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Abstract: In this paper, a numerical algorithm is concerned for solving approximate solutions

of high-order multi-point boundary value problems. The second kind Chebyhsev wavelets and

operational matrix of integration are used to convert multi-point linear and nonlinear ordinary

differential equation to a system of algebraic equations. By comparing with the results of the

existing literature, the accuracy and validity of the algorithm for solving the high-order multi-point

boundary value problem are explained. The proposed method extends the numerical solution of

higher-order multi-point boundary value problems.
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1 Introduction

The high-order differential equations play a great important role in engineering science,
such as mechanics, physics, static electricity, chemical reaction diffusion model, fluid dynam-
ics and so on. They often occur in the form of multi-point boundary value problems (BVPs)
for an n-th order ordinary differential equation. For example, an m-point BVP model of a
dynamical system with m degrees of freedom. Multi-point boundary value problems arise
in a variety of physics area. Many problems in the theory of elastic stability can be han-
dled by the multi-point problems (see [1]). Large size bridges are sometimes contrived with
multi-point supports which correspond to a multi-point boundary value condition (see [2]).
The existence and multiplicity of solutions of multi-point boundary value problems were
studied by many authors, see [3–8] and the references therein. Dehghan and his research
group proposed the Adomian decomposition method (ADM) (see [9]), variational itera-
tion method (VIM) (see [10]), homotopy analysis method (HAM) (see [11]), sinc-collocation
method (SCM) (see [12]) to solve the multi-point BVPs. Shooting method is used to solve
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multi-point BVPs in [13, 14]. Reproducing kernel method (RKM) is applied to solve the
multi-point BVPs (see [15–19]). By combining the ADM and RKM, Geng and Cui proposed
a method for solving nonlinear second order two-point BVP (see [20]). This method is also
applied to solve fourth order three-point boundary value problem (see [21]). Differential
transform method is used to deal with multi-point BVPs (see [22, 23]). Doha developed a
method based on shifted Jacobi spectral method for high-order multi-point BVPs (see [24]).
In [25], an efficient numerical algorithm based on Haar wavelet is presented to solve a class
of linear and nonlinear nonlocal BVPs. To obtain a certain accuracy solution, it needs more
collocation points. In [26], the authors applied the augmented block pulse function method
for solving a system of arbitrary-order boundary value problem associated with initial con-
ditions or multi-point boundary conditions in separated or non-separated forms. However,
some of these methods are reliable and applicable for solving ordinary differential equations,
most of them provide the solution only for a particular kind of differential equations or a
particular kind of boundary conditions.

In this paper, we consider the multi-point boundary value problems in the following
form

µ(n)(x) = g(x, µ(x), µ′(x), · · · , µ(n−1)(x)), 0 ≤ x ≤ 1 (1.1)

with the boundary conditions

φi(µ(x1), · · · , µ(xm), µ′(x1), · · · , µ′(xm), · · · , µ(n−1)(x1), · · · , µ(n−1)(xm)) = 0, (1.2)

i = 1, 2, · · · , n, where xj ∈ [0, 1], j = 1, 2, · · · ,m. We assume that g has the properties which
guarantee the existence and uniqueness of the solution of problem (1.1) under conditions
(1.2). The boundary conditions (1.2) can be more general form with linear and nonlinear
cases.

Spectral methods play important roles in solving different kinds of differential equa-
tions. The main advantage of these methods lies in their accuracy for a given number
unknowns. There are three widely used spectral methods, namely, Galerkin, collocation and
Tau methods. During the last two decades, wavelets has been paid considerable attention
from many scholars and has been applied in wide range of engineering disciplines. Especially,
these wavelets constructed from orthogonal polynomials are widely used in seeking numerical
solutions of various types of differential equations. Recently, the operational matrices for
Legendre wavelet, Chebyshev wavelet and Bernoulli wavelet were extensively used to solve
differential equations.

Motivated by the work mentioned above, the main aim of this paper is to find a simple
and accurate method based on the second kind Chebyshev wavelets (SCW) for the solution of
problem (1.1) under conditions (1.2). Also we want to further extend the applications of the
second kind Chebyshev wavelets. Our method consists of reducing the multi-point BVPs to
a set of algebraic equations through expanding the highest derivative µ(n)(x) by the second
kind Chebyshev wavelets with unknown coefficients. By solving these coefficients, we get the
required approximate solution. In this paper, the application of the second kind Chebyshev
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wavelets spectral collocation method for finding an approximate solution for multi-point
BVPs is investigated.

The rest part of this paper is organized as follows. In Section 2, the second kind
Chebyshev wavelets and their properties are introduced. In Section 3, the proposed method
is applied to solve high-order multi-point BVPs. In Section 4, we present some numerical
examples to show the efficiency and applicability of this method for multi-point BVPs.
Finally, a brief conclusion is given in Section 5.

2 The Second Kind Chebyshev Wavelets and Their Properties

The second kind Chebyshev wavelets ψn,m(t) = ψ(k, n,m, t) have four arguments: k

can assume any positive integer, n = 1, 2, 3, · · · , 2k−1, m is the degree of the second kind
Chebyshev polynomials. They are defined on the interval [0, 1) as

ψn,m(t) =





2
k
2 Ũm(2kt− 2n + 1), n−1

2k−1 ≤ t < n
2k−1 ,

0, otherwise,

where

Ũm(t) =

√
2
π

Um(t), (2.1)

m = 0, 1, 2, · · · ,M − 1 and M is a fixed positive integer. The coefficient in eq.(2.1) is for
orthonormality, here Um(t) are the second kind Chebyshev polynomials of degree m which
are orthogonal with respect to the weight function ω(t) =

√
1− t2 on the interval [−1, 1] and

satisfy the following recursive formula

U0(t) = 1, U1(t) = 2t, Um+1(t) = 2tUm(t)− Um−1(t), m = 1, 2, 3, · · · .

Note that when dealing with the second kind Chebyshev wavelets the weight function has
to be dilated and translated as ωn(t) = ω(2kt− 2n + 1).

A function f(x) ∈ L2(R) defined over [0, 1) may be expanded by the second kind
Chebyshev wavelets as

f(x) =
∞∑

n=1

∞∑
m=0

cn,mψn,m(x), (2.2)

where cn,m = 〈f(x), ψn,m(x)〉L2
ω [0,1) =

∫ 1

0

f(x)ψn,m(x)ωn(x)dx in which 〈·, ·〉L2
ω [0,1) denotes

the inner product in L2
ω[0, 1). If the infinite series in eq.(2.2) is truncated, then it can be

written as

f(x) ∼=
2k−1∑
n=1

M−1∑
m=0

cn,mψn,m(x) = CTΨ(x),

where C and Ψ(x) are 2k−1M × 1 matrices given by

C = (c1,0 c1,1 · · · c1,M−1 c2,0 c2,1 · · · c2,M−1 · · · c2k−1,0 c2k−1,1 · · · c2k−1,M−1)
T

,

Ψ(x) = (ψ1,0 ψ1,1 · · · ψ1,M−1 ψ2,0 ψ2,1 · · ·ψ2,M−1 · · · ψ2k−1,0 ψ2k−1,1 · · · ψ2k−1,M−1)
T

. (2.3)
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The following theorem gives the convergence and accuracy estimation of the second kind
Chebyshev wavelets expansion (see [28]).

Theorem 2.1 Let f(x) be a second-order derivative square-integrable function defined
on [0, 1) with bounded second-order derivative, say |f ′′(x)| ≤ B for some constants B, then

(i) f(x) can be expanded as an infinite sum of the second kind Chebyshev wavelets and
the series converges to f(x) uniformly, that is

f(x) =
∞∑

n=1

∞∑
m=0

cn,mψn,m(x),

where cn,m = 〈f(x), ψn,m(x)〉L2
ω [0,1).

(ii)

σf,k,M <

√
πB

23

( ∞∑

n=2k−1+1

1
n5

∞∑
m=M

1
(m− 1)4

) 1
2 ,

where

σf,k,M =
( ∫ 1

0

∣∣f(x)−
2k−1∑
n=1

M−1∑
m=0

cn,mψn,m(x)
∣∣2ωn(x)dx

) 1
2 .

The operational matrix of integration of the second kind Chebyshev wavelets with omit-
ted item has been derived in (see [28]), which plays very important role in solving high-order
multi-point boundary value problems. For k = 3 and M = 3, let

Ψ12(t) := (ψ1,0 ψ1,1 ψ1,2 ψ2,0 ψ2,1 ψ2,2 ψ3,0 ψ3,1 ψ3,2 ψ4,0 ψ4,1 ψ4,1)
T

,

Ψ̃12(t) := (0 0 ψ1,3 0 0 ψ2,3 0 0 ψ3,3 0 0 ψ4,3)
T

.

Then we have the following expression
∫ t

0

Ψ12(s)ds = P12×12Ψ12(t) + Ψ̃12(t),

where

P12×12 =
1
23




1 1
2

0 2 0 0 2 0 0 2 0 0
− 3

4
0 1

4
0 0 0 0 0 0 0 0 0

1
3

− 1
6

0 2
3

0 0 2
3

0 0 2
3

0 0
0 0 0 1 1

2
0 2 0 0 2 0 0

0 0 0 − 3
4

0 1
4

0 0 0 0 0 0
0 0 0 1

3
− 1

6
0 2

3
0 0 2

3
0 0

0 0 0 0 0 0 1 1
2

0 2 0 0
0 0 0 0 0 0 − 3

4
0 1

4
0 0 0

0 0 0 0 0 0 1
3

− 1
6

0 2
3

0 0
0 0 0 0 0 0 0 0 0 1 1

2
0

0 0 0 0 0 0 0 0 0 − 3
4

0 1
4

0 0 0 0 0 0 0 0 0 1
3

− 1
6

0




.
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In fact, the matrix P12×12 can be written as

P12×12 =
1
23




L3×3 F3×3 F3×3 F3×3

03×3 L3×3 F3×3 F3×3

03×3 03×3 L3×3 F3×3

03×3 03×3 03×3 L3×3


 ,

where

L3×3 =




1 1
2

0
− 3

4
0 1

4
1
3

− 1
6

0


 , F3×3 =




2 0 0
0 0 0
2
3

0 0


 and 03×3 =




0 0 0
0 0 0
0 0 0


 .

In general, when M ≥ 4, it follows
∫ t

0

Ψ(s)ds = PΨ(t) + Ψ̃(t), (2.4)

where Ψ(t) is given in (2.3) and P is a 2k−1M × 2k−1M matrix given by

P =
1
2k




L F F · · · F
0 L F · · · F
... 0

. . . . . .
...

...
...

...
. . . F

0 0 · · · 0 L




,

here L and F are M ×M matrices given by

L =




1 1
2

0 0 · · · 0 0
− 3

4
0 1

4
0 · · · 0 0

1
3

− 1
6

0 1
6

· · · 0 0

− 1
4

0 − 1
8

0
. . . 0 0

...
...

...
. . . . . . . . .

...

(−1)M−2 1
M−1

0 0 0
. . . 0 1

2(M−1)

(−1)M−1 1
M

0 0 0 · · · − 1
2M

0




,

F =




a1 0 0 · · · 0
a2 0 0 · · · 0
a3 0 0 · · · 0
...

...
... · · · ...

aM 0 0 · · · 0




,

where ai =

{
2
i
, i odd,

0, i even,
i = 1, 2, 3, · · · ,M , and Ψ̃(t) in eq.(2.4) is called as omitted item

given by

Ψ̃(t) =
1
2k

(
L1 L2 L3 · · · L2k−1

)T

,
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where Li are 1×M matrices given by

Li =
1

2M

(
0 0 0 · · · 0 ψi,M

)
, i = 1, 2, 3, · · · , 2k−1.

3 Description of the Proposed Method

In this section, numerical solution of BVPs with multi-point boundary conditions based
on the second kind Chebyshev wavelets is discussed. We assume that the highest derivative
in the differential equation is approximated by the second kind Chebyshev wavelets as below

µ(n)(x) = CTΨ(x), (3.1)

where C is an unknown vector which should be determined and Ψ(x) is the vector defined
in (2.3). Before the further description of the proposed method, we introduce the following
notations first

F0 = Ψ̃(x), Fn+1(x) =
∫ x

0

Fn(t)dt, n = 0, 1, 2, · · · ,Fn(1) = lim
x→1−

Fn(x), n = 0, 1, 2, · · · .

Integrating eq.(3.1) and by eq.(2.4), we get

µ(n−1)(x) =CT
(
PΨ(x) + F0(x)

)
+ µ(n−1)(0),

µ(n−2)(x) =CT
(
P2Ψ(x) + PF0(x) + F1(x)

)
+ µ(n−1)(0)x + µ(n−2)(0),

µ(n−3)(x) =CT
(
P3Ψ(x) + P2F0(x) + PF1(x) + F2(x)

)

+ µ(n−1)(0)
x2

2
+ µ(n−2)(0)x + µ(n−3)(0),

...

µ(x) =CT
(
PnΨ(x) +

n−1∑
i=0

Pn−i−1Fi(x)
)

+
n−1∑
k=0

µ(n−k−1)(0)
k!

xk.

Without loss of generality, we may assume the values of µ(k)(0), k = 0, 1, 2, · · · , n − 1 are
unknowns such that

µ(n−1)(x) = CT
(
PΨ(x) + F0(x)

)
+ dm,

µ(n−2)(x) = CT
(
P2Ψ(x) + PF0(x) + F1(x)

)
+ dmx + dm+1(0),

µ(n−3)(x) = CT
(
P3Ψ(x) + P2F0(x) + PF1(x) + F2(x)

)
+

dm

2
x2 + dm+1x + dm+2(0),

...

µ(x) = CT
(
PnΨ(x) +

n−1∑
i=0

Pn−i−1Fi(x)
)

+
n−1∑
k=0

dm+k

k!
xk,

where dm+k = µ(n−k−1)(0), k = 0, 1, 2, · · · , n− 1. In order to calculate unknown vector C in
(3.1), the following collocation points are considered

ξl =
2l − 1
2kM

, l = 1, 2, 3, · · · , 2k−1M.
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We replace the expression of µ(i)(x), i = 0, 1, 2, · · · , n, into systems of (1.1) and (1.2), and
then substitute the collocation points as follows

µ(n)(ξl) = g(ξl, µ(ξl), µ′(ξl), · · · , µ(n−1)(ξl)), l = 1, 2, 3, · · · , 2k−1M (3.2)

and

φi

(
µ(x1), · · · , µ(xm), µ′(x1), · · · , µ′(xm), · · · , µ(n−1)(x1), · · · , µ(n−1)(xm)

)
= 0,

i = 1, 2, · · · , n. (3.3)

From eqs. (3.2) and (3.3), a system of 2k−1M + n equations and 2k−1M + n coefficients is
obtained. Solving this system, we can get the unknown vector C and therefore the functions
µ(i)(x), i = 0, 1, 2, · · · , n, are identified. Note that we can do a few simple modifications when
some of µ(i)(0), i = 0, 1, 2, · · · , n − 1 are given. Particularly if µ(i)(0), i = 0, 1, 2, · · · , n − 1
are all given, the system becomes an initial value problem and there is no need to consider
any di, i = m,m + 1, · · · ,m + n− 1.

Remark 1 For linear multi-point BVPs, the coefficients di are expressed by Ψ(x),
Ψ̃(x) and unknown vector C. The unknown function µ(x) and its derivatives are substituted
into eq.(3.2) and then collocation method is applied to generate linear system which can be
solved using Gauss elimination method. The solution of this system gives us the values of
unknown vector C. We can calculate the approximate value of the unknown function µ(x)
at any point using vector C.

Remark 2 For nonlinear case, after substituting Chebyshev wavelet expression of
µ(x) and its derivatives and collocation points into eqs. (3.2) and (3.3), a nonlinear system
of 2k−1M + n equations is obtained. This nonlinear system may be solved by using any
iterative method for nonlinear system such as Newton’s method, Broyden’s method etc.
Solving this system gives us the values of unknown vector C and di, which can be used to
find approximate solution in a similar way as discussed for linear case.

Newton’s iterative method for the nonlinear system F(x) = 0, where F : Ω ⊂ Rn →Rn

is defined by xk+1 = xk− [F
′
(xk)]−1F(xk), where F

′
(xk) is the Jacobian matrix of point xk.

4 Numerical Examples

In this section, we give some numerical examples to demonstrate the efficiency and
reliability of the proposed method. We also complete all the numerical computation and
reported the absolute error at the selected points in tables and figures.

Example 1 Consider the following second-order four-point nonlinear ordinary differ-
ential equation [15, 29]

x(1− x)µ′′(x) + 6µ′(x) + 2µ(x) + µ2(x) = f(x), 0 ≤ x ≤ 1

with the boundary conditions

µ(0) + µ(
2
3
) = sinh(

2
3
), µ(1) +

1
2
µ(

4
5
) =

1
2

sinh(
4
5
) + sinh(1),
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where f(x) = 6 cosh(x) + sinh(x)(2 + x − x2 + sinh(x)). The exact solution is given by
µ(x) = sinh(x). In Table 1, we list the absolute errors at some different points obtained by
the present method with k = 3 and M = 4, 6, 8, 10. As we see from this table, it is clear
that the result obtained by the present method is superior to that obtained by the numerical
methods given in [15, 29]. In Figure 1, we display the logarithmic plot for the maximal
absolute errors at selected points with k = 3 and M = 3 through 10 and the logarithmic
plot for absolute errors with different M and different methods.

Table 1: Comparison of absolute errors for Example 1 with k = 3
x exact solution M = 4 M = 6 M = 8 M = 10 result result

in [15] in [29]

0.08 0.0800853606441614 1.83942e-9 3.02346e-13 1.13103e-16 7.80077e-17 3.0e-8 7.9e-5

0.24 0.242310644627426 7.68308e-10 2.31419e-13 8.74360e-17 7.83631e-17 2.6e-7 1.9e-5

0.40 0.410752325802816 4.52633e-9 7.69822e-13 5.67297e-16 4.40096e-16 3.1e-7 7.0e-6

0.48 0.498645505193376 4.61644e-9 7.63034e-13 5.81798e-16 4.56087e-16 4.0e-7 3.6e-6

0.64 0.684594227630951 2.78204e-9 4.25628e-13 5.20705e-16 4.67708e-16 3.0e-7 6.6e-7

0.72 0.783840477341958 2.89551e-9 4.07495e-13 5.01131e-16 4.55379e-16 5.2e-9 1.7e-6

0.80 0.888105982187623 7.65345e-10 1.04710e-13 4.01839e-16 3.76564e-16 1.8e-6 2.2e-6

0.88 0.998058397367814 6.70234e-10 6.17664e-14 5.84827e-16 5.65195e-16 2.7e-6 2.2e-6

0.96 1.114401793724 9.26014e-10 6.16063e-14 4.41925e-16 4.34086e-16 2.2e-5 2.8e-6

3 4 5 6 7 8 9 10
−16

−14

−12

−10

−8

−6

−4

M

lo
g1

0
(L
∞

)

0 0.2 0.4 0.6 0.8 1
−18

−16

−14

−12

−10

−8

−6

−4

x

lo
g1

0(
ab

so
lu

te
 e

rr
or

)

 

 

Method in [28]
Method in [15]
SCW M=4
SCW M=6
SCW M=8
SCW M=10

Figure 1: The logarithmic plot for the maximal absolute errors for Example 1 (left) and the
logarithmic plot for absolute errors for Example 1 (right)

Example 2 Consider the following third-order three-point nonlinear boundary value
problems (see [13]) µ′′′(x) = e−xµ2(x), 0 ≤ x ≤ 1 with the following nonlinear conditions

µ(0) + 2µ′2(
1
2
)− µ(1)− µ′′(1)− µ(

1
2
) = 1− e

1
2 ,

µ′2(0)− µ′′(0)µ′(1) + µ(
1
2
)µ′′(

1
2
) + µ′′(1) = 1 + e,

µ′(0)µ(1)− µ′(1) + µ′(
1
2
) + µ(0)− µ′′(0)− µ′′(

1
2
) = 0.

The exact solution is µ(x) = ex. In Table 2, we compare the absolute errors at some different
points obtained by the present method and the Newon-Broyden shooting method (NBSM)
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in [13]. In Figure 2, we show the logarithmic plot for the maximal absolute errors at selected
points with k = 3 and M = 3 through 10 and the logarithmic plot for absolute errors with
different M and different methods. It is evident from the figure that accuracy of the method
increases with the increase of number M .

Table 2: Comparison of absolute errors for Example 2 with k = 3
x exact solution M = 4 M = 6 M = 8 M = 10 absolute error

in [13]

0.1 1.10517091807565 1.45444e-7 1.04506e-11 2.46453e-13 8.75382e-17 2.54891e-9

0.2 1.22140275816017 1.48268e-7 1.60509e-12 2.03292e-13 1.91899e-17 2.11432e-9

0.3 1.349858807576 1.53737e-7 9.86254e-12 1.56367e-13 7.70918e-17 1.61361e-9

0.4 1.49182469764127 1.61422e-7 2.38211e-11 1.06749e-13 2.96681e-17 1.03828e-9

0.5 1.64872127070013 1.71581e-7 4.02808e-11 5.42738e-14 3.70942e-17 3.7744e-9

0.6 1.82211880039051 1.83258e-7 6.08188e-11 1.71825e-15 8.29220e-17 3.8246e-9

0.7 2.01375270747048 2.63485e-7 1.80569e-10 1.47507e-13 2.87725e-16 1.25794e-9

0.8 2.22554092849247 4.26937e-7 5.17595e-10 6.16939e-13 2.70212e-15 2.26892e-9

0.9 2.45960311115695 4.45498e-7 5.44747e-10 6.79121e-13 2.83232e-15 3.43911e-9

3 4 5 6 7 8 9 10
−15

−14

−13

−12

−11

−10

−9

−8

−7

−6

−5

M

lo
g1

0
(L
∞

)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
−17

−16

−15

−14

−13

−12

−11

−10

−9

−8

x

lo
g1

0(
ab

so
lu

te
 e

rr
or

)

 

 

Method in [13]
SCW M=6
SCW M=8
SCW M=10

Figure 2: The logarithmic plot for the maximal absolute errors for Example 2 (left) and the
logarithmic plot for absolute for Example 2 errors (right)

Example 3 Consider the following fourth-order three-point linear boundary value
problem [18, 22]

µ(4)(x) = exµ′′′(x)− µ(x)− ex cosh(x) + 2 sinh(x) + 1, 0 ≤ x ≤ 1

with boundary conditions given by

µ(
1
4
) = 1 + sinh(

1
4
), µ′(

1
4
) = cosh(

1
4
), µ′′(

1
4
) = sin(

1
4
), µ(

1
2
)− µ(

3
4
) = sinh(

1
2
)− sinh(

3
4
).

The exact solution is µ(x) = 1+sinh(x). In Table 3, we compare the absolute errors at some
different points obtained by the present method and reproducing kernel methods in [18] and
differential transform method in [22]. In Figure 3, we show the maximum absolute errors
at selected points with k = 3 and M = 3 through 10 and the logarithmic plot for absolute
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errors with different M and different methods. Comparing with the Haar wavelet method in
[25], we obtain more accurate solution in the case of the same number of collocation points.
When the number of collocation points is 32, our result L∞ = 5.8987e-11, while in [25]
L∞ = 4.2510e-7.

Table 3: Comparison of absolute errors for Example 3 with k = 3
x exact solution M = 4 M = 6 M = 8 M = 10 result result

in [18] in [22]

0.1 1.10016675001984 1.45397e-9 2.86179e-12 1.44441e-13 6.35418e-17 1.36085e-9 5.8e-11

0.2 1.20133600254109 5.55287e-11 1.09170e-13 5.64798e-15 7.57454e-17 3.74603e-11 5.9e-11

0.3 1.30452029344714 5.76751e-11 1.13229e-13 5.00304e-15 1.86938e-16 6.14417e-11 4.3e-11

0.4 1.41075232580282 1.61279e-9 3.15554e-12 1.39628e-13 1.25632e-17 1.18705e-9 5.9e-11

0.5 1.52109530549375 7.74233e-9 1.51497e-11 6.47726e-13 2.47889e-16 4.44762e-9 1.51e-10

0.6 1.63665358214824 2.27442e-8 4.28341e-11 1.78668e-12 2.58779e-17 8.49735e-9 3.25e-10

0.7 1.75858370183953 3.12201e-8 6.74601e-11 3.03745e-12 1.13941e-16 8.54123e-9 3.94e-10

0.8 1.88810598218762 2.48540e-8 4.86245e-11 1.23746e-12 1.73003e-16 4.34749e-9 4.83e-10

0.9 2.02651672570818 7.80611e-8 1.52675e-10 3.78292e-12 6.10701e-17 4.38646e-8 5.01e-9

3 4 5 6 7 8 9 10
−16

−14

−12

−10

−8

−6

−4

M

lo
g1

0
(L
∞

)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
−17

−16

−15

−14

−13

−12

−11

−10

−9

−8

−7

x

lo
g1

0(
ab

so
lu

te
 e

rr
or

)

 

 

Method in [18]
Method in [22]
SCW M=6
SCW M=8
SCW M=10

Figure 3: The logarithmic plot for the maximal absolute errors for Example 3 (left) and the
logarithmic plot for absolute errors for Example 3 (right)

Example 4 Consider the following fifth-order four-point boundary value problems [18]

µ(5)(x) + sin(2x)µ′′′(x)− µ′(x) + cos(2x)µ(x) = − sinx, 0 ≤ x ≤ 1

with boundary conditions given by

µ(0.1) = sin(0.1), µ′(0.1) = cos(0.1), µ(0.4) = sin(0.4),

µ′(0.4) = cos(0.4), µ(0.7)− µ(0.9) = sin(0.7)− sin(0.9).

The exact solution is µ(x) = sinx. In Table 4, we compare the absolute errors at some
different points obtained by the present method and the reproducing kernel method (RKM)
in [18]. In Figure 4, we show the maximum absolute errors at selected points with k = 3
and M = 3 through 10 and the logarithmic plot for absolute errors with different M and
different methods.
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Table 4: Comparison of absolute errors for Example 4 with k = 3
x exact solution M = 4 M = 6 M = 8 M = 10 RKM in

[18]

0.1 0.0998334166468282 5.988915e-19 5.97449e-19 5.97810e-19 5.97810e-19 9.20335e-11

0.2 0.198669330795061 1.917618e-10 5.50617e-13 5.09742e-16 7.85495e-18 1.00199e-11

0.3 0.29552020666134 1.915571e-10 5.52209e-13 4.99353e-16 2.49029e-18 1.05723e-10

0.4 0.389418342308651 3.107877e-18 3.06157e-18 3.09734e-18 3.09732e-18 1.09599e-10

0.5 0.479425538604203 7.644181e-10 2.15211e-12 2.02747e-15 2.28200e-17 1.21640e-10

0.6 0.564642473395035 5.326696e-9 1.27847e-11 1.22935e-14 1.84045e-17 1.50492e-10

0.7 0.644217687237691 1.514841e-9 1.45802e-11 1.63230e-14 7.19388e-18 1.93907e-10

0.8 0.717356090899523 2.711083e-8 3.42648e-11 5.39950e-14 1.90757e-17 2.29674e-10

0.9 0.783326909627483 1.514841e-9 1.45802e-11 1.63293e-14 8.72990e-19 2.07335e-10
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Figure 4: The logarithmic plot for the maximal absolute errors for Example 4 (left) and the
logarithmic plot for absolute errors for Example 4 (right)

Example 5 Consider following seventh-order three-point nonlinear boundary value
problems [31]

µ(7)(x) = µ(x)µ′(x)− ex(6 + x− xex + x2ex), 0 ≤ x ≤ 1

with boundary conditions given by

µ(0) = 1, µ(
1
2
) =

√
e

2
, µ′(0) = 0, µ′(

1
2
) = −

√
e

2
, µ′′(0) = −1, µ′′(1) = −2e, µ(1) = 0.

The exact solution is µ(x) = (1− x)ex. In Table 5, we compare the absolute errors at some
different points obtained by the present method and variational iteration method (VIM) in
[31]. In Figure 5, we show the maximum absolute errors at selected points with k = 3 and
M = 3 through 10 and the logarithmic plot for absolute errors with different M and different
methods.

Remark 3 In the all figures (left side), a logarithmic scale is used for the error-axis. It
is obviously that the errors show an exponential decay, since in these semi-log representations
one obverse that the error variations are essentially linear versus the polynomial degrees for
all the examples. That is the so-called spectral accuracy as expected since the exact solution
is smooth.
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Table 5: Comparison of absolute errors for Example 5 with k = 3
x exact solution M = 4 M = 6 M = 8 M = 10 VIM in

[31]

0.1 0.994653826268083 1.80945e-9 9.05052e-12 1.37354e-14 8.51615e-17 9.48615e-11

0.2 0.977122206528136 7.51333e-9 3.75483e-11 5.72983e-14 3.76699e-17 3.7371e-10

0.3 0.944901165303202 1.03262e-8 5.15536e-11 7.88728e-14 1.54376e-16 4.8626e-10

0.4 0.895094818584762 5.55996e-9 2.77242e-11 4.24473e-14 1.16692e-16 2.46565e-10

0.5 0.824360635350064 1.68741e-18 1.69718e-18 1.69700e-18 1.68735e-18 8.16711e-11

0.6 0.728847520156204 2.12434e-8 6.28036e-11 1.06568e-13 1.51579e-16 8.67514e-11

0.7 0.604125812241143 4.66023e-8 3.48956e-10 2.40050e-13 7.10756e-17 9.51461e-11

0.8 0.445108185698493 2.87878e-7 2.17163e-9 3.34368e-12 3.39058e-15 2.63398e-9

0.9 0.245960311115695 1.80843e-7 1.27879e-9 1.96733e-12 2.00134e-15 1.44494e-8
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Figure 5: The logarithmic plot for the maximal absolute errors for Example 5 (left) and the
logarithmic plot for absolute errors for Example 5 (right)

5 Conclusion

In this paper, the second kind Chebyshev wavelet collocation is applied to find numer-
ical solutions of high-order multi-point boundary value problems. One of the advantages
of the developed algorithm is that it can be applied on both linear and nonlinear prob-
lems and performs equally well in both cases. Another advantage is that high accurate
approximate solutions can be achieved by using a few number of Chebyshev wavelet basis
functions. Illustrative examples are presented to demonstrate the validity and applicability
of the algorithm.
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应用第二类Chebyshev小波求解高阶多点边值问题的数值解

周凤英,许小勇

(东华理工大学理学院, 江西南昌 330013)

摘要: 本文研究了一类高阶多点边值问题的数值解法问题. 利用第二类Chebyhsev小波及其积分算子

矩阵, 将线性与非线性高阶常微分方程多点边值问题转化为代数方程组进行求解. 通过与现有文献算法结果

的比较, 说明了该算法求解高阶多点边值问题的准确性与有效性. 扩展了高阶多点边值问题的数值求解方法.
关键词: 第二类Chebyshev小波; 积分算子矩阵; 高阶微分方程; 多点边值问题; 配点法
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