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Abstract: In this paper, we consider the Cauchy problem for the KdVKS equation ut +

δ∂3
xu + µ(∂4

xu + ∂2
xu) + α(∂xu)2 = 0. By means of the [k; Z] multiplier norm method of Tao, we

prove the associated initial value problem is locally well-posed in Sobolev spaces Hs(R) for s > −1,

which improves the conclusions drawn by Biagioni et al.
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1 Introduction

The purpose of this work is to study the local well-posedness for the Cauchy problem
associated to the Korteweg-de Vries Kuramoto-Sivashinsky equation

{
ut + δ∂3

xu + µ(∂4
xu + ∂2

xu) + α(∂xu)2 = 0,

u(0) = ϕ,
(1.1)

where x ∈ R, t ∈ R+, u is a real-valued function and δ, µ and α are constants such that
µ > 0, δ 6= 0 and α 6= 0. The KdV-KS equation arises in interesting physical situations, for
example as a model for long waves on a viscous fluid flowing down an inclined plane [2] and
for deriving drift waves in a plasma [3].

In [1], using the dissipative effect of the linear part, Biagioni, Bona, Iorio and Scialom
showed that the Cauchy problem associated to (1.1) is globally well-posed in Hs(R) (s > 1).
They also proved that the solutions of the KdV-KS equation converge to the solutions of
the Kuramoto-Sivashinsky equation when the dispersive parameter δ goes to zero. The
generalization of KdVKS equation is the following dispersive-dissipative equation

vt + vxxx − ηLv = (vx)k+1, x ∈ R, t > 0, k ∈ N, k ≥ 1, (1.2)
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where the linear operator L is defined via the Fourier transform by L̂f(ξ) = −Φ(ξ)f̂(ξ). The
Fourier symbol Φ(ξ) is of the form

Φ(ξ) = −|ξ|p + Φ1(ξ), (1.3)

where p ∈ R+ and |Φ(ξ)| 6 C(1 + |ξ|q) with 0 6 q < p. In [12], Carvajal and Panthee
introduced some time weighted spaces to derive multilinear estimates and used them in the
contraction mapping principle argument to prove local well-posedness, they also proved ill-
posedness for this type of models and showed that the local well-posedness results are sharp
in some particular cases. We remark that the method presented in [12] will not work here.
To overcome this difficulty, we use the [k;Z] multiplier norm method of Tao [4] and obtain
new bilinear estimates in suitable Bourgain space.

Before presenting the precise statement of our main result, we give the definition of the
working space of this paper. Without loss of generality, we will suppose that δ = µ = α = 1
in the rest of this paper.

Definition 1.1 For s, b ∈ R, we have that Xs,b denotes the completion of the Schwartz
functions with respect to the norm

‖u‖Xs,b =
∥∥〈i(τ − ξ3) + (ξ4 − ξ2)〉b〈ξ〉sû(ξ, τ)

∥∥
L2

ξ,τ

,

where 〈·〉 = (1 + | · |2) 1
2 . For T > 0, we consider the localized spaces Xs,b

T endowed with the
norm

‖u‖Xs,b
T

= inf
w∈Xs,b

{‖u‖Xs,b , w(t) = u(t) on [0, T ]}.

As a consequence of this definition, we immediately have for b > 1/2, that Xs,b is
embedded in C(R;Hs(R)).

In sequel, we state the main results of this work.
Theorem 1.1 Let s > −1 and ϕ ∈ Hs(R). Then there exist b = b(s) ∈ (1/2, 1) and

T = T (‖ϕ‖Hs(R)) > 0 such that the Cauchy problem (1.1) has a unique solution u(t) on
[0, T ] satisfies u ∈ C([0, T ];Hs(R)) ∩Xs,b

T . Moreover, the map solution

Φ : Hs(R) 7→ C([0, T ];Hs(R)) ∩Xs,b
T , ϕ 7→ u

is smooth.

2 Notations and Preliminary Results

For any positive number x and y, the notation x . y means that there exists a positive
constant c such that x 6 cy; and we denote x ∼ y when x . y and y . x. We shall denote
by f̂ the Fourier transform of f .

Now we consider the initial value problem associated to the linear parts of (1.1),
{

ut + ∂3
xu + (∂4

xu + ∂2
xu) = 0,

u(0) = ϕ0.
(2.1)
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The unique solution of (2.1) is given by the semigroup V (t) defined as follows

V̂ (t)ϕ0(ξ) = et(iξ3−ξ4+ξ2)ϕ̂0(ξ). (2.2)

By Duhamel’s principle, the solution of (2.1) is equivalent to

u(t) = V (t)ϕ−
∫ t

0

V (t− t′)(u2
x(t′))dt′. (2.3)

Actually, to prove the local existence result, we shall apply a fixed point argument to the
following truncated version of (2.3)

u(t) = θT (t)
[
V (t)ϕ−

∫ t

0

V (t− t′)(u2
x(t′))dt′

]
, (2.4)

where t ∈ R and θ is a time cutoff function satisfying

θ ∈ C∞
0 (R), 0 6 θ 6 1 supp(θ) ⊂ [−2, 2], θ = 1 on [−1, 1], (2.5)

and denote for given T > 0, θT (·) = θ(·/T ). Indeed, if u solves (2.4) then u is a solution of
(2.3) on [0, T ].

Here are some fundamental estimates for the operator V (t). Since the proofs of these
estimates are standard, we omit the proofs. The reader can find some similar results for
other similar operators from [8].

Lemma 2.1 (Homogeneous linear estimate) Let s ∈ R, 1
2

< b < 1. There exists C > 0
such that

‖θT (t)V (t)ϕ‖Xs,b 6 CT
1−2b

2 ‖ϕ‖Hs , ∀ϕ ∈ Hs(R). (2.6)

Lemma 2.2 (Non-homogeneous linear estimate) Let s ∈ R, there exists C > 0 such
that, for any f ∈ Xs,b−1,

∥∥∥∥θT (t)
∫ t

0

V (t− t′)f(t′)dt′
∥∥∥∥

Xs,b

6 CT
1−2b

2 ‖f‖Xs,b−1 . (2.7)

3 Binilear Estimate

In this section, we derive the crucial trilinear estimate to prove the local existence result
from Tao’s multiplier norm estimate for KdV equation [4].

Let Z be any abelian additive group with an invariant measure dξ. For any integer
k > 2, let Γk(Z) denote the hyperplane

Γk(Z) := {(ξ1, · · · , ξk) ∈ Zk : ξ1 + · · ·+ ξk = 0}

endowed with the measure
∫

Γk(Z)

f :=
∫

Zk−1

f(ξ1, · · · , ξk−1,−ξ1 − · · · − ξk−1)dξ1 · · ·dξk−1.
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Following Tao [4], we define a [k;Z]-multiplier to be a function m : Γk(Z) → C. The
multiplier norm ‖m‖[k;Z] is the best constant such that

∣∣∣∣∣
∫

Γk(Z)

m(ξ)
k∏

j=1

fi(ξi)

∣∣∣∣∣ 6 ‖m‖[k;Z]

k∏
j=1

‖fi‖L2(Z)

holds for all test functions fi on Z.
Meanwhile, we need to review some of Tao’s notations. Any summations over capitalized

variables such as Ni, Li,H are presumed to be dyadic. Let N1, N2, N3 > 0, it will be
convenient to define the quantities Nmax > Nmed > Nmin to be the maximum, median,
and minimum of N1, N2, N3 respectively. Likewise, we have Lmax > Lmed > Lmin whenever
L1, L2, L3 > 0. We adopt the following summation convention. Any summation of the form
Lmax ∼ · · · is a sum over the three dyadic variables L1, L2, L3 & 1, thus for instance

∑
Lmax∼H

:=
∑

L1,L2,L3&1:Lmax∼H

.

Similarly, any summation of the form Nmax ∼ · · · sum over the three dyadic variables
N1, N2, N3 > 0, thus for instance

∑
Nmax∼Nmed∼N

:=
∑

N1,N2,N3>0:Nmax∼Nmed∼N

.

If τ, ξ and h(ξ) are given with τ1 + τ2 + τ3 = 0, then we write λ := τ −φ(ξ). Similarly we
have λi := τi − φ(ξi). We refer to φ : Γ3(Z) → R as the resonance function, which is defined
by

h(ξ) := φ(ξ1) + φ(ξ2) + φ(ξ3) = −λ1 − λ2 − λ3. (3.1)

By the dyadic decomposition of each variable ξi or λi, as well as the function h(ξ), we
are led to consider

‖XN1,N2,N3;H;L1,L2,L3‖[3;R×R] , (3.2)

where XN1,N2,N3;H;L1,L2,L3 is the multiplier

XN1,N2,N3;H;L1,L2,L3(ξ, τ) = χ|h(ξ)|∼H

3∏
j=1

χ|ξj |∼Nj
χ|λj |∼Lj

. (3.3)

From the identities ξ1 + ξ2 + ξ3 = 0 and

λ1 + λ2 + λ3 + h(ξ) = 0 (3.4)

on the support of the multiplier, we see that χN1,N2,N3;H;L1,L2,L3 vanishes unless

Nmax ∼ Nmed (3.5)

and
Lmax ∼ max(H, Lmed). (3.6)
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For the KdV group, where φ(ξ) = ξ3, from the resonance identity

h(ξ) = ξ3
1 + ξ3

2 + ξ3
3 = 3ξ1ξ2ξ3,

we may assume that

H ∼ N2
maxNmin, (3.7)

since the multiplier in (3.3) vanishes otherwise.
Lemma 3.1 (see [4, Propositon 6.1]) Let H, N1, N2, N3, L1, L2, L3 > 0 obey (3.5)–(3.7)

and let the dispersion relations be given by (3.4).
(i) If Nmax ∼ Nmin and Lmax ∼ H, then we have

(3.3) . L
1
2
minN

− 1
4

maxL
1
4
med. (3.8)

(ii) If N2 ∼ N3 À N1 and H ∼ L1 & L2, L3, then

(3.3) . L
1
2
minN

−1
max min

(
H,

Nmax

Nmin

Lmed

) 1
2

. (3.9)

Similarly for permutations.
(iii) In all other cases, we have

(3.3) . L
1
2
minN

−1
max min(H, Lmed)

1
2 . (3.10)

Proposition 3.1 For s > −1 and u, v ∈ Xs,b, there exists b ∈ (1/2, 1) such that the
bilinear inequality holds

‖uxvx‖Xs,b−1 . ‖u‖Xs,b‖v‖Xs,b , (3.11)

where the implicit constant depending only on s and b.
Proof By Plancherel’s formula and duality, it suffices to show that

∥∥∥∥
〈ξ1〉−s〈ξ2〉−s〈ξ3〉sξ1ξ2

〈i(τ1 − ξ3
1) + ξ4

1 − ξ2
1〉b〈i(τ2 − ξ3

2) + ξ4
2 − ξ2

2〉b〈i(τ3 − ξ3
3) + ξ4

3 − ξ2
3〉1−b

∥∥∥∥
[3,R×R]

. 1. (3.12)

By the dyadic decomposition of the variables ξj , λj , h(ξ), j = 1, 2, 3, we may assume
that |ξj | ∼ Nj , |λj | ∼ Lj , |h(ξ)| ∼ H. Using the translation invariance of the [3;Z]-multiplier
norm, we can always restrict our estimate on Lj & 1 and max(N1, N2, N3) = N & 1. The
comparison principle and the orthogonality reduce the multiplier norm estimate (3.12) to
showing that

∑
Nmax∼Nmed∼N

∑

L1,L2,L3&1

〈N1〉−s〈N2〉−s〈N3〉sN1N2

〈L1 + N4
1 −N2

1 〉b〈L2 + N4
2 −N2

2 〉b〈L3 + N4
3 −N2

3 〉1−b

× ‖χN1,N2,N3;Lmax;L1,L2,L3‖[3;R×R] . 1 (3.13)
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and

∑
Nmax∼Nmed∼N

∑
Lmax∼Lmed

∑
H¿Lmax

〈N1〉−s〈N2〉−s〈N3〉sN1N2

〈L1 + N4
1 −N2

1 〉b〈L2 + N4
2 −N2

2 〉b〈L3 + N4
3 −N2

3 〉1−b

× ‖χN1,N2,N3;Lmax;L1,L2,L3‖[3;R×R] . 1 (3.14)

for all N & 1. Estimates (3.13) and (3.14) will be accomplished by means of the fundamental
estimate Lemma 3.1 and some delicate summation.

Fix N & 1, this implies (3.7). We first prove (3.14). By (3.10), we reduce to

∑
Nmax∼Nmed∼N

∑

Lmax∼Lmed&N2Nmin

〈N1〉−s〈N2〉−s〈N3〉sN1N2L
1
2
minN

1
2
min

〈L1 + N4
1 −N2

1 〉b〈L2 + N4
2 −N2

2 〉b〈L3 + N4
3 −N2

3 〉1−b
. 1.

(3.15)
By symmetry we only need to consider two cases: N1 ∼ N2 ∼ N, N3 = Nmin and N1 ∼ N3 ∼
N, N2 = Nmin.

(i) In the first case N1 ∼ N2 ∼ N, N3 = Nmin, estimate (3.15) can be further reduced
to

∑
Nmax∼Nmed∼N

∑

Lmax∼Lmed&N2Nmin

N−2s+2〈Nmin〉sL
1
2
minN

1
2
min

〈L1 + N4〉b〈L2 + N4〉b〈L3〉1−b
. 1,

then performing the L summations, we reduce to

∑
Nmax∼Nmed∼N

N−2s+2〈Nmin〉sN
1
2
min

〈L1 + N4〉b〈L2 + N4〉1−b
. 1,

which is true if 2s + 2 > 0. So (3.15) is true if s > −1.
(ii) In the second case N1 ∼ N3 ∼ N, N2 = Nmin, estimate (3.15) can be reduced to

∑
Nmax∼Nmed∼N

∑

Lmax∼Lmed&N2Nmin

NNmin〈Nmin〉sL
1
2
minN

1
2
min

〈L1 + N4〉b〈L2〉b〈L3 + N4〉1−b
. 1.

Before performing the L summations, we need pay a little more attention to the summation
of Nmin. So we reduce to

∑
Nmax∼Nmed∼N,Nmin61

∑

Lmax∼Lmed&N2Nmin

N

L
b− 1

2
min N4

+
∑

Nmax∼Nmed∼N,16Nmin6N

∑

Lmax∼Lmed&N2Nmin

NN
3
2+s

min

L
b− 1

2
min N4

. 1,

which is obviously true if s > − 3
2
. So (3.15) is true if s > − 3

2
.

Now we show the low modulation case (3.15). We may assume Lmax ∼ N2Nmin. We
first deal with the contribution where (3.8) holds. In this case, we have N1, N2, N3 ∼ N & 1,
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so we reduce to

∑
Nmax∼Nmed∼N

∑

Lmax∼N3

N2−s

〈L1 + N4〉b〈L2 + N4〉b〈L3 + N4〉1−b
L

1
4
minN

− 1
4 L

1
4
med

.
∑

Nmax∼Nmin∼N

N2−sN− 1
4

N4
. 1,

which holds if s > − 9
4
.

Now we deal with the cases where (3.9) applies. By symmetry we only need to consider
two cases

N ∼ N1 ∼ N2 À N3 with H ∼ L3 & L1, L2, (3.16)

N ∼ N1 ∼ N3 À N2 with H ∼ L2 & L3, L1. (3.17)

In the first case, we reduce by (3.9) to

∑
NÀN3

∑

1.L1,L2.N2N3

N−2s+2〈Nmin〉sL
1
2
minN

−1 min
(
N2N3,

N
N3

Lmed

) 1
2

〈L1 + N4〉b〈L2 + N4〉b〈L3〉1−b
. 1.

Performing the N3 summation, we reduce to

∑

1.L1,L2.N2N3

N−2s+2L
1
2
minN

−1N
3
4 L

1
4
med

〈L1 + N4〉b〈L2 + N4〉b〈L3〉1−b
.

∑

1.L1,L2.N2N3

N−2s+2L
1
2
minN

− 1
4 L

1
4
med

〈L1 + N4〉b〈L2 + N4〉1−b
. 1,

which holds if s > −1.
In the second case, we simplify using (3.9) to

∑
NÀN2

∑

1.L1,L3.N2N2

NN2〈N2〉−sL
1
2
minN

1
2
2

〈L2 + N4〉b〈L1〉b〈L3 + N4〉1−b
. 1.

Performing the L summation, we reduce to

∑
NÀN2

〈N2〉−sNN
3
2
2

N4
.

∑
NÀN2>1

〈N〉−sNN
3
2

N4
+

∑
N261

〈N2〉−sNN
3
2
2

N4
. 1,

which holds if s > − 3
2
.

To finish the proof of (3.15), it remains to deal with the cases where (3.10) holds. This
reduces to

∑
Nmax∼Nmed∼N

∑

L1,L2,L3&1

〈N1〉−s〈N2〉−s〈N3〉sN1N2L
1
2
minN

−1 min(H, Lmed)
1
2

〈L1 + N4
1 −N2

1 〉b〈L2 + N4
2 −N2

2 〉b〈L3 + N4
3 −N2

3 〉1−b
. 1. (3.18)

To estimate (3.18), by symmetry we need to consider two cases: N1 ∼ N2 ∼ N, N3 = Nmin

and N1 ∼ N3 ∼ N, N2 = Nmin.
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(i) If N1 ∼ N2 ∼ N, N3 = Nmin, then estimate (3.18) can be further reduced to

∑
Nmax∼Nmed∼N

∑

L1,L2,L3&1

N−2s+2〈Nmin〉sL
1
2
minN

1
2
min

〈L1 + N4〉b〈L2 + N4〉b〈L3〉1−b
. 1,

performing the L summations, we reduce to

∑
Nmax∼Nmed∼N

N−2s+2

〈L1 + N4〉b〈L2 + N4〉1−b
. 1,

which is true if s > −1.
(ii) If N1 ∼ N3 ∼ N, N2 = Nmin, then the estimate (3.15) can be reduced to

∑
Nmax∼Nmed∼N

∑

L1,L2,L3&1

NNmin〈Nmin〉sL
1
2
minN

1
2
min

〈L1 + N4〉b〈L2〉b〈L3 + N4〉1−b
. 1,

performing the L summations, we reduce to

∑
Nmax∼Nmed∼N

N−s+ 5
2

N4
. 1,

which is obviously true if s > − 3
2
.

4 Proof of Main Result

In this section, we will use the linear and nonlinear estimates to provide proofs of the
local well-posedness results stated in Theorem 1.1.

Proof of Theorem 1.1 Let s > −1 and ϕ ∈ Hs(R). We prove the existence of a
solution u of the integral formulation (2.3) on some interval [0, T ] for T < 1 small enough.
Define

ΓT (u)(t) = θT (t)
[
V (t)ϕ−

∫ t

0

V (t− t′)(u2
x(t′))dt′

]
. (4.1)

We want to use the Picard fixed point theorem to find a solution of

ΓT (u) = u (4.2)

in the space Xs,b.
Using (2.6), (2.7) and (3.11), we deduce that, there exists a constant C > 0 such that

‖ΓT (u)‖Xs,b 6 CT
1−2b

2
(‖ϕ‖Hs(R) + ‖u‖2

Xs,b

)
. (4.3)

Since
u2

x − v2
x = (ux + vx)(ux − vx),

the same computation leads to

‖ΓT (v)− ΓT (u)‖Xs,b 6 CT
1−2b

2 ‖u− v‖Xs,b‖u + v‖Xs,b . (4.4)
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We define
Xs,b(M) = {v ∈ Xs,b : ‖v‖Xs,b 6 M}

with M = 2c‖ϕ‖Hs . Then if we choose T such that

CT
1−2b

2

(
M

2C
+ M2

)
<

1
2
M, (4.5)

(4.3) and (4.4) imply that ΓT is a contraction map on the Banach space Xs, 1
2 (M). Thus we

deduce by the fixed point theorem that there exists a unique solution u ∈ Xs, 1
2 (M) of (4.2).
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KdVKS方程的局部适定性

王宏伟1,张媛媛2

(1.安阳师范学院数学与统计学院, 河南安阳 455000)

(2.开封大学数学教研部, 河南开封 475000)

摘要: 本文研究了KdVKS方程 ut + δ∂3
xu + µ(∂4

xu + ∂2
xu) + α(∂xu)2 = 0的 Cauchy问题. 利用 Tao

的 [k; Z]乘子范数估计的方法, 在 Sobolev空间 Hs(R), s > −1中证明了初值问题的局部适定性, 结论改进

了现有的Biagioni等的结果.
关键词: KdVKS方程; 局部适定性; Cauchy问题
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