies that II1 . ‖f‖Lp,∞
vp

.

By (2.1) and (2.2) with x, z ∈ B and y ∈ (B∗){, we see that x − z ∈ Bj+σ and
x − y ∈ (Bj+3σ){, which implies that ρ(x − z) < bj+σ and ρ(x − y) ≥ bj+3σ and hence
ρ(x− y) ≥ b2σρ(x− z). From this, (2.3) and ρ(x− z) ≤ bj+σ, we deduce that

II2 =
E

|B|
∫

B

∣∣∣∣
1
|B|

∫

B

{∫

(B∗){
f(y)[K(x, y)−K(z, y)] dy

}
dz

∣∣∣∣ dx

. E

|B|
∫

B

1
|B|

∫

B

∫

(B∗){
|f(y)| [ρ(x− z)]γ

[ρ(x− y)]1−α+γ
dy dz dx

. Ebγj

|B|
∫

B

∫

(B∗){

|f(y)|
[ρ(x− y)]1−α+γ

dy dx.

By ρ(x− y) ≥ bj+3σ and ρ(x0 − x) < bj , we obtain ρ(x− y) > b3σρ(x− x0). Thus we have

ρ(x0 − y) ≤ bσ[ρ(x0 − x) + ρ(x− y)] . ρ(x− y).

From this, L(p, ∞) Hölder’s inequality (see [19, p. 262]) and the fact ‖ · ‖p′,1 ∼ ‖ · ‖∗p′,1 (see
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[19, (2.2)]), it follows that

Ebγj

|B|
∫

B

∫

(B∗){

|f(y)|
[ρ(x− y)]1−α+γ

dy dx . Ebγj

∫

(B∗){

|f(y)|
[ρ(x0 − y)]1−α+γ

dy

.Ebγj‖f‖Lp,∞
vp

∥∥∥∥
χ(B∗){

v[ρ(x0 − ·)]1−α−γ

∥∥∥∥
∗

p′,1

. Ebγj‖f‖Lp,∞
vp

∥∥∥∥
χ(B∗){

v[ρ(x0 − ·)]1−α−γ

∥∥∥∥
p′,1

. (3.2)

Then in order to obtain II2 . ‖f‖Lp,∞
vp

, it suffices to show that

Ebγj

∥∥∥∥
χ(B∗){

v[ρ(x0 − ·)]1−α−γ

∥∥∥∥
p′,1

. 1,

where the implicit constant is independent of B.
Let k ∈ N and B∗

k := x0 + Bj+4σ+k. Since ‖ · ‖p′,1 satisfies the σ-subaddictive property,

by ‖χB∗k/v‖p′,1 . {
∫

B∗k

[v(x)]−p′dx}1/p′ , the proof of which is identity to that of [6, Lemma

2], and v ∈ Ap,∞(A), we see that

Ebγj

∥∥∥∥
χ(B∗){

v[ρ(x0 − ·)]1−α−γ

∥∥∥∥
p′,1

. Ebγj

∞∑
k=1

∥∥∥∥
χB∗k\B∗k−1

vb(j+σ+k)(1−α+γ)

∥∥∥∥
p′,1

(3.3)

.E

∞∑
k=1

b−kγ |B∗
k|−1/p′

∥∥∥χB∗k

v

∥∥∥
p′,1

.
∞∑

k=1

b−kγ

[
ess sup

x∈B∗k

v(x)

]{
1
|B∗

k|
∫

B∗k

[v(x)]−p′

}1/p′

. 1,

which implies that II2 . ‖f‖Lp,∞
vp

.
Finally, it remains to prove that if Tα = T ρ

α as in Definition 2.5 satisfies (2.6), then
v ∈ Ap,∞(A). To prove this, we first show that there exists a constant k0 ∈ Z+ such that,
for every B := x0 + Bj ∈ B and every y ∈ B,

∫

B̃k0

1
[ρ(x− y)]1−α

dx ≤ bk0

2

∫

B

1
[ρ(x− y)]1−α

dx, (3.4)

where B̃k0 := x0 + Bj+k0 .
By (2.1) with x ∈ B̃k0 and y ∈ B, we have x − y ∈ B̃k0 − B ⊂ Bj+k0+σ. From this, it

follows that
∫

B̃k0

1
[ρ(x− y)]1−α

dx ≤
∫

Bj+k0+σ

1
[ρ(z)]1−α

dz =
∞∑

i=0

∫

Bj+k0+σ−i\Bj+k0+σ−i−1

1
[ρ(z)]1−α

dz

≤ bα(j+k0+σ)−α+1

∞∑
i=0

b−iα =
bα(j+k0+σ)+1

bα − 1
. (3.5)

By (2.1) with x, y ∈ B, we have x− y ∈ Bj+σ, which implies that

ρ(x− y) < bj+σ. (3.6)
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Then we have
∫

B

1
[ρ(x− y)]1−α

dx > b(j+σ)(α−1)+j = bα(j+σ)−σ.

Therefore, from this and (3.5), it follows that

∫

B̃k0

1
[ρ(x− y)]1−α

dx ≤ b1+σ+αk0

bα − 1

∫

B

1
[ρ(x− y)]1−α

dx.

Since α ∈ (0, 1), by choosing k0 sufficiently large, we see that

b1+σ+αk0

(bα − 1)
≤ 1

2
bk0

and hence (3.4) holds true.
Now fix a ball B ∈ B and let f be a nonnegative integrable function with supp f ⊂ B

and k0 being as in (3.4). Then, by Fubini’s theorem and (3.4), we have

(T ρ
αf)B − (T ρ

αf)B̃k0

=
1
|B|

∫

B

∫

B

f(y)
[ρ(x− y)]1−α

dy dx− b−k0

|B|
∫

B̃k0

∫

B

f(y)
[ρ(x− y)]1−α

dy dx

=
1
|B|

∫

B

f(y)

{∫

B

1
[ρ(x− y)]1−α

dx− b−k0

∫

B̃k0

1
[ρ(x− y)]1−α

dx

}
dy

≥ 1
2|B|

∫

B

f(y)
∫

B

1
[ρ(x− y)]1−α

dx dy =
1
2
(T ρ

αf)B.

Therefore, by Minkowski’s inequality, (2.6) and supp f ⊂ B, we see that

(T ρ
αf)B ≤ 2

[
(T ρ

αf)B − (T ρ
αf)B̃k0

]

. 1
|B|

∫

B

|(T ρ
αf)B − T ρ

αf(x)| dx +
1
|B|

∫

B

∣∣∣T ρ
αf(x)− (T ρ

αf)B̃k0

∣∣∣ dx

. 1
|B|

∫

B

|(T ρ
αf)B − T ρ

αf(x)| dx +
1

|B̃k0 |

∫

B̃k0

∣∣∣T ρ
αf(x)− (T ρ

αf)B̃k0

∣∣∣ dx

.
[

ess sup
x∈B

v(x)
]−1 {∫

B

|f(x)|p[v(x)]p dx

}1/p

,

namely,

(T ρ
αf)B .

[
ess sup

x∈B
v(x)

]−1 {∫

B

|f(x)|p[v(x)]p dx

}1/p

. (3.7)

Now, if
∫

B

[v(x)]−p′dx = 0, v ∈ Ap,∞(A) is immediate since 0 · ∞ = 0.
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If 0 <

∫

B

[v(x)]−p′dx < ∞, by (3.6), we obtain

1
|B|1−α

∫

B

[v(y)]−p′ dy =
1
|B|

∫

B

∫

B

[v(y)]−p′

|B|1−α
dy dx

. 1
|B|

∫

B

∫

B

[v(y)]−p′

[ρ(x− y)]1−α
dy dx ∼

(
T ρ

α(v−p′χB)
)

B
. (3.8)

Then combining (3.8) and (3.7) with f(x) = [v(x)]−p′χB(x), we have

1
|B|1−α

∫

B

[v(y)]−p′ dy .
[

ess sup
x∈B

v(x)
]−1 {∫

B

[v(x)]p(1−p′) dx

}1/p

,

which, together with p(p′ − 1) = p′, implies that

1
|B|1−α

{∫

B

[v(y)]−p′ dy

}1/p′

.
[

ess sup
x∈B

v(x)
]−1

and hence v ∈ Ap,∞(A).

If
∫

B

[v(x)]−p′dx = ∞, then v−1 6∈ Lp′(B), so there exists a negative function g ∈

Lp(B) such that
∫

B

g(x)/v(x)dx = ∞. In fact, suppose on the contrary that, for any

g ∈ Lp(B),
∫

B

g(x)/v(x)dx < ∞, then v−1 ∈ (Lp(B))∗ = Lp′(B), which is contradict with
∫

B

[v(x)]−p′dx = ∞, which is desired. Let f := (g/v)χB. Then, for any x ∈ B, we claim

that (T ρ
αf)B = ∞. In fact, for any x, y ∈ B, by (2.1), we have x− y ∈ Bj+σ. From this and∫

B

g(y)/v(y)dy = ∞, we obtain

(T ρ
αf)B =

1
|B|

∫

B

∫

B

g(y)/v(y)
[ρ(x− y)]1−α

dy dx > b(j+σ)(α−1)

∫

B

g(y)/v(y) dy = ∞,

which is desired. Then

{
1
|B|

∫

B

[v(x)]−p′ dx

}1/p′

= (T ρ
αf)B

.
[

ess sup
x∈B

v(x)
]−1 {∫

B

|f(x)|p[v(x)]p dx

}1/p

∼
[

ess sup
x∈B

v(x)
]−1

‖g‖Lp(B)

and hence [
ess sup

x∈B
v(x)

]{
1
|B|

∫

B

[v(x)]−p′ dx

}1/p′

. ‖g‖Lp(B),

which implies that v ∈ Ap,∞(A). This finishes the proof of Theorem 2.8.



No. 4 Weighted norm inequalities for anisotropic fractional integral operators 653

Proof of Theorem 2.10 The proof of Theorem 2.10 is similar to that of Theorem
2.8. So we use the same notations as in the proof of Theorem 2.8. Since

1
|B|

∫

B

|Tαf(x)− (Tαf)B| dx

≤ 1
|B|

∫

B

|I1 − (I1)B| dx +
1
|B|

∫

B

|I2 − (I2)B| dx =: I + II.

Then, when v−1 is locally bounded, we only need to prove that, for any B ∈ B, I . ‖f‖Lp,∞
vp

and II . ‖f‖Lp,∞
vp

.
For I, by (3.1) and v−1 ∈ L∞loc, we see that

I . ‖f‖Lp,∞
vp

{
1
|B∗|

∫

B∗
[v(x)]−p′ dx

}1/p′

. ‖f‖Lp,∞
vp

. (3.9)

For II, by (3.2), (3.3), γ ∈ (0, ∞) and v−1 ∈ L∞loc, we see that

II . ‖f‖Lp,∞
vp

∞∑
k=1

b−kγ

{
1
|B∗

k|
∫

B∗k

[v(x)]−p′ dx

}1/p′

. ‖f‖Lp,∞
vp

,

which, together with (3.9), completes the proof of Theorem 2.10.

References

[1] Bownik M. Anisotropic Hardy spaces and wavelets[M]. Mem. Amer. Math. Soc., Vol.164, No.781,

Providence RI: Amer. Math. Soc., 2003.

[2] Bownik M, Li Baode, Yang Dachun, Zhou Yuan. Weighted anisotropic Hardy spaces and their

applications in boundedness of sublinear operators[J]. Indiana Univ. Math. J., 2008, 57(7): 3065–

3100.

[3] Fefferman C, Stein E M. Hp spaces of several variables[J]. Acta Math., 1972, 129(1): 137–193.

[4] Calderón A-P, Torchinsky A. Parabolic maximal functions associated with a distribution[J]. Adv.

Math., 1975, 16(16): 1–64.

[5] Calderón A-P, Torchinsky A. Parabolic maximal functions associated with a distribution II[J]. Adv.

Math., 1977, 24(2): 101–171.

[6] Muckenhoupt B, Wheeden R. Weighted norm inequalities for fractional integrals[J]. Trans. Amer.

Math. Soc., 1974, 92(1): 261–274.

[7] Welland G. Weighted norm inequalities for fractional integrals[J]. Proc. Amer. Math. Soc., 1975,

51(1): 143–148.

[8] Zhang Chaonan, Zhou Jiang, Cao Yonghui. The boundedness of generalized fractional integral

operators on the weighted homogeneous Morrey-Herz spaces[J]. J. Math., 2016, 36(1): 199–206.

[9] Eridani A, Kokilashvili V, Meskhi A. Morrey spaces and fractional integral operators[J]. Expos.

Math., 2008, 27(3): 227–239.

[10] Lan Jiacheng. The boundedness of multilinear fractional integral opeators on weak type Hardy

spaces[J]. J. Math., 2006, 26(3): 343–348.



654 Journal of Mathematics Vol. 38

[11] Stein E M. Singular integrals and differentiability properties of functions[M]. Princeton: Princeton

Univ. Press, 1970.

[12] Hardy G H, Littlewood J E. Some properties of fractional integrals[J]. I. Math. Z., 1928, 27(1):

565–606.

[13] Sobolev S. On a theorem in functional analysis[J]. Mat. Sob., 1938, 46(4): 471–497.

[14] Ding Yong, Lan Senhua. Fractional integral operators on anisotropic Hardy spaces[J]. Int. Equ.

Oper. The., 2008, 60(3): 329–356.

[15] Lan Senhua, Lee Mingyi, Lin Chincheng. Fractional integral operators on weighted anisotropic

Hardy spaces[J]. J. Oper. The., 2012, 68(1): 3–17.

[16] Coifman R R, Weiss G. Analyse harmonique non-commutative sur certains espaces homogenes[M].

Lect. Notes Math., Vol. 242, Berlin: Springer, 1971.

[17] Coifman R R, Weiss G. Extensions of Hardy spaces and their use in analysis[J]. Bull. Amer. Math.

Soc., 1977, 83(4): 569–645.
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各向异性分数次积分算子的加权范数不等式

孙瑞瑞,李金霞,李宝德

(新疆大学数学与系统科学学院,新疆乌鲁木齐 830046)

摘要: 设 A 是一个扩张矩阵, α ∈ [0, 1), p := 1/α 且函数v满足各向异性Muckenhoupt Ap,∞(A)

权条件. 本文研究了各向异性分数次积分算子的有界性的问题. 利用L(p, ∞) 空间的 Hölder 不等式和范

数 ‖ · ‖p′, 1 的 σ-次可加性得到了各向异性分数次积分算子关于权vp的一些加权范数不等式. 这些结果是

Muckenhoupt 和 Wheeden 的结果[6] 在各向异性情形下的推广.
关键词: 各向异性; Muckenhoupt权; 分数次积分算子; BMO空间
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