ON THE UNIT GROUPS OF THE QUOTIENT RINGS OF IMAGINARY QUADRATIC NUMBER RINGS

WEI Yang-jiang, SU Lei-lei, TANG Gao-hua

(School of Mathematics and Statistics, Guangxi Teachers Education University, Nanning 530023, China)

Abstract: In this paper, we investigate the unit groups of the quotient rings of the integer rings R_d of the quadratic fields $\mathbb{Q}(\sqrt{d})$ over the rational number field \mathbb{Q} . By employing the polynomial expansions and the theory of finite groups, we completely determine the unit groups of $R_d/\langle \vartheta^n \rangle$ for d = -3, -7, -11, -19, -43, -67, -163, where ϑ is a prime in R_d , and n is an arbitrary positive integer. The results in this paper generalize the study of the unit groups of $R_d/\langle \vartheta^n \rangle$ for d = -1, which obtained by J. T. Cross (1983), G. H. Tang and H. D. Su (2010) and for the case d = -2 by Y. J. Wei (2016).

Keywords: imaginary quadratic number ring; quotient ring; unit group; quadratic field 2010 MR Subject Classification: 11R04; 20K01 Document code: A Article ID: 0255-7797(2018)04-0602-17

1 Introduction

Let $K = \mathbb{Q}(\sqrt{d})$, the quadratic field over \mathbb{Q} , where \mathbb{Q} is the rational number field and dis a square-free integer other than 0 and 1. The ring of algebraic integers of K is denoted by R_d , and it is very important for the study of dynamical systems, e.g., see [1, 2]. We call R_d an imaginary quadratic number ring if d < 0. From the work of Stark [3], we know that there are only finite negative integers d such that the complex quadratic ring R_d is a unique-factorization domain, namely, d = -1, -2, -3, -7, -11, -19, -43, -67, -163. For an arbitrary prime element $\vartheta \in R_d$, and a positive integer n, the unit groups of $R_d/\langle \vartheta^n \rangle$ were determined for the cases d = -1, -2, -3 in [4–6], respectively. Moreover, the square mapping graphs for the Gaussian integer ring modulo n is studied in paper [7]. In this paper, we investigate the unit groups of $R_d/\langle \vartheta^n \rangle$ for the cases d = -3, -7, -11, -19, -43, -67, -163, and we make some corrections to the case of d = -3 in paper [6].

Throughout this paper, we denote by \mathbb{Z} the set of rational integers, \mathbb{Z}_n is the additive cyclic group of order n, $\mathbb{Z}/\langle n \rangle$ is the ring of integers modulo n, and $o(\theta)$ is the order of θ in

^{*} Received date: 2017-03-01 Accepted date: 2017-06-20

Foundation item: Supported by the National Natural Science Foundation of China (11461010; 11661013; 11661014); the Guangxi Science Research and Technology Development Project (1599005-2-13).

Biography: Wei Yangjiang (1969–), female, born at Nanning, Guangxi, professor, major in commutative algebra.

a group. For a given ring R, let U(R) denote the unit group of R, let $\langle \gamma \rangle$ denote the ideal of R generated by $\gamma \in R$. If γ is an element of a given group G, we also use $\langle \gamma \rangle$ to denote the subgroup of G generated by $\gamma \in G$. The Legendre symbol $\left(\frac{a}{p}\right)$, where a is an integer, p is a prime and $p \nmid a$, is defined as follows: if there exists an integer x such that $x^2 \equiv a \pmod{p}$, then $\left(\frac{a}{p}\right) = 1$, otherwise, $\left(\frac{a}{p}\right) = -1$.

Lemma 1.1 [8, Lemma 2.4.2] The ring R_d of algebraic integers of $K = \mathbb{Q}(\sqrt{d})$ is

- (1) $R_d = \{a + b\sqrt{d} : a, b \in \mathbb{Z}\}, \text{ if } d \equiv 2, 3 \pmod{4}.$
- (2) $R_d = \{\frac{1}{2}(a + b\sqrt{d}) : a, b \in \mathbb{Z} \text{ are of the same parity}\}, \text{ if } d \equiv 1 \pmod{4}.$

By Lemma 1.1, for d = -3, -7, -11, -19, -43, -67, -163, the elements of R_d are all of the form $\frac{1}{2}(a + b\sqrt{d})$, where $a, b \in \mathbb{Z}$ are of the same parity. Moreover, we know that $U(R_d) = \{\pm 1\}$ for all d = -3, -7, -11, -19, -43, -67, -163.

Now, we need to identify all primes in the ring R_d . The following theorem is obtained from [9, Theorem 9.29].

Theorem 1.2 For d = -3, -7, -11, -19, -43, -67, -163, up to multiplication by units, the primes of R_d are the following three types (D = -d):

- (1) p, where $p \in \mathbb{Z}$ is a prime satisfying the Legendre symbol $\left(\frac{p}{D}\right) = -1$;
- (2) π or $\overline{\pi}$, where $q = \pi \overline{\pi} \in \mathbb{Z}$ is a prime satisfying the Legendre symbol $\left(\frac{q}{D}\right) = 1$;
- (3) $\delta = \sqrt{d}$.

2 Main Results

Throughout this section, d = -3, -7, -11, -19, -43, -67, -163. For conveniences, we denote by D = -d. Let *n* be a positive integer, and ϑ is a prime in R_d . We determine the structure of unit groups of $R_d/\langle \vartheta^n \rangle$.

First, we characterize the equivalence classes of $R_d/\langle \vartheta^n \rangle$, where ϑ is prime in R_d . For $\alpha \in R_d$, we denote by $[\alpha] \in R_d/\langle \vartheta^n \rangle$ the equivalence class which α belongs to. Simultaneously, we make corrections to the equivalence classes which are given in [6, Theorem 3.2] for the case d = -3.

Theorem 2.3 Let ϑ denote a prime of R_d , $\delta = \sqrt{d}$, D = -d. For an arbitrary positive integer *n*, the equivalence classes of $R_d/\langle \vartheta^n \rangle$ are of the following types:

(1) $R_d/\langle \delta^{2m} \rangle = \{ [r_1 + r_2\sqrt{d}] : 0 \leq r_i \leq D^m - 1, r_i \in \mathbb{Z}, i = 1, 2 \}, m \geq 1;$

(2) $R_d/\langle \delta^{2m+1} \rangle = \{ [r_1 + r_2\sqrt{d}] : 0 \leqslant r_1 \leqslant D^{m+1} - 1, 0 \leqslant r_2 \leqslant D^m - 1, r_1, r_2 \in \mathbb{Z} \}, m \ge 0$

0;

(3) $R_d/\langle p^n \rangle = \{ [r_1 + r_2\sqrt{d}] : 0 \leq r_i \leq p^n - 1, r_i \in \mathbb{Z}, i = 1, 2 \}, \text{ where } p \text{ is an odd prime in } \mathbb{Z} \text{ satisfying the Legendre symbol } (\frac{p}{D}) = -1;$

(4) $R_d/\langle \pi^n \rangle = \{[a]: 0 \leq a \leq q^n - 1, a \in \mathbb{Z}\}, \text{ where } q = \pi \overline{\pi} \text{ is a prime in } \mathbb{Z} \text{ satisfying the Legendre symbol } (\frac{q}{D}) = 1;$

- (5) Suppose that $d \neq -7$. Then
- (a) $R_d/\langle 2 \rangle = \left\{ [0], [1], [\frac{1}{2} + \frac{1}{2}\sqrt{d}], [\frac{1}{2} \frac{1}{2}\sqrt{d}] \right\};$

(b) For
$$n \ge 2$$
, $R_d / \langle 2^n \rangle = R_1 \cup R_2 \cup R_3$, where
 $R_1 = \left\{ [r_1 + r_2 \sqrt{d}] : 0 \le r_i \le 2^{n-1} - 1, r_i \in \mathbb{Z}, i = 1, 2 \right\},$
 $R_2 = \left\{ [r_1 - r_2 \sqrt{d}] : 0 \le r_1 \le 2^{n-1} - 1, 1 \le r_2 \le 2^{n-1}, r_1, r_2 \in R_3 = \left\{ [\frac{r_1}{2} \pm \frac{r_2}{2} \sqrt{d}] : 1 \le r_i \le 2^n - 1, r_i \in \mathbb{Z}, 2 \nmid r_i, i = 1, 2 \right\}$

Proof (1) As $\delta^{2m} = d^m$, we get that $\langle \delta^{2m} \rangle = \langle D^m \rangle$. Suppose $\alpha = a_1 + a_2 \sqrt{d} \in R_d$, where $a_1, a_2 \in \mathbb{Z}$. Let $a_i = D^m k_i + r_i$ with $0 \leq r_i \leq D^m - 1$, $k_i \in \mathbb{Z}$, i = 1, 2. Then $\alpha = (r_1 + r_2 \sqrt{d}) + D^m (k_1 + k_2 \sqrt{d})$. So α and $r_1 + r_2 \sqrt{d}$ belong to the same equivalence class of $R_d / \langle \delta^{2m} \rangle$.

On the other hand, let $\beta = \frac{1}{2}(b_1 + b_2\sqrt{d}) \in R_d$, where b_1 and b_2 are odd integers. Since D is odd for i = 1, 2, there exists a unique integer $g_i \in \{0, 1, \dots, D^m - 1\}$ satisfying the congruence $2g_i \equiv b_i \pmod{D^m}$. Hence, there exists an odd integer x_i such that $b_i = D^m x_i + 2g_i$, i = 1, 2. Therefore, $\gamma = \frac{x_1}{2} + \frac{x_2}{2}\sqrt{d} \in R_d$, and $\beta = (g_1 + g_2\sqrt{d}) + D^m\gamma$, which implies that β and $g_1 + g_2\sqrt{d}$ belong to the same equivalence class of $R_d/\langle \delta^{2m} \rangle$. Finally, it is easy to verify that the classes of (1) are distinct.

(2) As $\delta^{2m+1} = d^m \delta$, we get that $\langle \delta^{2m+1} \rangle = \langle D^m \sqrt{d} \rangle$. Suppose $\alpha = a_1 + a_2 \sqrt{d} \in R_d$, where $a_1, a_2 \in \mathbb{Z}$. Let $a_1 = D^{m+1}k_1 + r_1$ with $0 \leq r_1 \leq D^{m+1} - 1$. Let $a_2 = D^m k_2 + r_2$ with $0 \leq r_2 \leq D^m - 1$. Then $\alpha = (r_1 + r_2 \sqrt{d}) + D^m \sqrt{d} (k_2 - k_1 \sqrt{d})$. So α and $r_1 + r_2 \sqrt{d}$ belong to the same equivalence class of $R_d / \langle \delta^{2m+1} \rangle$.

On the other hand, let $\beta = \frac{1}{2}(b_1 + b_2\sqrt{d}) \in R_d$, where b_1 and b_2 are odd integers. Since D is odd, there exists a unique integer $g_1 \in \{0, 1, \dots, D^{m+1} - 1\}$ satisfying congruence $2g_1 \equiv b_1 \pmod{D^{m+1}}$. Analogously, there exists a unique integer $g_2 \in \{0, 1, \dots, D^m - 1\}$ satisfying congruence $2g_2 \equiv b_2 \pmod{D^m}$. Therefore, there exist odd integers x_1, x_2 such that $b_1 = D^{m+1}x_1 + 2g_1$, and $b_2 = D^m x_2 + 2g_2$. Hence, $\gamma = \frac{x_2}{2} - \frac{x_1}{2}\sqrt{d} \in R_d$, and $\beta = (g_1 + g_2\sqrt{d}) + D^m\sqrt{d}(\frac{x_2}{2} - \frac{x_1}{2}\sqrt{d})$, which implies that β and $g_1 + g_2\sqrt{d}$ belong to the same equivalence class of $R_d/\langle \delta^{2m+1} \rangle$.

Finally, it is easy to verify that the classes of (2) are distinct.

(3) It can be proved with the similar method to (1). Suppose $\alpha = a_1 + a_2\sqrt{d} \in R_d$, where $a_1, a_2 \in \mathbb{Z}$. Let $a_i = p^n k_i + r_i$ with $0 \leq r_i \leq p^n - 1$, $k_i \in \mathbb{Z}$, i = 1, 2. Then $\alpha = (r_1 + r_2\sqrt{d}) + p^n(k_1 + k_2\sqrt{d})$. So α and $r_1 + r_2\sqrt{d}$ belong to the same equivalence class of $R_d/\langle p^n \rangle$.

On the other hand, let $\beta = \frac{1}{2}(b_1 + b_2\sqrt{d}) \in R_d$, where b_1 and b_2 are odd integers. Since p is odd for i = 1, 2, there exists a unique integer $g_i \in \{0, 1, \dots, p^n - 1\}$ satisfying the congruence $2g_i \equiv b_i \pmod{p^n}$. Hence, there exists an odd integer x_i such that $b_i = p^n x_i + 2g_i$, i = 1, 2. Therefore, $\gamma = \frac{x_1}{2} + \frac{x_2}{2}\sqrt{d} \in R_d$, and $\beta = (g_1 + g_2\sqrt{d}) + p^n\gamma$, which implies that β and $g_1 + g_2\sqrt{d}$ belong to the same equivalence class of $R_d/\langle p^n \rangle$. Finally, it is easy to verify that the classes of (3) are distinct.

(4) Let $q = \pi \overline{\pi}$ be a prime in \mathbb{Z} satisfying the Legendre symbol $(\frac{q}{D}) = 1$. Let $\pi^n = \frac{1}{2}(s + t\sqrt{d})$, where $s, t \in \mathbb{Z}$ are of the same parity. Then it is clear that $q \nmid st$. Suppose that

 \mathbb{Z}

 $\beta = \frac{1}{2}(b_1 + b_2\sqrt{d}) \in R_d$, where $b_1, b_2 \in \mathbb{Z}$ are of the same parity. We show that in the quotient ring $R_d/\langle \pi^n \rangle$, β belongs to the equivalence class [a] for some $a \in \{0, 1, \dots, q^n - 1\}$. Indeed, Let $\gamma = \frac{1}{2}(x + y\sqrt{d}) \in R_d$, where $x, y \in \mathbb{Z}$ are of the same parity, such that $\beta = a + \pi^n \gamma$. Then the following equations hold

$$a + \frac{1}{4}xs + \frac{1}{4}dyt = \frac{1}{2}b_1,$$
(2.1)

$$\frac{1}{4}ys + \frac{1}{4}xt = \frac{1}{2}b_2.$$
(2.2)

Now we solve the integer a from the above equations. By equation (2.1), we obtain

$$4as + xs^2 + dyts = 2b_1s.$$
 (2.3)

And by equation (2.2), we get $-dyts - dt^2x = -2b_2dt$. Eliminating dyts between this equation and (2.3), we obtain

$$4as + x(s^2 - dt^2) = 2(b_1s - db_2t).$$
(2.4)

Note that $q = \pi \overline{\pi}$ and $\pi^n = \frac{1}{2}(s + t\sqrt{d})$, we have $s^2 - dt^2 = 4q^n$. Substituting this into (2.4), it follows that

$$4as + 4q^n x = 2(b_1 s - db_2 t). (2.5)$$

Moreover, since $s, t \in \mathbb{Z}$ are of the same parity and $b_1, b_2 \in \mathbb{Z}$ are of the same parity and note that d is odd, we derive $b_1s - db_2t$ is even. Hence, equation (2.5) can be written as $as + q^n x = \frac{1}{2}(b_1s - db_2t)$, which implies that

$$as \equiv \frac{1}{2}(b_1s - db_2t) \pmod{q^n}.$$
 (2.6)

Because $q \nmid s$, the last congruence (2.6) in *a* has a unique solution $a \in \{0, 1, \dots, q^n - 1\}$. Therefore, β belongs to the equivalence class [a], as desired.

Finally, it is easy to verify that the classes of (4) are distinct.

(5) Suppose $d \neq -7$.

(a) We first determine the structure of the quotient ring $R_d/\langle 2 \rangle$. Suppose $\alpha_1 = a \in \mathbb{Z}$. If a is even, then $\frac{a}{2} \in R_d$. It follows from $\alpha_1 = 0 + 2 \times \frac{a}{2}$ that α_1 belongs to the equivalence class [0] in the quotient ring $R_d/\langle 2 \rangle$. If a is odd, then a = 1 + 2k for some $k \in \mathbb{Z}$. Then clearly α_1 belongs to the equivalence class [1].

Suppose $\alpha_2 = b\sqrt{d}$, where $b \in \mathbb{Z}$. If b is even, then $\frac{b}{2}\sqrt{d} \in R_d$. We have

$$\alpha_2 = b\sqrt{d} = 0 + 2 \times \frac{b}{2}\sqrt{d}.$$

So clearly α_2 belongs to the equivalence class [0]. If b is odd, then

$$\alpha_2 = b\sqrt{d} = 1 + 2(-\frac{1}{2} + \frac{b}{2}\sqrt{d}).$$

Therefore, α_2 belongs to the equivalence class [1].

Suppose $\alpha_3 = s + t\sqrt{d} \in R_d$, where $s, t \in \mathbb{Z}$. If s and t are of the same parity, then $\frac{s}{2} + \frac{t}{2}\sqrt{d} \in R_d$. Moreover, we have $s + t\sqrt{d} = 0 + 2(\frac{s}{2} + \frac{t}{2}\sqrt{d})$. Hence, α_3 belongs to the equivalence class [0]. If s and t are not of the same parity, then $\frac{s-1}{2} + \frac{t}{2}\sqrt{d} \in R_d$. Since $s + t\sqrt{d} = 1 + 2(\frac{s-1}{2} + \frac{t}{2}\sqrt{d})$, we obtain that α_3 belongs to the equivalence class [1].

Now, suppose $\alpha_4 = \frac{x}{2} + \frac{y}{2}\sqrt{d}$, where $x = 2k_1 + 1$, $y = 2k_2 + 1$, $k_1, k_2 \in \mathbb{Z}$. If k_1 and k_2 are of the same parity, then $\frac{k_1}{2} + \frac{k_2}{2}\sqrt{d} \in R_d$. Moreover, since $\alpha_4 = (\frac{1}{2} + \frac{1}{2}\sqrt{d}) + 2(\frac{k_1}{2} + \frac{k_2}{2}\sqrt{d})$, we obtain that α_4 belongs to the equivalence class $[\frac{1}{2} + \frac{1}{2}\sqrt{d}]$. If k_1 and k_2 are not of the same parity, then $\frac{k_1}{2} + \frac{k_2+1}{2}\sqrt{d} \in R_d$. Furthermore, $\alpha_4 = (\frac{1}{2} - \frac{1}{2}\sqrt{d}) + 2(\frac{k_1}{2} + \frac{k_2+1}{2}\sqrt{d})$. Thus, α_4 belongs to the equivalence class $[\frac{1}{2} - \frac{1}{2}\sqrt{d}]$.

Finally, we show that the classes of (5) (a) are distinct. Clearly

$$[0] \neq [1] \neq [\frac{1}{2} \pm \frac{1}{2}\sqrt{d}] \neq [0].$$

If $\left[\frac{1}{2} + \frac{1}{2}\sqrt{d}\right] = \left[\frac{1}{2} - \frac{1}{2}\sqrt{d}\right]$, then there exits $\gamma = \frac{x_1}{2} + \frac{x_2}{2}\sqrt{d} \in R_d$, where $x_1, x_2 \in \mathbb{Z}$ are of the same parity, such that

$$\frac{1}{2} + \frac{1}{2}\sqrt{d} = (\frac{1}{2} - \frac{1}{2}\sqrt{d}) + 2(\frac{x_1}{2} + \frac{x_2}{2}\sqrt{d}).$$

Clearly, the above equation holds if and only if $x_1 = 0$ and $x_2 = 1$, which is impossible, since $x_1, x_2 \in \mathbb{Z}$ must be of the same parity. Hence, we conclude that $\left[\frac{1}{2} + \frac{1}{2}\sqrt{d}\right] \neq \left[\frac{1}{2} - \frac{1}{2}\sqrt{d}\right]$. Therefore, the classes of (5) (a) are distinct.

(b) Now, let $n \ge 2$. We determine the structure of the quotient ring $R_d/\langle 2^n \rangle$. Suppose $\beta_1 = a_1 + a_2\sqrt{d} \in R_d$, where $a_1, a_2 \in \mathbb{Z}$. Let $a_i = 2^{n-1}k_i + r_i$, $k_i, r_i \in \mathbb{Z}$, and $0 \le r_i \le 2^{n-1} - 1$ for i = 1, 2. First, if k_1 and k_2 are of the same parity, then $\frac{k_1}{2} + \frac{k_2}{2}\sqrt{d} \in R_d$. Moreover, since $\beta_1 = (r_1 + r_2\sqrt{d}) + 2^n(\frac{k_1}{2} + \frac{k_2}{2}\sqrt{d})$, we conclude that β_1 and $r_1 + r_2\sqrt{d}$ belong to the same equivalence class in the quotient ring $R_d/\langle 2^n \rangle$. Secondly, if k_1 and k_2 are not of the same parity, then $\frac{k_1}{2} + \frac{k_2+1}{2}\sqrt{d} \in R_d$. Since $\beta_1 = [r_1 - (2^{n-1} - r_2)\sqrt{d}] + 2^n(\frac{k_1}{2} + \frac{k_2+1}{2}\sqrt{d})$, we obtain that β_1 and $r_1 - (2^{n-1} - r_2)\sqrt{d}$ belong to the same equivalence class. Furthermore, since $0 \le r_2 \le 2^{n-1} - 1$, we derive that $1 \le 2^{n-1} - r_2 \le 2^{n-1}$. So in the second case, i.e., k_1 and k_2 are not of the same parity, we get that β_1 and $r_1 - r_2'\sqrt{d}$ belong to the same equivalence class, where $1 \le r_2' \le 2^{n-1}$ and $r_2' = 2^{n-1} - r_2$.

Next, suppose that $\beta_2 = \frac{b_1}{2} + \frac{b_2}{2}\sqrt{d}$, where b_1 and b_2 are odd integers. Let $b_i = 2^n k_i + r_i$, where $k_i, r_i \in \mathbb{Z}$, $1 \leq r_i \leq 2^n - 1$ and $2 \nmid r_i$ for i = 1, 2. First, if k_1 and k_2 are of the same parity, then $\frac{k_1}{2} + \frac{k_2}{2}\sqrt{d} \in R_d$. Moreover, since $\beta_2 = (\frac{r_1}{2} + \frac{r_2}{2}\sqrt{d}) + 2^n(\frac{k_1}{2} + \frac{k_2}{2}\sqrt{d})$, we obtain that β_2 and $\frac{r_1}{2} + \frac{r_2}{2}\sqrt{d}$ belong to the same equivalence class. Secondly, if k_1 and k_2 are not of the same parity, then $\frac{k_1}{2} + \frac{k_2+1}{2}\sqrt{d} \in R_d$. Since $\beta_2 = (\frac{r_1}{2} - \frac{2^n - r_2}{2}\sqrt{d}) + 2^n(\frac{k_1}{2} + \frac{k_2 + 1}{2}\sqrt{d})$, it follows that β_2 and $\frac{r_1}{2} - \frac{2^n - r_2}{2}\sqrt{d}$ belong to the same equivalence class. Furthermore, according to $1 \leq r_2 \leq 2^n - 1$, we have $1 \leq 2^n - r_2 \leq 2^n - 1$. So, in the second case, i.e., k_1 and k_2 are not of the same parity, we obtain that β_2 and $\frac{r_1}{2} - \frac{r'_2}{2}\sqrt{d}$ belong to the same equivalence class, where $1 \leq r'_2 \leq 2^n - 1$ and $r'_2 = 2^n - r_2$.

Finally, we claim that the classes of (5) (b) are distinct. We only show that

$$[\frac{r_1}{2} + \frac{r_2}{2}\sqrt{d}] \neq [\frac{x_1}{2} - \frac{x_2}{2}\sqrt{d}],$$

where $r_i, x_i \in \{1, 3, \dots, 2^n - 1\}$ with $2 \nmid r_i x_i$ for i = 1, 2. Indeed, if $\left[\frac{r_1}{2} + \frac{r_2}{2}\sqrt{d}\right] = \left[\frac{x_1}{2} - \frac{x_2}{2}\sqrt{d}\right]$, then there exist $t_1, t_2 \in \mathbb{Z}$ of the same parity such that

$$\frac{r_1}{2} + \frac{r_2}{2}\sqrt{d} = \left(\frac{x_1}{2} - \frac{x_2}{2}\sqrt{d}\right) + 2^n\left(\frac{t_1}{2} + \frac{t_2}{2}\sqrt{d}\right).$$

So we obtain $r_1 = x_1 + 2^n t_1$ and $r_2 = -x_2 + 2^n t_2$. It is easy to show that $t_1 = 0$ and $t_2 = 1$, which is a contradiction.

Example 2.4 To illustrate the case d = -19, $q = 23 = \pi \overline{\pi}$ and n = 2, let $\gamma = \frac{1}{2}(b_1 + b_2\sqrt{-19}) \in R_d$, where $b_1 = 3$ and $b_2 = 1$. We give the equivalence class in $R_d/\langle \pi^2 \rangle$ which γ belongs to. Since $\pi = 2 - \sqrt{-19}$ is a proper factor of q in R_d , $\pi^2 = -15 - 4\sqrt{-19} = \frac{-30}{2} - \frac{8}{2}\sqrt{-19}$. Denoted by s = -30, t = -8. Substituting the values for s, t, b_1, b_2, d, q and n into congruence (2.6), we get that a = 198 is a solution to congruence (2.6). Moreover, substituting the values for a, s, t, b_1, b_2 and d into equations (2.1) and (2.2), we have x = 11 and y = -3. Therefore,

$$\gamma = \frac{3}{2} + \frac{1}{2}\sqrt{-19} = 198 + \pi^2(\frac{11}{2} - \frac{3}{2}\sqrt{-19}),$$

which implies that γ belongs to the class [198].

As an easy consequence of Theorem 2.1(5), we have

Corollary 2.5 Suppose that 2 is prime in R_d . Let $\alpha = [a + b\sqrt{d}] \in R_d/\langle 2^n \rangle$, where $0 \leq a, b \leq 2^{n-1} - 1, a, b \in \mathbb{Z}$. Then

(1) $\alpha = [1]$ if and only if $a = 2^{n-1}k_1 + 1$, $b = 2^{n-1}k_2$, where $k_1, k_2 \in \mathbb{Z}$ are of the same parity.

(2) If $a = 2^n k_1 + 1$, $b = 2^n k_2$, $k_1, k_2 \in \mathbb{Z}$, then $\alpha = [1]$.

Now, we determine the structure of unit groups of $R_d/\langle \vartheta^n \rangle$ for an arbitrary prime ϑ of R_d . First of all, we consider the case of $\vartheta = \delta = \sqrt{d}$. Let $\overline{R} = R_d/\langle \delta^n \rangle$. For $\alpha = [a + b\sqrt{d}] \in \overline{R}$, it is easy to show that $\alpha \in U(\overline{R})$ if and only if $d \nmid (a^2 - db^2)$, if and only if $d \nmid a$, if and only if $D \nmid a$.

Theorem 2.6 Let $\overline{R} = R_d / \langle (\sqrt{d})^n \rangle$, *n* is an arbitrary positive integer. Let D = -d. Then the unit groups $U(\overline{R})$ of \overline{R} are as the follows:

- (1) Let n = 1. Then $U(\overline{R}) \cong \mathbb{Z}_{D-1}$.
- (2) Let n = 2. Then $U(\overline{R}) \cong \mathbb{Z}_{D-1} \times \mathbb{Z}_D$.
- (3) Let n = 2m with $m \ge 2$.
- (a) If $d \neq -3$, then $U(\overline{R}) \cong \mathbb{Z}_{D-1} \times \mathbb{Z}_{D^{m-1}} \times \mathbb{Z}_{D^m}$;
- (b) If d = -3, then $U(\overline{R}) \cong \mathbb{Z}_2 \times \mathbb{Z}_3 \times \mathbb{Z}_{3^{m-1}} \times \mathbb{Z}_{3^{m-1}}$.
- (4) If n = 2m + 1 with $m \ge 1$, then $U(\overline{R}) \cong \mathbb{Z}_{D-1} \times \mathbb{Z}_{D^m} \times \mathbb{Z}_{D^m}$.

Proof (1) If n = 1, by Theorem 2.1 (2), \overline{R} is a field of order D = -d, so $|U(\overline{R})| = D - 1$. Therefore, $U(\overline{R})$ is a cyclic group of order D - 1 and hence $U(\overline{R}) \cong \mathbb{Z}_{D-1}$.

(2) If n = 2, then $|U(\overline{R})| = -d(-d-1) = D(D-1)$. Note that D is a prime, moreover D and D-1 are relatively prime, we get that $U(\overline{R}) \cong H \times \mathbb{Z}_D$, where H is a subgroup of order D-1. Moreover, we can easily show that D-1 is square-free for D = 3, 7, 11, 43 and 67.

On the other hand, if D = 19, then $D - 1 = 2 \times 3^2$, clearly $[4] \in U(\overline{R})$ is of order 3^2 . If D = 163, then $D - 1 = 2 \times 3^4$, clearly $[4] \in U(\overline{R})$ is of order 3^4 . Therefore $H \cong \mathbb{Z}_{D-1}$. So $U(\overline{R}) \cong \mathbb{Z}_{D-1} \times \mathbb{Z}_D$.

(3) (a) Suppose that $d \neq -3$. Let n = 2m with $m \ge 2$. Let $\alpha = [a + b\sqrt{d}] \in \overline{R}$, where $a, b \in \{0, 1, \dots, D^m - 1\}$. Since $\alpha \in U(\overline{R})$ if and only if $D \nmid a$, $|U(\overline{R})| = (D-1)D^{2m-1}$, and we can write $U(\overline{R}) = P \times H$, where P, H are finite groups, and |P| = D - 1, $|H| = D^{2m-1}$.

We determine the structure of H. Let $\alpha = [a + b\sqrt{d}] \in \overline{R}$ with $D \nmid a$. By Theorem 2.1 (1), for an arbitrary odd integer W > 1, α^W equals to the equivalence class [1], i.e., $\alpha^W = [1]$ if and only if the following congruences hold

$$a^{W} + d\left(\frac{W}{2}\right)a^{W-2}b^{2} + \dots + d^{\frac{W-1}{2}}\left(\frac{W}{W-1}\right)ab^{W-1} \equiv 1 \pmod{D^{m}}, \tag{2.7}$$

$$\binom{W}{1} a^{W-1}b + d\binom{W}{3} a^{W-3}b^3 + \dots + d^{\frac{W-1}{2}}b^W \equiv 0 \pmod{D^m}.$$
 (2.8)

First, we claim that for any $\alpha \in H$, $\alpha^{D^m} = [1]$. Let $W = D^m$. Since $d^m | d^j \begin{pmatrix} W \\ 2j \end{pmatrix}$ for $j \ge 1$, the congruence (2.7) is equivalent to $a^{D^m} \equiv 1 \pmod{D^m}$. It is well known that the unit group of the ring $\mathbb{Z}/\langle D^m \rangle$ is isomorphic to $\mathbb{Z}_{D^{m-1}} \times \mathbb{Z}_{D-1}$. Hence, we obtain that $a^{D^m} \equiv 1 \pmod{D^m}$ if and only if $a \in \mathbb{Z}_{D^{m-1}}$. So in the set $\{0, 1, \dots, D^m - 1\}$, there are precisely D^{m-1} elements a such that $a^{D^m} \equiv 1 \pmod{D^m}$.

On the other hand, since $d^m | d^j \begin{pmatrix} W \\ 2j+1 \end{pmatrix}$ for $j \ge 0$, congruence (2.8) holds for any positive integer b. Therefore, we can conclude that $\alpha^W = [1]$ if and only if $a \in \mathbb{Z}_{D^{m-1}}$ and $b \in \{0, 1, \dots, D^m - 1\}$. Hence, the number of $\alpha \in U(\overline{R})$ satisfying $\alpha^{D^m} = [1]$ is

$$D^{m-1} \times D^m = D^{2m-1}.$$

Recall that $U(\overline{R}) = P \times H$ with |P| = D - 1 and $|H| = D^{2m-1}$, we get that $\alpha^{D^m} = [1]$ for $\alpha \in H$.

Second, we consider the number of $\alpha \in U(\overline{R})$ satisfying $\alpha^{D^{m-1}} = [1]$. Let $W = D^{m-1}$. Since $d^m | d^j {W \choose 2j}$ for $j \ge 1$, congruence (2.7) holds if and only if $a^{D^{m-1}} \equiv 1 \pmod{D^m}$, if and only if $a \in \mathbb{Z}_{D^{m-1}}$.

On the other hand, note that $d \neq -3$ and $d^m | d^j \begin{pmatrix} W \\ 2j+1 \end{pmatrix}$ for $1 \leq j \leq \frac{W-1}{2}$, congruence (2.8) is equivalent to $D^{m-1}a^{D^{m-1}-1}b \equiv 0 \pmod{D^m}$. That is, $D^{m-1}b \equiv 0 \pmod{D^m}$, since $D \nmid a$. Hence, we obtain d | b. So the solutions to congruence (2.8) are $b = D \cdot l$ with $l = 0, 1, \dots, D^{m-1} - 1$. Thus the number of $\alpha \in U(\overline{R})$ satisfying $\alpha^{D^{m-1}} = [1]$ is $D^{m-1} \times D^{m-1} = D^{2m-2}$. Then the number of elements of order D^m in $U(\overline{R})$ is

$$D^{2m-1} - D^{2m-2} = d^{2m-2}(-d-1).$$

Finally, let we calculate the number of $\alpha \in H$ satisfying $\alpha^{D^{m-2}} \equiv 1 \pmod{D^m}$. Let $W = D^{m-2}$. Since $d^m \mid d^j \begin{pmatrix} W \\ 2j+1 \end{pmatrix}$ for $2 \leq j \leq \frac{W-1}{2}$, congruence (2.8) holds if and only if

$$Wa^{W-3}b\left[6a^2 + d(W-1)(W-2)b^2\right] \equiv 0 \pmod{D^m}.$$
(2.9)

Since $D \nmid a$ and $d \neq -3$, we derive that $D \nmid [6a^2 + d(W-1)(W-2)b^2]$. So congruence (2.9) holds if and only if $d^2 \mid b$, i.e., congruence (2.8) holds if and only if $d^2 \mid b$. Furthermore, in the

case of $d^2 | b$, we have $d^m | d^j \begin{pmatrix} W \\ 2j \end{pmatrix} b^{2j}$ for $j \ge 1$. Hence, in the case of $d^2 | b$ congruence (2.7) holds if and only if $a^W \equiv 1 \pmod{D^m}$. Clearly, the number of solutions of the last congruence is D^{m-2} . Thus the number of $\alpha \in H$ such that $\alpha^{D^{m-2}} = 1$ is $D^{m-2} \times D^{m-2} = d^{2m-4}$. So we derive that the number of elements of order D^{m-1} in $U(\overline{R})$ is

$$D^{2m-2} - D^{2m-4} = d^{2m-4}(d^2 - 1).$$
(2.10)

Now, let $\beta = [1 + \sqrt{d}] \in \overline{R}$. Then by the above argument, we know that β is of order D^m . Since $m \ge 2$, clearly $\beta \in H$. Therefore \mathbb{Z}_{D^m} is a subgroup of H and we can suppose $H \cong \mathbb{Z}_{D^m} \times \mathbb{Z}_{D^{l_1}} \times \cdots \times \mathbb{Z}_{D^{l_h}}$, where $l_1 + \cdots + l_h = m - 1$. If $h \ge 2$, then $1 \le l_i \le m - 2$ for $i = 1, \cdots, h$ and hence there are exactly $(D - 1) \cdot D^{2m-3}$ elements in H of order D^{m-1} , which contradicts the above result (2.10). If h = 1, then $H \cong \mathbb{Z}_{D^m} \times \mathbb{Z}_{D^{m-1}}$. Therefore, the number of elements of order D^{m-1} in H is $D^{m-1} \times D^{m-1} - D^{m-2} \times D^{m-2} = d^{2m-4}(d^2 - 1)$, which is the same as (2.10). So we can conclude that h = 1 and $H \cong \mathbb{Z}_{D^m} \times \mathbb{Z}_{D^{m-1}}$.

In the following, we determine the structure of the subgroup P of $U(\overline{R})$, where |P| = -d - 1. Clearly, -d - 1 is square-free for d = -7, -11, -43, -67 and hence $P \cong \mathbb{Z}_{D-1}$ in these cases. If d = -19, then $|P| = 18 = 2 \times 3^2$.

On the other hand, let $a < 19^m$ be a positive integer. If $a^{19^t} \equiv 1 \pmod{19^m}$ for some integers t > 1, then clearly a = 1 + 19x for some non-negative integers x. Hence, $4^{19^t} \not\equiv 1 \pmod{19^m}$ and $(4^3)^{19^t} \not\equiv 1 \pmod{19^m}$ for any t > 1. Furthermore, we have

$$\begin{aligned} 4^{9 \times 19^{m-1}} &= 262144^{19^{m-1}} \\ &= (19 \times 13797 + 1)^{19^{m-1}} \\ &= 19^{19^{m-1}} \times 13797^{19^{m-1}} + \dots + 19^{m-1} \times 19 \times 13797 + 1 \\ &\equiv 1 \pmod{19^m}. \end{aligned}$$

Thus, if d = -19, the class $[4] \in \overline{R}$ is of order $3^2 \cdot 19^{m-1}$, so $P \cong \mathbb{Z}_2 \times \mathbb{Z}_{3^2} \cong \mathbb{Z}_{18}$. Analogously, if d = -163, we have

$$4^{81 \times 163^{m-1}} = (4^{81} - 1 + 1)^{163^{m-1}}$$

= $(4^{81} - 1)^{163^{m-1}} + 163^{m-1}(4^{81} - 1)^{163^{m-1} - 1} + \dots + 163^{m-1}(4^{81} - 1) + 1$
 $\equiv 1 \pmod{163^m}.$

Since 163 \parallel (4⁸¹ - 1), the element [4] $\in \overline{R}$ in the case of d = -163 is of order $3^4 \times 163^{m-1}$, so $P \cong \mathbb{Z}_2 \times \mathbb{Z}_{3^4} \cong \mathbb{Z}_{162}$. Therefore, we can conclude that $P \cong \mathbb{Z}_{D^{-1}}$ for d = -7, -11, -19, -43, -67, -163. Accordingly, $U(\overline{R}) \cong P \times H \cong \mathbb{Z}_{D^m} \times \mathbb{Z}_{D^{m-1}} \times \mathbb{Z}_{D^{-1}}$, as desired.

(b) Suppose that d = -3, n = 2m, $m \ge 1$. Let $\alpha = [a + b\sqrt{d}] \in U(\overline{R})$, where $a, b \in \{0, 1, \dots, 3^m - 1\}$ and $3 \nmid a$. Since $|U(\overline{R})| = 2 \times 3^{2m-1}$, we can write $U(\overline{R}) \cong \mathbb{Z}_2 \times Q$, where $|Q| = 3^{2m-1}$. We claim that $\alpha^{3^{m-1}} = [1]$ for $\alpha \in Q$. Let $W = 3^{m-1}$. Since $3^m \mid 3^j {W \choose 2j}$ for $j \ge 1$, congruence (2.7) holds if and only if $a^{3^{m-1}} \equiv 1 \pmod{3^m}$, if and only if $a \in \mathbb{Z}_{3^{m-1}}$.

On the other hand, note that $3^m | 3^j {W \choose 2j+1}$ for $2 \leq j \leq \frac{W-1}{2}$, congruence (2.8) is equivalent to

$$b\left[a^2 - \frac{(3^{m-1} - 1)(3^{m-1} - 2)}{2}b^2\right] \equiv 0 \pmod{3}.$$
 (2.11)

If $3 \mid b$, then clearly congruence (2.11) holds. If $3 \nmid b$, we show that congruence (2.11) holds, too. Indeed, since $3 \nmid b$, it follows from congruence (2.11) that

$$2a^{2} - (3^{m-1} - 1)(3^{m-1} - 2)b^{2} \equiv 0 \pmod{3}.$$
 (2.12)

Moreover, we have $2a^2 \equiv 2 \pmod{3}$ for $3 \nmid a$. Thus congruence (2.12) reduces to $2 - 2b^2 \equiv 0 \pmod{3}$. The last congruence holds for $3 \nmid b$. Hence, congruence (2.12) holds for any integers b. So we can conclude that $\alpha^{3^{m-1}} = [1]$ if and only if

$$a \in \mathbb{Z}_{3^{m-1}}, \ b \in \{0, 1, \cdots, 3^m - 1\}.$$
 (2.13)

Thus there are precisely $3^{m-1} \times 3^m = 3^{2m-1}$ elements $\alpha \in U(\overline{R})$ such that $\alpha^{3^{m-1}} = [1]$. Recall that $|Q| = 3^{2m-1}$, we obtain $\alpha^{3^{m-1}} = [1]$ for $\alpha \in Q$.

Next, we show that there exist elements in Q with order 3^{m-1} . Indeed, putting $W = 3^{m-2}$. Substituting the value for W into congruence (2.7). Note that $3^m | 3^j \begin{pmatrix} 3^{m-2} \\ 2j \end{pmatrix}$ for $j \ge 2$, we derive that congruence (2.7) holds if and only if

$$2a^{3^{m-2}} - 3^{m-1}(3^{m-2} - 1)a^{3^{m-2} - 2}b^2 \equiv 2 \pmod{3^m}.$$
(2.14)

If we substitute a = b = 1 into congruence (2.14), we have $3^{m-1}(3^{m-2} - 1) \equiv 0 \pmod{3^m}$, which is impossible for $m \ge 2$. Accordingly, congruence (2.7) does not hold for a = b = 1, which implies that $(1+\sqrt{-3})^{3^{m-2}} \ne [1]$. Moreover, by the condition (2.13), $(1+\sqrt{-3})^{3^{m-1}} =$ [1]. So $\beta = [1 + \sqrt{-3}] \in Q$. Hence β is of order 3^{m-1} . So $\langle 1 + \sqrt{-3} \rangle \cong \mathbb{Z}_{3^{m-1}}$. Thus $Q \cong \mathbb{Z}_{3^{m-1}} \times J$, where J is a subgroup of Q with order 3^m .

Now, we claim that there are elements in J with order 3^{m-1} . We first note that $(1 + \sqrt{-3})^3 = -8$, thus $(1 + \sqrt{-3})^{3t} \in \mathbb{Z}$ for $t \ge 1$. Moreover, since $(1 + \sqrt{-3})^2 = -2 + 2\sqrt{-3}$, we conclude that $(1 + \sqrt{-3})^s = x + y\sqrt{-3}$, where $3 \nmid y$ and $3 \nmid s$. Let $\gamma = [1 + 3\sqrt{-3}]$. By condition (2.13), $\gamma \in Q$. Thus $\gamma^{3^{m-1}} = [1]$ but $\gamma \notin \langle 1 + \sqrt{-3} \rangle$. Hence, $\gamma \in J$. Substituting a = 1, b = 3 and $W = 3^{m-2}$ into congruence (2.8), and note that $3^m \mid 3^j \begin{pmatrix} 3^{m-2} \\ 2j+1 \end{pmatrix}$ for $j \ge 2$, we derive that congruence (2.8) holds if and only if

$$3^{m-1} - \frac{3^{m+1}(3^{m-2} - 1)(3^{m-2} - 2)}{2} \equiv 0 \pmod{3^m}.$$

The above congruence does not hold for $m \ge 2$. It follows that $(1+3\sqrt{-3})^{3^{m-2}} \ne [1]$. Thus, $\gamma \in J$ is of order 3^{m-1} . Hence, $\mathbb{Z}_{3^{m-1}}$ is a subgroup of J, and $J \cong \mathbb{Z}_{3^{m-1}} \times \mathbb{Z}_3$. Accordingly, if d = -3, then $U(\overline{R}) \cong \mathbb{Z}_2 \times \mathbb{Z}_3 \times \mathbb{Z}_{3^{m-1}} \times \mathbb{Z}_{3^{m-1}}$, as desired.

(4) (a) Suppose that $d \neq -3$. Let n = 2m + 1 with $m \ge 1$. For $\alpha = [a + b\sqrt{d}] \in \overline{R}$, we know that $\alpha \in U(\overline{R})$ if and only if $D \nmid a$. Then, for n = 2m+1, we have $|U(\overline{R})| = (D-1) \cdot D^{2m}$. So $U(\overline{R}) = K \times G$, where K, G are finite groups, and |K| = D - 1, $|G| = D^{2m}$.

We now determine the structure of G. Consider the polynomial expansions of α^X , where X is an arbitrary integer. By Theorem 2.1 (2), α^X equals to the equivalence class [1] if and only if the following congruences hold

$$a^{X} + d\left(\frac{X}{2}\right)a^{X-2}b^{2} + \dots + d^{\frac{X-1}{2}}\left(\frac{X}{X-1}\right)ab^{X-1} \equiv 1 \pmod{D^{m+1}}, \qquad (2.15)$$

$$\binom{X}{1}a^{X-1}b + d\binom{X}{3}a^{X-3}b^3 + \dots + d^{\frac{X-1}{2}}b^X \equiv 0 \pmod{D^m}.$$
 (2.16)

Firstly, putting $X = D^m$, and noting that $D^{m+1} | d^j \begin{pmatrix} D^m \\ 2j \end{pmatrix}$ for $j \ge 1$, we derive that congruence (2.15) holds if and only if $a^{D^m} \equiv 1 \pmod{D^{m+1}}$, if and only if $a \in \{1, 2, \dots, D^{m+1} - 1\}$ with $a \in \mathbb{Z}_{D^m}$. Therefore, congruence $a^{D^m} \equiv 1 \pmod{D^{m+1}}$ has precisely D^m solutions.

On the other hand, congruence (2.16) holds for $b \in \{1, 2, \dots, D^m - 1\}$. Hence, the number of elements in $U(\overline{R})$ satisfying $\alpha^{D^m} = [1]$ is $D^m \times D^m = D^{2m}$. Recall that $|G| = D^{2m}$, we derive that $\alpha^{D^m} = [1]$ if and only if $\alpha \in G$.

Secondly, substituting $X = D^{m-1}$ into congruence (2.16). If $\alpha^{D^{m-1}} = [1]$, clearly $\alpha \in G$. Since $d \neq -3$, we have $D^m | d^j \begin{pmatrix} D^{m-1} \\ 2j+1 \end{pmatrix}$ for $j \ge 1$. Therefore, congruence (2.16) holds if and only if D | b. In the case of D | b, congruence (2.15) holds if and only $a^{D^{m-1}} \equiv 1 \pmod{D^{m+1}}$, if and only if $a \in \mathbb{Z}_{D^{m-1}}$. Therefore, the number of elements in G satisfying $\alpha^{D^{m-1}} = [1]$ is $D^{m-1} \times D^{m-1} = D^{2m-2}$. Hence, there are precisely

$$D^{2m} - D^{2m-2} = (d^2 - 1) \cdot d^{2m-2} \tag{2.17}$$

elements of order D^m in \overline{R} .

Now, let $\beta = [1 + \sqrt{d}]$. Then $\beta^{D^m} = [1]$. However, by the above argument, we know that $\beta^{D^{m-1}} \neq [1]$. So the order of β is D^m . Therefore \mathbb{Z}_{D^m} is a subgroup of G, and $G \cong \mathbb{Z}_{D^m} \times G_2$, where $\langle 1 + \sqrt{d} \rangle \cong \mathbb{Z}_{D^m}$ and $|G_2| = D^m$.

Suppose $G_2 \cong \mathbb{Z}_{D^{s_1}} \times \cdots \times \mathbb{Z}_{D^{s_h}}$, where $s_1 + \cdots + s_h = m$. If $h \ge 2$, then $1 \le s_j \le m-1$ for $j = 1, \cdots, h$. Hence, there are precisely $(D-1) \cdot D^{2m-1}$ elements of order D^m in \overline{R} , which contradicts the above result (2.17). If h = 1, then $G_2 \cong \mathbb{Z}_{D^m}$ and hence $G \cong \mathbb{Z}_{D^m} \times \mathbb{Z}_{D^m}$. Thus the number of elements in \overline{R} of order D^m is $(d^2 - 1) \cdot d^{2m-2}$, which is the same as (2.17). Hence, we conclude that h = 1 and $G_2 \cong \mathbb{Z}_{D^m}$. Therefore, if n = 2m + 1 with $m \ge 1$, then $U(\overline{R}) \cong K \times \mathbb{Z}_{D^m} \times \mathbb{Z}_{D^m}$.

Finally, we determine the structure of the subgroup K for each case. Recall that |K| = D - 1. If d = -7, then $|K| = 6 = 2 \times 3$, we have $K \cong \mathbb{Z}_2 \times \mathbb{Z}_3 \cong \mathbb{Z}_{D-1}$. If d = -11, then $|K| = 10 = 2 \times 5$, thus $K \cong \mathbb{Z}_2 \times \mathbb{Z}_5 \cong \mathbb{Z}_{D-1}$. If d = -19, then $|K| = 18 = 2 \times 3^2$, and by the similar argument to (3) above, the element $[4] \in \overline{R}$ is of order $3^2 \times 19^m$. So $K \cong \mathbb{Z}_2 \times \mathbb{Z}_{3^2} \cong \mathbb{Z}_{D-1}$. If d = -43, then $|K| = 42 = 6 \times 7$, so $K \cong \mathbb{Z}_6 \times \mathbb{Z}_7 \cong \mathbb{Z}_{D-1}$. If d = -67, then $|K| = 66 = 6 \times 11$, thus $K \cong \mathbb{Z}_6 \times \mathbb{Z}_{11} \cong \mathbb{Z}_{D-1}$. If d = -163, then $|K| = 162 = 2 \times 3^4$, and by the similar argument to (3) above, the element $[4] \in \overline{R}$ is of order $3^4 \times 163^m$. So $K \cong \mathbb{Z}_2 \times \mathbb{Z}_{3^4} \cong \mathbb{Z}_{D-1}$. Hence $K \cong \mathbb{Z}_{D-1}$ for each case. Thus $U(\overline{R}) \cong \mathbb{Z}_{D-1} \times \mathbb{Z}_{D^m} \times \mathbb{Z}_{D^m}$, as desired.

(b) Suppose d = -3. Let $\alpha = [a + b\sqrt{-3}] \in \overline{R}$, where $3 \nmid a$. Then $|U(\overline{R})| = 2 \times 3^{2m}$. So $U(\overline{R}) = \mathbb{Z}_2 \times G$, where $|G| = 3^{2m}$. Applying the similar argument of above (a) for the case

 $d \neq -3$, we get that $\alpha^{D^m} = [1]$ if and only if $a \in \mathbb{Z}_{3^m}$ and $b \in \{0, 1, \dots, 3^m - 1\}$, if and only if $\alpha \in G$.

Now, substituting $X = 3^{m-1}$ into congruence (2.16). We obtain that congruence (2.16) holds if and only if $2a^2b - (3^{m-1} - 1)(3^{m-1} - 2)b^3 \equiv 0 \pmod{3}$. We can verify that the last congruence holds for any integers b.

On the other hand, congruence (2.15) holds if and only if

$$2a^{3^{m-1}} - 3^m(3^{m-1} - 1)a^{3^{m-1} - 2}b^2 \equiv 2 \pmod{3^{m+1}}.$$
(2.18)

Clearly, the above congruence (2.18) does not hold, if a = b = 1. So $(1 + \sqrt{-3})^{3^m} = [1]$, but $(1 + \sqrt{-3})^{3^{m-1}} \neq [1]$. Hence, $\beta = [1 + \sqrt{-3}] \in G$ is of order 3^m . Then $G \cong \mathbb{Z}_{3^m} \times E$, where $\langle 1 + \sqrt{-3} \rangle \cong \mathbb{Z}_{3^m}$, $|E| = 3^m$.

Furthermore, if we substitute a = 2, b = 3 into above congruence (2.18), we have

$$2^{3^{m-1}} - 1 \equiv 0 \pmod{3^{m+1}}.$$
(2.19)

However,

$$2^{3^{m-1}} - 1 = (3-1)^{3^{m-1}} - 1$$

= $3^{3^{m-1}} - \left(\frac{3^{m-1}}{1}\right) 3^{3^{m-1}-1} + \dots - \left(\frac{3^{m-1}}{2}\right) \times 3^2 + \left(\frac{3^{m-1}}{1}\right) \times 3 - 2$
= $3^m - 2 \pmod{3^{m+1}}.$

Therefore, congruence (2.19) does not hold for $m \ge 1$. Hence, if we let $\gamma = [2 + 3\sqrt{-3}]$, then by the above argument, we have $\gamma^{3^m} = [1]$, but $\gamma^{3^{m-1}} \ne [1]$. Thus, γ is of order 3^m . It leads to $\gamma \in G$. Moreover, $(1 + \sqrt{-3})^{3t} \in \mathbb{Z}$ for $t \ge 1$, $(1 + \sqrt{-3})^s = x + y\sqrt{-3}$, where $3 \nmid y$ and $3 \nmid s$. So we get that $\gamma \not\in \langle 1 + \sqrt{-3} \rangle$, which implies that $\gamma \in E$. Recall that $|E| = 3^m$, therefore we have $E \cong \langle 2 + 3\sqrt{-3} \rangle \cong \mathbb{Z}_{3^m}$.

Hence, if d = -3, then $U(\overline{R}) \cong \mathbb{Z}_2 \times \mathbb{Z}_{3^m} \times \mathbb{Z}_{3^m}$, as desired.

Theorem 2.7 Let $p \in \mathbb{Z}$ be an odd prime satisfying the Legendre symbol $\left(\frac{p}{-d}\right) = -1$. Let $\overline{R} = R_d / \langle p^n \rangle$, $n \ge 1$. Then $U(\overline{R}) \cong \mathbb{Z}_{p^2-1} \times \mathbb{Z}_{p^{n-1}} \times \mathbb{Z}_{p^{n-1}}$.

Proof For $\alpha = [a + b\sqrt{d}] \in R_d/\langle p^n \rangle$, where $0 \leq a, b \leq p^n - 1$, it is easy to prove that α is a unit of \overline{R} if and only if $p \nmid (a^2 - db^2)$. So $|U(\overline{R})| = (p^2 - 1)p^{2n-2}$.

If n = 1, as p is prime in \overline{R} , then $R_d/\langle p \rangle$ is a field with p^2 elements. Therefore $U(\overline{R}) \cong \mathbb{Z}_{p^2-1}$.

If $n \ge 2$, then $U(\overline{R}) \cong G_1 \times G_2$, where G_1 and G_2 are finite groups, and $|G_1| = p^2 - 1$, $|G_2| = p^{2n-2}$. First, we prove that $G_1 \cong \mathbb{Z}_{p^2-1}$. Clearly, there is an epimorphism of rings

$$\phi: \quad R_d/\langle p^n \rangle \to \ R_d/\langle p \rangle.$$

So there exists an epimorphism of groups

$$\varphi: U(R_d/\langle p^n \rangle) \to U(R_d/\langle p \rangle).$$

That is $\varphi : U(\overline{R}) \to \mathbb{Z}_{p^2-1}$. Clearly, the kernel $\ker(\varphi)$ of φ is G_2 . If $\mathbb{Z}_{p^2-1} = \langle \eta \rangle$, then there exists $\theta \in U(\overline{R})$ such that $\varphi(\theta) = \eta$. Suppose the order of $\theta \in U(\overline{R})$ is t, then $\varphi(\theta^t) = 1$. Since the order of $\eta \in \mathbb{Z}_{p^2-1}$ is $p^2 - 1$, we have $\varphi(\theta^{p^2-1}) = \eta^{p^2-1} = 1$. Therefore, $\varphi(\theta^t) = \varphi(\theta^{p^2-1})$, i.e., $\eta^t = \eta^{p^2-1} = 1$. Thus we easily find that $(p^2 - 1) \mid t$, that is $(p^2 - 1) \mid o(\theta)$. Recall that $\ker(\varphi) = G_2$, and $\varphi(\theta) = \eta \neq 1$, so $\theta \notin \ker(\varphi) = G_2$. Thus $\theta \in G_1$, and $o(\theta) \mid (p^2 - 1)$. Therefore, $o(\theta) = p^2 - 1$. So we may conclude that $G_1 \cong \mathbb{Z}_{p^2-1}$.

In the following, we investigate the structure of G_2 . For $\alpha = [a + b\sqrt{d}] \in G_2$. It is obvious that either $p \nmid a$ or $p \nmid b$. Consider the polynomial expansions of α^N , where N > 1 is an arbitrary odd integer. It is evident that $\alpha^N = [1]$ if and only if the following congruences hold

$$a^{N} + d\left(\frac{N}{2}\right)a^{N-2}b^{2} + \dots + d^{\frac{N-1}{2}}\left(\frac{N}{N-1}\right)ab^{N-1} \equiv 1 \pmod{p^{n}}, \tag{2.20}$$

$$\binom{N}{1}a^{N-1}b + d\binom{N}{3}a^{N-3}b^3 + \dots + d^{\frac{N-1}{2}}b^N \equiv 0 \pmod{p^n}.$$
(2.21)

By the similar argument to Theorem 2.6 (3), we know that $\alpha^{p^{n-1}} = 1$ for all $\alpha \in G_2$, and there are precisely p^{2n-4} elements $\gamma \in G_2$ satisfying $\gamma^{p^{n-2}} = [1]$.

Moreover, let $\beta = [c + e\sqrt{d}] \in G_2$ with $p \nmid c$ and $p \parallel e$. By the polynomial expansions of $\beta^{p^{n-2}}$, we know that $\beta^{p^{n-2}} \neq 1$, which implies $o(\beta) = p^{n-1}$. So $G_2 \cong H \times P$, where $H = \langle \beta \rangle \cong \mathbb{Z}_{p^{n-1}}$ and $|P| = p^{n-1}$.

Suppose $G_2 \cong \mathbb{Z}_{p^{n-1}} \times \mathbb{Z}_{p^{h_1}} \times \cdots \times \mathbb{Z}_{p^{h_r}}$, where $h_1 + \cdots + h_r = n - 1$. If $r \ge 2$, then $1 \le h_i \le n-2$ for $i = 1, \cdots, r$. Thus there are $p^{n-2}p^{h_1}\cdots p^{h_r} = p^{2n-3}$ elements $\gamma \in G_2$ satisfying $\gamma^{p^{n-2}} = [1]$, which contradicts the above result. If r = 1, then $G_2 \cong \mathbb{Z}_{p^{n-1}} \times \mathbb{Z}_{p^{n-1}}$. So there are exactly $p^{n-2}p^{n-2} = p^{2n-4}$ elements $\gamma \in G_2$ satisfying $\gamma^{p^{n-2}} = [1]$, which is the same as above result. So we derive that r = 1 and this leads to $G_2 \cong \mathbb{Z}_{p^{n-1}} \times \mathbb{Z}_{p^{n-1}}$. This completes the proof.

Theorem 2.8 Let $q \in \mathbb{Z}$ be a prime satisfying the Legendre symbol $\left(\frac{q}{-d}\right) = 1$. Suppose that π is a proper factor of q. Let $\overline{R} = R_d / \langle \pi^n \rangle$, $n \ge 1$.

(1) Suppose q = 2. Then $U(\overline{R}) \cong \mathbb{Z}_1$ if n = 1, $U(\overline{R}) \cong \mathbb{Z}_2$ if n = 2, $U(\overline{R}) \cong \mathbb{Z}_2 \times \mathbb{Z}_{2^{n-2}}$ if n > 2.

(2) Suppose $q \neq 2$. Then $U(\overline{R}) \cong \mathbb{Z}_{q^{n-1}} \times \mathbb{Z}_{q-1}$.

Proof Applying Theorem 2.1 (4), we derive that $\overline{R} \cong \mathbb{Z}/\langle q^n \rangle$. So the theorem follows.

We obtain from the proof of Theorem 1.2 that 2 is not a prime in R_d if d = -7. So we may assume $d \neq -7$ in the following theorems. We investigate the unit groups of $R_d/\langle 2^n \rangle$ for d = -3, -11, -19, -43, -67, -163.

Theorem 2.9 Suppose d = -3, -11, -19, -43, -67, -163. Let $\overline{R} = R_d / \langle 2^n \rangle, n \ge 2$. Then

(1) $U(\overline{R}) = \overline{R}_1 \cup \overline{R}_2 \cup \overline{R}_3$, where

 $\overline{R}_1 = \left\{ [r_1 + r_2 \sqrt{d} \,]: \ 0 \leqslant r_1, r_2 \leqslant 2^{n-1} - 1, \ r_1, r_2 \in \mathbb{Z} \text{ are not of the same parity} \right\},$

 $\overline{R}_2 = \left\{ [r_1 - r_2\sqrt{d}] : \ 0 \leqslant r_1 \leqslant 2^{n-1} - 1, \ 1 \leqslant r_2 \leqslant 2^{n-1}, r_1, r_2 \in \mathbb{Z} \text{ are not of the same parity} \right\},\\ \overline{R}_3 = \left\{ [\frac{r_1}{2} \pm \frac{r_2}{2}\sqrt{d}] : \ 1 \leqslant r_i \leqslant 2^n - 1, \ r_i \in \mathbb{Z}, \ 2 \nmid r_i, \ i = 1, 2 \right\}.$

(2) Suppose $n \ge 4$. Then there are exactly 8 elements $\alpha \in \overline{R}_1 \cup \overline{R}_2$ satisfying $\alpha^2 = [1]$.

(3) Suppose $n \ge 5$. Then there are exactly 32 elements $\alpha \in \overline{R}_1 \cup \overline{R}_2$ satisfying $\alpha^4 = [1]$.

Proof (1) If $\alpha = [r_1 \pm r_2 \sqrt{d}] \in \overline{R}$, where $r_1, r_2 \in \mathbb{Z}$, it is easy to show that $\alpha \in U(\overline{R})$ if and only if $2 \nmid N(\alpha)$, i.e., $2 \nmid (r_1^2 - dr_2^2)$, if and only if r_1 and r_2 are not of the same parity.

If $\alpha = \left[\frac{r_1}{2} \pm \frac{r_2}{2}\sqrt{d}\right] \in \overline{R}$, where $r_1, r_2 \in \mathbb{Z}$ with $2 \nmid r_1 r_2$, then $\alpha \in U(\overline{R})$ if and only if $2 \nmid N(\alpha)$, i.e., $2 \nmid \frac{1}{4}(r_1^2 - dr_2^2)$, if and only if $8 \nmid (r_1^2 - dr_2^2)$. Let $r_i = 2k_i + 1$, i = 1, 2. Then

$$r_1^2 - dr_2^2 = 4(k_1^2 + k_1 - dk_2^2 - dk_2) + (1 - d).$$

Clearly, $2 | (k_1^2 + k_1 - dk_2^2 - dk_2)$. However, 4 || (1 - d) for d = -3, -11, -19, -43, -67, -163. Therefore, $8 \nmid (r_1^2 - dr_2^2)$. Hence, $\alpha \in U(\overline{R})$.

(2) First, let $\alpha = a \in \mathbb{Z}$, where $1 \leq a \leq 2^{n-1} - 1$. Then $\alpha \in U(\overline{R})$ if and only if $2 \nmid a$. By Corollary 2.5, $\alpha^2 = [1]$ if and only if $a^2 \equiv 1 \pmod{2^n}$. The last congruence has precisely 2 solutions.

Second, let $\alpha = \pm b\sqrt{d}$, where $1 \leq b \leq 2^{n-1} - 1$. Then $\alpha \in U(\overline{R})$ if and only if $2 \nmid b$. Let b = 2k + 1. By Corollary 2.5, $\alpha^2 = [1]$ if and only if $d(4k^2 + 4k + 1) \equiv 1 \pmod{2^n}$. Since d-1 = -4x, where x = 1, 3, 5, 11, 17, 41, we obtain that $d(4k^2 + 4k + 1) - 1 = 4(k^2d + kd - x)$. Note that $2 \nmid (k^2d + kd - x)$, we derive that $d(4k^2 + 4k + 1) \neq 1 \pmod{2^n}$. Therefore $\alpha^2 \neq [1]$.

Thirdly, let $\alpha = a + b\sqrt{d}$, where $1 \leq a, b \leq 2^{n-1} - 1$, $a, b \in \mathbb{Z}$ are not of the same parity. By Corollary 2.5, $\alpha^2 = [1]$ if and only if the following congruences hold

$$a^2 + b^2 d = 2^{n-1} k_1 + 1, (2.22)$$

$$2ab = 2^{n-1}k_2, (2.23)$$

where k_1 and k_2 are of the same parity. If $2 \nmid a$ while $2 \mid b$, then (2.23) reduces to $b \equiv 0 \pmod{2^{n-2}}$. Recall that $1 \leq b \leq 2^{n-1} - 1$, so the last congruence has exactly one solution $b = 2^{n-2}$. Hence, the left hand of (2.23) is $2ab = 2^{n-1}a$ with $2 \nmid a$. The left hand of (2.22) is $a^2 + b^2d = a^2 + 2^{2n-4}d = a^2 + 2^{n-1} \times 2^{n-3}d$. Because $n \geq 4$, so 2^{n-3} is even. Then equality (2.22) holds for some odd integers k_1 if and only if $a^2 = 2^{n-1}k + 1$ for some odd integers k, if and only if $a = 2^{n-2} \pm 1$. So we can conclude that in the case of $2 \nmid a$ and $2 \mid b$, there are exactly 2 elements α satisfying $\alpha^2 = [1]$.

On the other hand, suppose that $2 \mid a$ while $2 \nmid b$. Then (2.23) reduces to $a \equiv 0 \pmod{2^{n-2}}$. Recall that $1 \leq a \leq 2^{n-1} - 1$, so the last congruence has exactly one solution $a = 2^{n-2}$. Hence, the left hand of (2.23) is $2ab = 2^{n-1}b$ with $2 \nmid b$. The left hand of (2.22) is $a^2 + b^2d = 2^{2n-4} + b^2d = 2^{n-1} \times 2^{n-3} + b^2d$. So equality (2.22) holds for some odd integers k_1 if and only if $b^2d = 2^{n-1}h+1$ for some odd integers h. Putting b = 2s+1, then $b^2d-1 = 4d(s^2+s)+(d-1)$. Because $s^2 + s$ is even and $4 \parallel (d-1)$ for d = -3, -11, -19, -43, -67, -163, we obtain that $4 \parallel (b^2d - 1)$. Therefore, for $n \geq 4$, $b^2d \neq 2^{n-1}h+1$ for any integers h. So we can conclude that in the case of $2 \mid a$ and $2 \nmid b$, there does not exist any element α satisfying $\alpha^2 = [1]$.

Finally, let $\alpha = a - b\sqrt{d}$, where $1 \leq a \leq 2^{n-1} - 1$, $1 \leq b \leq 2^{n-1}$, $a, b \in \mathbb{Z}$ are not of the same parity. If $2 \nmid a$ while $2 \mid b$, then (2.23) reduces to $b \equiv 0 \pmod{2^{n-2}}$. Thus $b = 2^{n-2}$ or 2^{n-1} . In the case of $b = 2^{n-2}$, applying the similar argument of above, we get that $\alpha^2 = [1]$ if and only if $a = 2^{n-2} \pm 1$. For the other case $b = 2^{n-1}$, equality (2.23) reduces to $2ab = 2^n a$,

and the left hand of equality (2.22) is $a^2 + b^2 d = a^2 + 2^{2n-2}d$. By Corollary 2.5, $\alpha^2 = [1]$ if and only if $a^2 \equiv 1 \pmod{2^n}$, if and only if $a = 1, 2^{n-1} - 1$. Therefore, there are exactly 4 elements α satisfying $\alpha^2 = [1]$, if $2 \nmid a$ and $2 \mid b$.

On the other hand, if $2 \mid a$ while $2 \nmid b$, by the similar above argument, we obtain that $\alpha^2 \neq [1]$.

Thus, there are exactly 8 elements $\alpha \in \overline{R}_1 \cup \overline{R}_2$ satisfying $\alpha^2 = [1]$, as desired.

(3) Firstly, let $\alpha = a \in \mathbb{Z}$, where $1 \leq a \leq 2^{n-1} - 1$ with $2 \nmid a, a \in \mathbb{Z}$. By Corollary 2.5, $\alpha^4 = [1]$ if and only if $a^4 \equiv 1 \pmod{2^n}$. The last congruence has precisely 4 solutions.

Secondly, let $\alpha = \pm b\sqrt{d}$, where $1 \leq b \leq 2^{n-1} - 1$ with $2 \nmid b, b \in \mathbb{Z}$. Let b = 2k + 1. By Corollary 2.5, $\alpha^4 = [1]$ if and only if $b^4d^2 - 1 \equiv 0 \pmod{2^n}$, i.e.,

$$8d^{2}(2k^{4} + 4k^{3} + 3k^{2} + k) + (d^{2} - 1) \equiv 0 \pmod{2^{n}}.$$
(2.24)

It is evident that $2^4 \nmid (d^2-1)$ for d = -3, -11, -19, -43, -67, -163. So $b^4d^2-1 \not\equiv 0 \pmod{2^n}$ for $n \geq 5$. Thus, $\alpha^4 \neq [1]$.

Thirdly, let $\alpha = a + b\sqrt{d}$, where $1 \leq a, b \leq 2^{n-1} - 1$, a and b are not of the same parity. By Corollary 2.5, $\alpha^4 = [1]$ if and only if the following congruences hold

$$a^{4} + b^{2}(6a^{2}d + b^{2}d^{2}) = 2^{n-1}k_{1} + 1, \qquad (2.25)$$

$$4b(a^3 + ab^2d) = 2^{n-1}k_2, (2.26)$$

where k_1 and k_2 are of the same parity. If $2 \nmid a$ while $2 \mid b$, then (2.26) reduces to $b \equiv 0 \pmod{2^{n-3}}$. The last congruence has exactly three solutions $b = 2^{n-3}x$, where x = 1, 2, 3. Suppose first that $b = 2^{n-3}x$, x = 1, 3. Then the left hand of equation (2.26) equals $4b(a^3 + ab^2d) = 2^{n-1}k_2$, where $k_2 = x(a^3 + ab^2d)$ is odd.

On the other hand, the left hand of equation (2.25) equals $a^4 + 2^{n-1}(3 \times 2^{n-4}a^2d +$ $2^{3n-11}d^2x^2)x^2$. Since $n \ge 5$, we get that $(3 \times 2^{n-4}a^2d + 2^{3n-11}d^2x^2)x^2$ is even. Therefore, $\alpha^4 = [1]$ if and only if $a^4 = 2^{n-1}s + 1$ for some odd integers s. Since $1 \leq a \leq 2^{n-1} - 1$, clearly there are exactly 4 elements a satisfying $a^4 = 2^{n-1}s + 1$ for some odd integers s. Now suppose $b = 2^{n-3}x$, where x = 2. Then the left hand of equation (2.26) equals $4b(a^3 + ab^2d) = 2^n(a^3 + ab^2d)$. Therefore, by equation (2.25), we obtain that $\alpha^4 = [1]$ if and only if $a^4 \equiv 1 \pmod{2^n}$. The last congruence has exactly 4 solutions $a \in \{1, \dots, 2^{n-1} - 1\}$. Hence, there are totally 12 elements α satisfying $\alpha^4 = [1]$, in the case of $2 \nmid a$ and $2 \mid b$. For another case of $2 \mid a$ and $2 \nmid b$, we reduce from equation (2.25) that $2^{n-3} \mid a$. Hence, $a = 2^{n-3}y$, where y = 1, 2, 3. Suppose $a = 2^{n-3}y$, where y = 1, 3. Then by equations (2.25) and (2.26), $\alpha^4 = [1]$ if and only if $b^4 d^2 = 2^{n-1}s + 1$ for some odd integers s. Let b = 2k + 1, then $b^4 d^2 - 1$ is equal to the left side of congruence (2.24). Since $2^4 \nmid (d^2 - 1)$ for d = -3, -11, -19, -43, -67, -163. So $b^4 d^2 - 1 \neq 0 \pmod{2^{n-1}}$ for $n \ge 5$. Thus, $\alpha^4 \neq [1]$. Next, we assume that $a = 2^{n-3}y$, where y = 2. Then by equations (2.25) and (2.26), $\alpha^4 = [1]$ if and only if $b^4d^2 \equiv 1 \pmod{2^n}$, if and only if congruence (2.24) holds for any integers k and n. However, this congruence does not hold for $n \ge 5$. Therefore, we can conclude that in the case of $2 \mid a$ and $2 \nmid b$, there does not exist any element α satisfying $\alpha^4 = [1]$. Hence, there are totally 12 elements $\alpha = [a + b\sqrt{d}] \in \overline{R}_1$ satisfying $\alpha^4 = [1]$, where $a \neq 0$ and $b \neq 0$.

Finally, let $\alpha = a - b\sqrt{d}$, where $1 \leq a \leq 2^{n-1} - 1$, $1 \leq b \leq 2^{n-1}$, a and b are not of the same parity. If $2 \nmid a$ while $2 \mid b$, then (2.26) reduces to $b \equiv 0 \pmod{2^{n-3}}$. The last congruence has exactly four solutions, namely $b = 2^{n-3}x$, where x = 1, 2, 3, 4. Applying the similar argument above, we obtain that there are exactly 16 elements $\alpha \in \overline{R}_2$ satisfying $\alpha^4 = [1]$, where $a \neq 0$. On the other hand, if $2 \mid a$ and $2 \nmid b$, there does not exist any element $\alpha \in \overline{R}_2$ satisfying $\alpha^4 = [1]$.

Thus, there are exactly 32 elements $\alpha \in \overline{R}_1 \cup \overline{R}_2$ satisfying $\alpha^4 = [1]$, as desired.

In the sequel, we assume that 2 is prime in the ring R_d . If n = 1, by Theorem 2.1 (5) and Theorem 2.9, $R_d/\langle 2 \rangle$ is a field with 4 elements. Therefore, $U(R_d/\langle 2^n \rangle) \cong \mathbb{Z}_3$.

If n = 2, then $|U(R_d/\langle 2^n \rangle)| = 3 \times 2^2$. The unit group of $R_d/\langle 2^n \rangle$ is

$$\left\{1, \pm \sqrt{d}, 1 - 2\sqrt{d}, \frac{1}{2} \pm \frac{1}{2}\sqrt{d}, \frac{1}{2} \pm \frac{3}{2}\sqrt{d}, \frac{3}{2} \pm \frac{1}{2}\sqrt{d}, \frac{3}{2} \pm \frac{3}{2}\sqrt{d}\right\}.$$

By calculation, we obtain that for d = -3, -11, -19, -43, -67, -163, $(\pm\sqrt{d})^2 = 4k + 1$ for some integers k. So by Corollary 2.5, $\pm\sqrt{d}$ is of order 2. Similarly, $(\frac{3}{2} \pm \frac{3}{2}\sqrt{d})^3 = -27 = [1]$. So the order of $\frac{3}{2} \pm \frac{3}{2}\sqrt{d}$ is 3. Moreover, we show that $o(1 - 2\sqrt{d}) = 2$, $o(\frac{1}{2} \pm \frac{1}{2}\sqrt{d}) = o(\frac{1}{2} \pm \frac{3}{2}\sqrt{d}) = 0$. Hence, $U(R_d/\langle 2^2 \rangle) \cong \mathbb{Z}_3 \times \mathbb{Z}_2 \times \mathbb{Z}_2$.

Analogously, if n = 3, then $|U(R_d/\langle 2^n \rangle)| = 3 \times 2^4$. The unit group of $R_d/\langle 2^n \rangle$ is

$$\left\{1, 3, \pm\sqrt{d}, \pm 3\sqrt{d}, 1 \pm 2\sqrt{d}, 2 \pm\sqrt{d}, 2 \pm 3\sqrt{d}, 3 \pm 2\sqrt{d}, 1 - 4\sqrt{d}, 3 - 4\sqrt{d}\right\}$$
$$\bigcup \quad \left\{\frac{a}{2} \pm \frac{b}{2}\sqrt{d}: a, b = 1, 3, 5, 7\right\}.$$

By calculation, we obtain that $o(3) = o(1\pm 2\sqrt{d}) = o(3\pm 2\sqrt{d}) = o(1-4\sqrt{d}) = o(3-4\sqrt{d}) = 2$, and $o(\pm\sqrt{d}) = o(\pm 3\sqrt{d}) = o(2+\sqrt{d}) = o(2+3\sqrt{d}) = o(2-\sqrt{d}) = o(2-3\sqrt{d}) = 4$. Moreover, $o(\frac{a}{2} \pm \frac{b}{2}\sqrt{d}) \neq 2,4$ for a, b = 1, 3, 5, 7. Therefore, $U(R_d/\langle 2^3 \rangle) \cong \mathbb{Z}_3 \times \mathbb{Z}_{2^2} \times \mathbb{Z}_2 \times \mathbb{Z}_2$.

- **Theorem 2.10** Suppose that d = -3, -11, -19, -43, -67 or -163. Then
- (1) $U(R_d/\langle 2 \rangle) \cong \mathbb{Z}_3.$
- (2) $U(R_d/\langle 2^n \rangle) \cong \mathbb{Z}_3 \times \mathbb{Z}_{2^{n-1}} \times \mathbb{Z}_{2^{n-2}} \times \mathbb{Z}_2$ for $n \ge 2$.

Proof The unit groups for the cases of n = 1, 2, 3 have been stated above. So we assume $n \ge 4$ in the following. By Theorem 2.9, we get $|U(R_d/\langle 2^n \rangle)| = 3 \times 2^{2n-2}$. Thus $U(R_d/\langle 2^n \rangle) \cong \mathbb{Z}_3 \times H$, where H is a subgroup with order 2^{2n-2} .

Firstly, we claim that $\alpha^{2^{n-1}} = [1]$ for $\alpha \in \overline{R}_1 \cup \overline{R}_2$, where \overline{R}_1 and \overline{R}_2 are stated in Theorem 2.9. Indeed, if we put $\alpha = a + b\sqrt{d} \in \overline{R}_1$, $\alpha^M = A + B\sqrt{d}$, M is even, then

$$A = a^{M} + d\left(\frac{M}{2}\right)a^{M-2}b^{2} + d^{2}\left(\frac{M}{4}\right)a^{M-4}b^{4} + \dots + d^{\frac{M-2}{2}}\left(\frac{M}{M-2}\right)a^{2}b^{M-2} + d^{\frac{M}{2}}b^{M},$$

$$B = \left(\frac{M}{1}\right)a^{M-1}b + d\left(\frac{M}{3}\right)a^{M-3}b^{3} + \dots + d^{\frac{M-4}{2}}\left(\frac{M}{M-3}\right)a^{3}b^{M-3} + d^{\frac{M-2}{2}}\left(\frac{M}{M-1}\right)ab^{M-1}.$$

Let $M = 2^{n-1}$. If $2 \nmid a$ while $2 \mid b$, then $2^n \mid \binom{2^{n-1}}{s} b^s$ for $1 \leq s \leq 2^{n-1}$. So we derive $2^n \mid (A - a^{2^{n-1}})$ and $2^n \mid B$. Hence, $A = 2^n t + a^{2^{n-1}}$ and $B = 2^n k$ for some integers t, k. By

Corollary 2.5, $\alpha^{2^{n-1}} = [1]$ if and only if $a^{2^{n-1}} \equiv 1 \pmod{2^n}$. Because $U(\mathbb{Z}/\langle 2^n \rangle) \cong \mathbb{Z}_2 \times \mathbb{Z}_{2^{n-2}}$ for $n \ge 3$, we derive that $a^{2^{n-1}} \equiv 1 \pmod{2^n}$ for $2 \nmid a$ and $n \ge 3$. Thus $\alpha^{2^{n-1}} = [1]$ in the case of $2 \nmid a$ and $2 \mid b$.

On the other hand, suppose 2 | a while $2 \nmid b$. Since $2^n | \binom{2^{n-1}}{s} a^{2^{n-1}-s}$ for $0 \leq s \leq 2^{n-1} - 1$, it is obvious that $2^n | (A - d^{2^{n-2}}b^{2^{n-1}})$ and $2^n | B$. Since $d, b \in U(\mathbb{Z}/\langle 2^n \rangle)$, we must have $d^{2^{n-2}} \equiv 1 \pmod{2^n}$ and $b^{2^{n-1}} \equiv 1 \pmod{2^n}$. Hence, $d^{2^{n-2}}b^{2^{n-1}} \equiv 1 \pmod{2^n}$. Therefore, $\alpha^{2^{n-1}} = [1]$ in the case of 2 | a and $2 \nmid b$. So we conclude that $\alpha^{2^{n-1}} = [1]$ for $\alpha \in \overline{R}_1$. Similarly, we have $\alpha^{2^{n-1}} = [1]$ for $\alpha \in \overline{R}_2$. Thus, our claim follows.

Secondly, we prove that $\mathbb{Z}_{2^{n-1}}$ is a subgroup of H. Since the number of the set $\overline{R}_1 \cup \overline{R}_2$ is precisely 2^{2n-2} and note that the subgroup H is of order 2^{2n-2} , we can conclude that $\alpha \in H$ if and only if $\alpha \in \overline{R}_1 \cup \overline{R}_2$. So $H = \overline{R}_1 \cup \overline{R}_2$. Furthermore, let $\alpha_0 = [2 + \sqrt{d}] \in H$. We prove that $\alpha_0^{2^{n-2}} \neq [1]$. Setting $a = 2, b = 1, M = 2^{n-2}$. Substituting these values into the expressions for A and B. Since $2^n \mid \binom{2^{n-2}}{s} a^s$ for $3 \leq s \leq 2^{n-2}$, and $2^{n-1} \parallel \binom{2^{n-2}}{s} a^s$ for s = 1, 2, we derive that $2^{n-1} \parallel (A - d^{2^{n-3}})$ and $2^{n-1} \parallel B$. So $A = 2^{n-1}k + d^{2^{n-3}}$ for some odd integers k. Moreover, owing to Corollary 2.5, $\alpha_0^{2^{n-2}} = [1]$ if and only if $A = 2^{n-1}t + 1$ for some odd integers t, i.e., $A = 2^{n-1}k + d^{2^{n-3}} = 2^{n-1}t + 1$, if and only if $d^{2^{n-3}} = 2^{n-1}(t-k) + 1$. Since $2 \nmid kt$, we have t - k is even. Therefore, $\alpha_0^{2^{n-2}} = [1]$ if and only if $d^{2^{n-3}} \equiv 1 \pmod{2^n}$. In the following, we show that $d^{2^{n-3}} \not\equiv 1 \pmod{2^n}$ for d = -3, -11, -19, -43, -67 or -163. Indeed, we have -d = 4e - 1 for some odd integers e. Then

$$d^{2^{n-3}} - 1 = (4e-1)^{2^{n-3}} - 1 = (4e)^{2^{n-3}} - \binom{2^{n-3}}{1}(4e)^{2^{n-3}-1} + \dots + \binom{2^{n-3}}{2}(4e)^2 - \binom{2^{n-3}}{1}4e.$$

It is evident that $2^n \mid \binom{2^{n-3}}{s} (4e)^s$ for $2 \leq s \leq 2^{n-3}$. However, $\binom{2^{n-3}}{1} 4e = 2^{n-1}e$ is not divisible by 2^n . Thus $d^{2^{n-3}} \neq 1 \pmod{2^n}$. Hence, $\alpha_0^{2^{n-2}} \neq [1]$, which implies that α_0 is of order 2^{n-1} . Therefore, $\mathbb{Z}_{2^{n-1}}$ is a subgroup of H, as desired.

Now, owing to Theorem 2.9 (2), we obtain that $H \cong \mathbb{Z}_{2^{n-1}} \times \mathbb{Z}_{2^i} \times \mathbb{Z}_{2^j}$, where $i, j \ge 1$ and i + j = n - 1. If n = 4, then i + j = 3. Hence, $H \cong \mathbb{Z}_{2^{n-1}} \times \mathbb{Z}_{2^2} \times \mathbb{Z}_2$ for the case n = 4. Next, we assume that n > 4. If $i, j \ge 2$, then there are precisely 64 elements $\alpha \in \mathbb{Z}_{2^{n-1}} \times \mathbb{Z}_{2^i} \times \mathbb{Z}_{2^j}$ satisfying $\alpha^4 = [1]$, which contradicts Theorem 2.9 (3). If i = n - 2and j = 1, then there are precisely 32 elements $\alpha \in \mathbb{Z}_{2^{n-1}} \times \mathbb{Z}_{2^{n-2}} \times \mathbb{Z}_2$ satisfying $\alpha^4 = [1]$, which is the same as Theorem 2.9 (3). Therefore, we conclude that $H \cong \mathbb{Z}_{2^{n-1}} \times \mathbb{Z}_{2^{n-2}} \times \mathbb{Z}_2$. This completes the proof of the theorem.

References

- Pezda T. Cycles of polynomial mappings in two variables over rings of integers in quadratic fields [J]. Central Eur. J. Math., 2004, 2(2): 294–331.
- [2] Pezda T. Cycles of polynomial mappings in several variables over rings of integers in finite extensions of the rationals II [J]. Monatsh. Math., 2005, 145: 321–331.
- [3] Stark H M. A complete determination of the complex quadratic fields of class-number one [J]. Michigan Math. J., 1967, 14(1): 1–27.
- [4] Cross J T. The Euler φ-function in the Gaussian integers [J]. Amer. Math. Monthly, 1983, 90: 518–528.

Vol. 38

- [5] Tang Gaohua, Su Hudong, Yi Zhong. The unit groups of $\mathbb{Z}_n[i]$ [J]. J. Guangxi Normal Univ., 2010, 28(2): 38–41.
- [6] Wei Yangjiang, Su Huadong, Tang Gaohua. The unit groups of the quotient rings of the complex quadratic rings [J]. Front. Math. China, 2016, 11(4): 1037–1056.
- [7] Wei Yangjiang, Tang Gaohua. The square mapping graphs of the ring $\mathbb{Z}_n[i]$ [J]. J. Math., 2016, 36(4): 676–682.
- [8] Karpilovsky G. Units groups of classical rings [M]. New York: Oxford University Press, 1988.
- [9] Niven I, Zuckerman H S. An introduction to the theory of numbers [M]. New York: John Wiley Sons, 1980.

虚二次环的商环的单位群

韦扬江,苏磊磊,唐高华

(广西师范学院数学与统计科学学院, 广西 南宁 530023)

摘要: 本文研究了有理数域 Q 的二次扩域Q(\sqrt{d})的整数环 R_d 的商环的单位群.利用二项式分解以 及有限交换群的结构性质,获得了 d = -3, -7, -11, -19, -43, -67, -163 时 $R_d/\langle \vartheta^n \rangle$ 的单位群结构,其 中 $\vartheta \in R_d$ 的素元, $n \in \mathcal{L}$ 在意正整数.所得的结果推广了由 J. T. Cross (1983), G. H. Tang 与 H. D. Su (2010) 对 d = -1, 以及 Y. J. Wei (2016) 对 d = -2 时关于 $R_d/\langle \vartheta^n \rangle$ 的单位群的研究.

关键词: 虚二次环; 商环; 单位群; 二次扩域

MR(2010)主题分类号: 11R04; 20K01 中图分类号: O152.1; O156.1