ON THE UNIT GROUPS OF THE QUOTIENT RINGS OF IMAGINARY QUADRATIC NUMBER RINGS

WEI Yang－jiang，SU Lei－lei，TANG Gao－hua
（School of Mathematics and Statistics，Guangxi Teachers Education University， Nanning 530023，China）

Abstract

In this paper，we investigate the unit groups of the quotient rings of the inte－ ger rings R_{d} of the quadratic fields $\mathbb{Q}(\sqrt{d})$ over the rational number field \mathbb{Q} ．By employing the polynomial expansions and the theory of finite groups，we completely determine the unit groups of $R_{d} /\left\langle\vartheta^{n}\right\rangle$ for $d=-3,-7,-11,-19,-43,-67,-163$ ，where ϑ is a prime in R_{d} ，and n is an arbitrary positive integer．The results in this paper generalize the study of the unit groups of $R_{d} /\left\langle\vartheta^{n}\right\rangle$ for $d=-1$ ，which obtained by J．T．Cross（1983），G．H．Tang and H．D．Su（2010）and for the case $d=-2$ by Y．J．Wei（2016）．

Keywords：imaginary quadratic number ring；quotient ring；unit group；quadratic field
2010 MR Subject Classification：11R04；20K01
Document code：A Article ID：0255－7797（2018）04－0602－17

1 Introduction

Let $K=\mathbb{Q}(\sqrt{d})$ ，the quadratic field over \mathbb{Q} ，where \mathbb{Q} is the rational number field and d is a square－free integer other than 0 and 1 ．The ring of algebraic integers of K is denoted by R_{d} ，and it is very important for the study of dynamical systems，e．g．，see［1，2］．We call R_{d} an imaginary quadratic number ring if $d<0$ ．From the work of Stark［3］，we know that there are only finite negative integers d such that the complex quadratic ring R_{d} is a unique－factorization domain，namely，$d=-1,-2,-3,-7,-11,-19,-43,-67,-163$ ．For an arbitrary prime element $\vartheta \in R_{d}$ ，and a positive integer n ，the unit groups of $R_{d} /\left\langle\vartheta^{n}\right\rangle$ were determined for the cases $d=-1,-2,-3$ in［4－6］，respectively．Moreover，the square mapping graphs for the Gaussian integer ring modulo n is studied in paper［7］．In this paper，we investigate the unit groups of $R_{d} /\left\langle\vartheta^{n}\right\rangle$ for the cases $d=-3,-7,-11,-19,-43,-67,-163$ ， and we make some corrections to the case of $d=-3$ in paper［6］．

Throughout this paper，we denote by \mathbb{Z} the set of rational integers， \mathbb{Z}_{n} is the additive cyclic group of order $n, \mathbb{Z} /\langle n\rangle$ is the ring of integers modulo n ，and $o(\theta)$ is the order of θ in

[^0]Biography：Wei Yangjiang（1969－），female，born at Nanning，Guangxi，professor，major in com－ mutative algebra．
a group. For a given ring R, let $U(R)$ denote the unit group of R, let $\langle\gamma\rangle$ denote the ideal of R generated by $\gamma \in R$. If γ is an element of a given group G, we also use $\langle\gamma\rangle$ to denote the subgroup of G generated by $\gamma \in G$. The Legendre symbol $\left(\frac{a}{p}\right)$, where a is an integer, p is a prime and $p \nmid a$, is defined as follows: if there exists an integer x such that $x^{2} \equiv a(\bmod p)$, then $\left(\frac{a}{p}\right)=1$, otherwise, $\left(\frac{a}{p}\right)=-1$.

Lemma 1.1 [8, Lemma 2.4.2] The ring R_{d} of algebraic integers of $K=\mathbb{Q}(\sqrt{d})$ is
(1) $R_{d}=\{a+b \sqrt{d}: a, b \in \mathbb{Z}\}$, if $d \equiv 2,3(\bmod 4)$.
(2) $R_{d}=\left\{\frac{1}{2}(a+b \sqrt{d}): a, b \in \mathbb{Z}\right.$ are of the same parity $\}$, if $d \equiv 1(\bmod 4)$.

By Lemma 1.1, for $d=-3,-7,-11,-19,-43,-67,-163$, the elements of R_{d} are all of the form $\frac{1}{2}(a+b \sqrt{d})$, where $a, b \in \mathbb{Z}$ are of the same parity. Moreover, we know that $U\left(R_{d}\right)=\{ \pm 1\}$ for all $d=-3,-7,-11,-19,-43,-67,-163$.

Now, we need to identify all primes in the ring R_{d}. The following theorem is obtained from [9, Theorem 9.29].

Theorem 1.2 For $d=-3,-7,-11,-19,-43,-67,-163$, up to multiplication by units, the primes of R_{d} are the following three types $(D=-d)$:
(1) p, where $p \in \mathbb{Z}$ is a prime satisfying the Legendre symbol $\left(\frac{p}{D}\right)=-1$;
(2) π or $\bar{\pi}$, where $q=\pi \bar{\pi} \in \mathbb{Z}$ is a prime satisfying the Legendre symbol $\left(\frac{q}{D}\right)=1$;
(3) $\delta=\sqrt{d}$.

2 Main Results

Throughout this section, $d=-3,-7,-11,-19,-43,-67,-163$. For conveniences, we denote by $D=-d$. Let n be a positive integer, and ϑ is a prime in R_{d}. We determine the structure of unit groups of $R_{d} /\left\langle\vartheta^{n}\right\rangle$.

First, we characterize the equivalence classes of $R_{d} /\left\langle\vartheta^{n}\right\rangle$, where ϑ is prime in R_{d}. For $\alpha \in$ R_{d}, we denote by $[\alpha] \in R_{d} /\left\langle\vartheta^{n}\right\rangle$ the equivalence class which α belongs to. Simultaneously, we make corrections to the equivalence classes which are given in [6, Theorem 3.2] for the case $d=-3$.

Theorem 2.3 Let ϑ denote a prime of $R_{d}, \delta=\sqrt{d}, D=-d$. For an arbitrary positive integer n, the equivalence classes of $R_{d} /\left\langle\vartheta^{n}\right\rangle$ are of the following types:
(1) $R_{d} /\left\langle\delta^{2 m}\right\rangle=\left\{\left[r_{1}+r_{2} \sqrt{d}\right]: 0 \leqslant r_{i} \leqslant D^{m}-1, r_{i} \in \mathbb{Z}, i=1,2\right\}, m \geqslant 1$;
(2) $R_{d} /\left\langle\delta^{2 m+1}\right\rangle=\left\{\left[r_{1}+r_{2} \sqrt{d}\right]: 0 \leqslant r_{1} \leqslant D^{m+1}-1,0 \leqslant r_{2} \leqslant D^{m}-1, r_{1}, r_{2} \in \mathbb{Z}\right\}, m \geqslant$ $0 ;$
(3) $R_{d} /\left\langle p^{n}\right\rangle=\left\{\left[r_{1}+r_{2} \sqrt{d}\right]: 0 \leqslant r_{i} \leqslant p^{n}-1, r_{i} \in \mathbb{Z}, i=1,2\right\}$, where p is an odd prime in \mathbb{Z} satisfying the Legendre symbol $\left(\frac{p}{D}\right)=-1$;
(4) $R_{d} /\left\langle\pi^{n}\right\rangle=\left\{[a]: 0 \leqslant a \leqslant q^{n}-1, a \in \mathbb{Z}\right\}$, where $q=\pi \bar{\pi}$ is a prime in \mathbb{Z} satisfying the Legendre symbol $\left(\frac{q}{D}\right)=1$;
(5) Suppose that $d \neq-7$. Then
(a) $R_{d} /\langle 2\rangle=\left\{[0],[1],\left[\frac{1}{2}+\frac{1}{2} \sqrt{d}\right],\left[\frac{1}{2}-\frac{1}{2} \sqrt{d}\right]\right\}$;
(b) For $n \geqslant 2, R_{d} /\left\langle 2^{n}\right\rangle=R_{1} \cup R_{2} \cup R_{3}$, where

$$
\begin{aligned}
& R_{1}=\left\{\left[r_{1}+r_{2} \sqrt{d}\right]: 0 \leqslant r_{i} \leqslant 2^{n-1}-1, \quad r_{i} \in \mathbb{Z}, \quad i=1,2\right\} \\
& R_{2}=\left\{\left[r_{1}-r_{2} \sqrt{d}\right]: 0 \leqslant r_{1} \leqslant 2^{n-1}-1, \quad 1 \leqslant r_{2} \leqslant 2^{n-1}, \quad r_{1}, r_{2} \in \mathbb{Z}\right\} \\
& R_{3}=\left\{\left[\frac{r_{1}}{2} \pm \frac{r_{2}}{2} \sqrt{d}\right]: 1 \leqslant r_{i} \leqslant 2^{n}-1, \quad r_{i} \in \mathbb{Z}, \quad 2 \nmid r_{i}, \quad i=1,2\right\}
\end{aligned}
$$

Proof (1) As $\delta^{2 m}=d^{m}$, we get that $\left\langle\delta^{2 m}\right\rangle=\left\langle D^{m}\right\rangle$. Suppose $\alpha=a_{1}+a_{2} \sqrt{d} \in R_{d}$, where $a_{1}, a_{2} \in \mathbb{Z}$. Let $a_{i}=D^{m} k_{i}+r_{i}$ with $0 \leqslant r_{i} \leqslant D^{m}-1, k_{i} \in \mathbb{Z}, i=1,2$. Then $\alpha=\left(r_{1}+r_{2} \sqrt{d}\right)+D^{m}\left(k_{1}+k_{2} \sqrt{d}\right)$. So α and $r_{1}+r_{2} \sqrt{d}$ belong to the same equivalence class of $R_{d} /\left\langle\delta^{2 m}\right\rangle$.

On the other hand, let $\beta=\frac{1}{2}\left(b_{1}+b_{2} \sqrt{d}\right) \in R_{d}$, where b_{1} and b_{2} are odd integers. Since D is odd for $i=1,2$, there exists a unique integer $g_{i} \in\left\{0,1, \cdots, D^{m}-1\right\}$ satisfying the congruence $2 g_{i} \equiv b_{i}\left(\bmod D^{m}\right)$. Hence, there exists an odd integer x_{i} such that $b_{i}=$ $D^{m} x_{i}+2 g_{i}, i=1,2$. Therefore, $\gamma=\frac{x_{1}}{2}+\frac{x_{2}}{2} \sqrt{d} \in R_{d}$, and $\beta=\left(g_{1}+g_{2} \sqrt{d}\right)+D^{m} \gamma$, which implies that β and $g_{1}+g_{2} \sqrt{d}$ belong to the same equivalence class of $R_{d} /\left\langle\delta^{2 m}\right\rangle$. Finally, it is easy to verify that the classes of (1) are distinct.
(2) As $\delta^{2 m+1}=d^{m} \delta$, we get that $\left\langle\delta^{2 m+1}\right\rangle=\left\langle D^{m} \sqrt{d}\right\rangle$. Suppose $\alpha=a_{1}+a_{2} \sqrt{d} \in R_{d}$, where $a_{1}, a_{2} \in \mathbb{Z}$. Let $a_{1}=D^{m+1} k_{1}+r_{1}$ with $0 \leqslant r_{1} \leqslant D^{m+1}-1$. Let $a_{2}=D^{m} k_{2}+r_{2}$ with $0 \leqslant r_{2} \leqslant D^{m}-1$. Then $\alpha=\left(r_{1}+r_{2} \sqrt{d}\right)+D^{m} \sqrt{d}\left(k_{2}-k_{1} \sqrt{d}\right)$. So α and $r_{1}+r_{2} \sqrt{d}$ belong to the same equivalence class of $R_{d} /\left\langle\delta^{2 m+1}\right\rangle$.

On the other hand, let $\beta=\frac{1}{2}\left(b_{1}+b_{2} \sqrt{d}\right) \in R_{d}$, where b_{1} and b_{2} are odd integers. Since D is odd, there exists a unique integer $g_{1} \in\left\{0,1, \cdots, D^{m+1}-1\right\}$ satisfying congruence $2 g_{1} \equiv b_{1}\left(\bmod D^{m+1}\right)$. Analogously, there exists a unique integer $g_{2} \in\left\{0,1, \cdots, D^{m}-1\right\}$ satisfying congruence $2 g_{2} \equiv b_{2}\left(\bmod D^{m}\right)$. Therefore, there exist odd integers x_{1}, x_{2} such that $b_{1}=D^{m+1} x_{1}+2 g_{1}$, and $b_{2}=D^{m} x_{2}+2 g_{2}$. Hence, $\gamma=\frac{x_{2}}{2}-\frac{x_{1}}{2} \sqrt{d} \in R_{d}$, and $\beta=\left(g_{1}+g_{2} \sqrt{d}\right)+D^{m} \sqrt{d}\left(\frac{x_{2}}{2}-\frac{x_{1}}{2} \sqrt{d}\right)$, which implies that β and $g_{1}+g_{2} \sqrt{d}$ belong to the same equivalence class of $R_{d} /\left\langle\delta^{2 m+1}\right\rangle$.

Finally, it is easy to verify that the classes of (2) are distinct.
(3) It can be proved with the similar method to (1). Suppose $\alpha=a_{1}+a_{2} \sqrt{d} \in R_{d}$, where $a_{1}, a_{2} \in \mathbb{Z}$. Let $a_{i}=p^{n} k_{i}+r_{i}$ with $0 \leqslant r_{i} \leqslant p^{n}-1, k_{i} \in \mathbb{Z}, i=1,2$. Then $\alpha=\left(r_{1}+r_{2} \sqrt{d}\right)+p^{n}\left(k_{1}+k_{2} \sqrt{d}\right)$. So α and $r_{1}+r_{2} \sqrt{d}$ belong to the same equivalence class of $R_{d} /\left\langle p^{n}\right\rangle$.

On the other hand, let $\beta=\frac{1}{2}\left(b_{1}+b_{2} \sqrt{d}\right) \in R_{d}$, where b_{1} and b_{2} are odd integers. Since p is odd for $i=1,2$, there exists a unique integer $g_{i} \in\left\{0,1, \cdots, p^{n}-1\right\}$ satisfying the congruence $2 g_{i} \equiv b_{i}\left(\bmod p^{n}\right)$. Hence, there exists an odd integer x_{i} such that $b_{i}=p^{n} x_{i}+2 g_{i}$, $i=1,2$. Therefore, $\gamma=\frac{x_{1}}{2}+\frac{x_{2}}{2} \sqrt{d} \in R_{d}$, and $\beta=\left(g_{1}+g_{2} \sqrt{d}\right)+p^{n} \gamma$, which implies that β and $g_{1}+g_{2} \sqrt{d}$ belong to the same equivalence class of $R_{d} /\left\langle p^{n}\right\rangle$. Finally, it is easy to verify that the classes of (3) are distinct.
(4) Let $q=\pi \bar{\pi}$ be a prime in \mathbb{Z} satisfying the Legendre symbol $\left(\frac{q}{D}\right)=1$. Let $\pi^{n}=$ $\frac{1}{2}(s+t \sqrt{d})$, where $s, t \in \mathbb{Z}$ are of the same parity. Then it is clear that $q \nmid s t$. Suppose that
$\beta=\frac{1}{2}\left(b_{1}+b_{2} \sqrt{d}\right) \in R_{d}$, where $b_{1}, b_{2} \in \mathbb{Z}$ are of the same parity. We show that in the quotient ring $R_{d} /\left\langle\pi^{n}\right\rangle, \beta$ belongs to the equivalence class $[a]$ for some $a \in\left\{0,1, \cdots, q^{n}-1\right\}$. Indeed, Let $\gamma=\frac{1}{2}(x+y \sqrt{d}) \in R_{d}$, where $x, y \in \mathbb{Z}$ are of the same parity, such that $\beta=a+\pi^{n} \gamma$. Then the following equations hold

$$
\begin{align*}
& a+\frac{1}{4} x s+\frac{1}{4} d y t=\frac{1}{2} b_{1}, \tag{2.1}\\
& \frac{1}{4} y s+\frac{1}{4} x t=\frac{1}{2} b_{2} . \tag{2.2}
\end{align*}
$$

Now we solve the integer a from the above equations. By equation (2.1), we obtain

$$
\begin{equation*}
4 a s+x s^{2}+d y t s=2 b_{1} s \tag{2.3}
\end{equation*}
$$

And by equation (2.2), we get $-d y t s-d t^{2} x=-2 b_{2} d t$. Eliminating $d y t s$ between this equation and (2.3), we obtain

$$
\begin{equation*}
4 a s+x\left(s^{2}-d t^{2}\right)=2\left(b_{1} s-d b_{2} t\right) \tag{2.4}
\end{equation*}
$$

Note that $q=\pi \bar{\pi}$ and $\pi^{n}=\frac{1}{2}(s+t \sqrt{d})$, we have $s^{2}-d t^{2}=4 q^{n}$. Substituting this into (2.4), it follows that

$$
\begin{equation*}
4 a s+4 q^{n} x=2\left(b_{1} s-d b_{2} t\right) \tag{2.5}
\end{equation*}
$$

Moreover, since $s, t \in \mathbb{Z}$ are of the same parity and $b_{1}, b_{2} \in \mathbb{Z}$ are of the same parity and note that d is odd, we derive $b_{1} s-d b_{2} t$ is even. Hence, equation (2.5) can be written as $a s+q^{n} x=\frac{1}{2}\left(b_{1} s-d b_{2} t\right)$, which implies that

$$
\begin{equation*}
a s \equiv \frac{1}{2}\left(b_{1} s-d b_{2} t\right)\left(\bmod q^{n}\right) \tag{2.6}
\end{equation*}
$$

Because $q \nmid s$, the last congruence (2.6) in a has a unique solution $a \in\left\{0,1, \cdots, q^{n}-1\right\}$. Therefore, β belongs to the equivalence class $[a]$, as desired.

Finally, it is easy to verify that the classes of (4) are distinct.
(5) Suppose $d \neq-7$.
(a) We first determine the structure of the quotient ring $R_{d} /\langle 2\rangle$. Suppose $\alpha_{1}=a \in \mathbb{Z}$. If a is even, then $\frac{a}{2} \in R_{d}$. It follows from $\alpha_{1}=0+2 \times \frac{a}{2}$ that α_{1} belongs to the equivalence class [0] in the quotient ring $R_{d} /\langle 2\rangle$. If a is odd, then $a=1+2 k$ for some $k \in \mathbb{Z}$. Then clearly α_{1} belongs to the equivalence class [1].

Suppose $\alpha_{2}=b \sqrt{d}$, where $b \in \mathbb{Z}$. If b is even, then $\frac{b}{2} \sqrt{d} \in R_{d}$. We have

$$
\alpha_{2}=b \sqrt{d}=0+2 \times \frac{b}{2} \sqrt{d}
$$

So clearly α_{2} belongs to the equivalence class [0]. If b is odd, then

$$
\alpha_{2}=b \sqrt{d}=1+2\left(-\frac{1}{2}+\frac{b}{2} \sqrt{d}\right)
$$

Therefore, α_{2} belongs to the equivalence class [1].

Suppose $\alpha_{3}=s+t \sqrt{d} \in R_{d}$, where $s, t \in \mathbb{Z}$. If s and t are of the same parity, then $\frac{s}{2}+\frac{t}{2} \sqrt{d} \in R_{d}$. Moreover, we have $s+t \sqrt{d}=0+2\left(\frac{s}{2}+\frac{t}{2} \sqrt{d}\right)$. Hence, α_{3} belongs to the equivalence class [0]. If s and t are not of the same parity, then $\frac{s-1}{2}+\frac{t}{2} \sqrt{d} \in R_{d}$. Since $s+t \sqrt{d}=1+2\left(\frac{s-1}{2}+\frac{t}{2} \sqrt{d}\right)$, we obtain that α_{3} belongs to the equivalence class [1].

Now, suppose $\alpha_{4}=\frac{x}{2}+\frac{y}{2} \sqrt{d}$, where $x=2 k_{1}+1, y=2 k_{2}+1, k_{1}, k_{2} \in \mathbb{Z}$. If k_{1} and k_{2} are of the same parity, then $\frac{k_{1}}{2}+\frac{k_{2}}{2} \sqrt{d} \in R_{d}$. Moreover, since $\alpha_{4}=\left(\frac{1}{2}+\frac{1}{2} \sqrt{d}\right)+2\left(\frac{k_{1}}{2}+\frac{k_{2}}{2} \sqrt{d}\right)$, we obtain that α_{4} belongs to the equivalence class $\left[\frac{1}{2}+\frac{1}{2} \sqrt{d}\right]$. If k_{1} and k_{2} are not of the same parity, then $\frac{k_{1}}{2}+\frac{k_{2}+1}{2} \sqrt{d} \in R_{d}$. Furthermore, $\alpha_{4}=\left(\frac{1}{2}-\frac{1}{2} \sqrt{d}\right)+2\left(\frac{k_{1}}{2}+\frac{k_{2}+1}{2} \sqrt{d}\right)$. Thus, α_{4} belongs to the equivalence class $\left[\frac{1}{2}-\frac{1}{2} \sqrt{d}\right]$.

Finally, we show that the classes of (5) (a) are distinct. Clearly

$$
[0] \neq[1] \neq\left[\frac{1}{2} \pm \frac{1}{2} \sqrt{d}\right] \neq[0]
$$

If $\left[\frac{1}{2}+\frac{1}{2} \sqrt{d}\right]=\left[\frac{1}{2}-\frac{1}{2} \sqrt{d}\right]$, then there exits $\gamma=\frac{x_{1}}{2}+\frac{x_{2}}{2} \sqrt{d} \in R_{d}$, where $x_{1}, x_{2} \in \mathbb{Z}$ are of the same parity, such that

$$
\frac{1}{2}+\frac{1}{2} \sqrt{d}=\left(\frac{1}{2}-\frac{1}{2} \sqrt{d}\right)+2\left(\frac{x_{1}}{2}+\frac{x_{2}}{2} \sqrt{d}\right) .
$$

Clearly, the above equation holds if and only if $x_{1}=0$ and $x_{2}=1$, which is impossible, since $x_{1}, x_{2} \in \mathbb{Z}$ must be of the same parity. Hence, we conclude that $\left[\frac{1}{2}+\frac{1}{2} \sqrt{d}\right] \neq\left[\frac{1}{2}-\frac{1}{2} \sqrt{d}\right]$. Therefore, the classes of (5) (a) are distinct.
(b) Now, let $n \geqslant 2$. We determine the structure of the quotient ring $R_{d} /\left\langle 2^{n}\right\rangle$. Suppose $\beta_{1}=a_{1}+a_{2} \sqrt{d} \in R_{d}$, where $a_{1}, a_{2} \in \mathbb{Z}$. Let $a_{i}=2^{n-1} k_{i}+r_{i}, k_{i}, r_{i} \in \mathbb{Z}$, and $0 \leqslant r_{i} \leqslant 2^{n-1}-1$ for $i=1,2$. First, if k_{1} and k_{2} are of the same parity, then $\frac{k_{1}}{2}+\frac{k_{2}}{2} \sqrt{d} \in R_{d}$. Moreover, since $\beta_{1}=\left(r_{1}+r_{2} \sqrt{d}\right)+2^{n}\left(\frac{k_{1}}{2}+\frac{k_{2}}{2} \sqrt{d}\right)$, we conclude that β_{1} and $r_{1}+r_{2} \sqrt{d}$ belong to the same equivalence class in the quotient ring $R_{d} /\left\langle 2^{n}\right\rangle$. Secondly, if k_{1} and k_{2} are not of the same parity, then $\frac{k_{1}}{2}+\frac{k_{2}+1}{2} \sqrt{d} \in R_{d}$. Since $\beta_{1}=\left[r_{1}-\left(2^{n-1}-r_{2}\right) \sqrt{d}\right]+2^{n}\left(\frac{k_{1}}{2}+\frac{k_{2}+1}{2} \sqrt{d}\right)$, we obtain that β_{1} and $r_{1}-\left(2^{n-1}-r_{2}\right) \sqrt{d}$ belong to the same equivalence class. Furthermore, since $0 \leqslant r_{2} \leqslant 2^{n-1}-1$, we derive that $1 \leqslant 2^{n-1}-r_{2} \leqslant 2^{n-1}$. So in the second case, i.e., k_{1} and k_{2} are not of the same parity, we get that β_{1} and $r_{1}-r_{2}^{\prime} \sqrt{d}$ belong to the same equivalence class, where $1 \leqslant r_{2}^{\prime} \leqslant 2^{n-1}$ and $r_{2}^{\prime}=2^{n-1}-r_{2}$.

Next, suppose that $\beta_{2}=\frac{b_{1}}{2}+\frac{b_{2}}{2} \sqrt{d}$, where b_{1} and b_{2} are odd integers. Let $b_{i}=2^{n} k_{i}+r_{i}$, where $k_{i}, r_{i} \in \mathbb{Z}, 1 \leqslant r_{i} \leqslant 2^{n}-1$ and $2 \nmid r_{i}$ for $i=1,2$. First, if k_{1} and k_{2} are of the same parity, then $\frac{k_{1}}{2}+\frac{k_{2}}{2} \sqrt{d} \in R_{d}$. Moreover, since $\beta_{2}=\left(\frac{r_{1}}{2}+\frac{r_{2}}{2} \sqrt{d}\right)+2^{n}\left(\frac{k_{1}}{2}+\frac{k_{2}}{2} \sqrt{d}\right)$, we obtain that β_{2} and $\frac{r_{1}}{2}+\frac{r_{2}}{2} \sqrt{d}$ belong to the same equivalence class. Secondly, if k_{1} and k_{2} are not of the same parity, then $\frac{k_{1}}{2}+\frac{k_{2}+1}{2} \sqrt{d} \in R_{d}$. Since $\beta_{2}=\left(\frac{r_{1}}{2}-\frac{2^{n}-r_{2}}{2} \sqrt{d}\right)+2^{n}\left(\frac{k_{1}}{2}+\frac{k_{2}+1}{2} \sqrt{d}\right)$, it follows that β_{2} and $\frac{r_{1}}{2}-\frac{2^{n}-r_{2}}{2} \sqrt{d}$ belong to the same equivalence class. Furthermore, according to $1 \leqslant r_{2} \leqslant 2^{n}-1$, we have $1 \leqslant 2^{n}-r_{2} \leqslant 2^{n}-1$. So, in the second case, i.e., k_{1} and k_{2} are not of the same parity, we obtain that β_{2} and $\frac{r_{1}}{2}-\frac{r_{2}^{\prime}}{2} \sqrt{d}$ belong to the same equivalence class, where $1 \leqslant r_{2}^{\prime} \leqslant 2^{n}-1$ and $r_{2}^{\prime}=2^{n}-r_{2}$.

Finally, we claim that the classes of (5) (b) are distinct. We only show that

$$
\left[\frac{r_{1}}{2}+\frac{r_{2}}{2} \sqrt{d}\right] \neq\left[\frac{x_{1}}{2}-\frac{x_{2}}{2} \sqrt{d}\right],
$$

where $r_{i}, x_{i} \in\left\{1,3, \cdots, 2^{n}-1\right\}$ with $2 \nmid r_{i} x_{i}$ for $i=1,2$. Indeed, if $\left[\frac{r_{1}}{2}+\frac{r_{2}}{2} \sqrt{d}\right]=\left[\frac{x_{1}}{2}-\frac{x_{2}}{2} \sqrt{d}\right]$, then there exit $t_{1}, t_{2} \in \mathbb{Z}$ of the same parity such that

$$
\frac{r_{1}}{2}+\frac{r_{2}}{2} \sqrt{d}=\left(\frac{x_{1}}{2}-\frac{x_{2}}{2} \sqrt{d}\right)+2^{n}\left(\frac{t_{1}}{2}+\frac{t_{2}}{2} \sqrt{d}\right)
$$

So we obtain $r_{1}=x_{1}+2^{n} t_{1}$ and $r_{2}=-x_{2}+2^{n} t_{2}$. It is easy to show that $t_{1}=0$ and $t_{2}=1$, which is a contradiction.

Example 2.4 To illustrate the case $d=-19, q=23=\pi \bar{\pi}$ and $n=2$, let $\gamma=$ $\frac{1}{2}\left(b_{1}+b_{2} \sqrt{-19}\right) \in R_{d}$, where $b_{1}=3$ and $b_{2}=1$. We give the equivalence class in $R_{d} /\left\langle\pi^{2}\right\rangle$ which γ belongs to. Since $\pi=2-\sqrt{-19}$ is a proper factor of q in $R_{d}, \pi^{2}=-15-4 \sqrt{-19}=$ $\frac{-30}{2}-\frac{8}{2} \sqrt{-19}$. Denoted by $s=-30, t=-8$. Substituting the values for s, t, b_{1}, b_{2}, d, q and n into congruence (2.6), we get that $a=198$ is a solution to congruence (2.6). Moreover, substituting the values for a, s, t, b_{1}, b_{2} and d into equations (2.1) and (2.2), we have $x=11$ and $y=-3$. Therefore,

$$
\gamma=\frac{3}{2}+\frac{1}{2} \sqrt{-19}=198+\pi^{2}\left(\frac{11}{2}-\frac{3}{2} \sqrt{-19}\right)
$$

which implies that γ belongs to the class [198].
As an easy consequence of Theorem 2.1 (5), we have
Corollary 2.5 Suppose that 2 is prime in R_{d}. Let $\alpha=[a+b \sqrt{d}] \in R_{d} /\left\langle 2^{n}\right\rangle$, where $0 \leqslant a, b \leqslant 2^{n-1}-1, a, b \in \mathbb{Z}$. Then
(1) $\alpha=[1]$ if and only if $a=2^{n-1} k_{1}+1, b=2^{n-1} k_{2}$, where $k_{1}, k_{2} \in \mathbb{Z}$ are of the same parity.
(2) If $a=2^{n} k_{1}+1, b=2^{n} k_{2}, k_{1}, k_{2} \in \mathbb{Z}$, then $\alpha=[1]$.

Now, we determine the structure of unit groups of $R_{d} /\left\langle\vartheta^{n}\right\rangle$ for an arbitrary prime ϑ of R_{d}. First of all, we consider the case of $\vartheta=\delta=\sqrt{d}$. Let $\bar{R}=R_{d} /\left\langle\delta^{n}\right\rangle$. For $\alpha=[a+b \sqrt{d}] \in \bar{R}$, it is easy to show that $\alpha \in U(\bar{R})$ if and only if $d \nmid\left(a^{2}-d b^{2}\right)$, if and only if $d \nmid a$, if and only if $D \nmid a$.

Theorem 2.6 Let $\bar{R}=R_{d} /\left\langle(\sqrt{d})^{n}\right\rangle, n$ is an arbitrary positive integer. Let $D=-d$. Then the unit groups $U(\bar{R})$ of \bar{R} are as the follows:
(1) Let $n=1$. Then $U(\bar{R}) \cong \mathbb{Z}_{D-1}$.
(2) Let $n=2$. Then $U(\bar{R}) \cong \mathbb{Z}_{D-1} \times \mathbb{Z}_{D}$.
(3) Let $n=2 m$ with $m \geqslant 2$.
(a) If $d \neq-3$, then $U(\bar{R}) \cong \mathbb{Z}_{D-1} \times \mathbb{Z}_{D^{m-1}} \times \mathbb{Z}_{D^{m}}$;
(b) If $d=-3$, then $U(\bar{R}) \cong \mathbb{Z}_{2} \times \mathbb{Z}_{3} \times \mathbb{Z}_{3^{m-1}} \times \mathbb{Z}_{3^{m-1}}$.
(4) If $n=2 m+1$ with $m \geqslant 1$, then $U(\bar{R}) \cong \mathbb{Z}_{D-1} \times \mathbb{Z}_{D^{m}} \times \mathbb{Z}_{D^{m}}$.

Proof (1) If $n=1$, by Theorem 2.1 (2), \bar{R} is a field of order $D=-d$, so $|U(\bar{R})|=D-1$. Therefore, $U(\bar{R})$ is a cyclic group of order $D-1$ and hence $U(\bar{R}) \cong \mathbb{Z}_{D-1}$.
(2) If $n=2$, then $|U(\bar{R})|=-d(-d-1)=D(D-1)$. Note that D is a prime, moreover D and $D-1$ are relatively prime, we get that $U(\bar{R}) \cong H \times \mathbb{Z}_{D}$, where H is a subgroup of order $D-1$. Moreover, we can easily show that $D-1$ is square-free for $D=3,7,11,43$ and 67.

On the other hand, if $D=19$, then $D-1=2 \times 3^{2}$, clearly $[4] \in U(\bar{R})$ is of order 3^{2}. If $D=163$, then $D-1=2 \times 3^{4}$, clearly $[4] \in U(\bar{R})$ is of order 3^{4}. Therefore $H \cong \mathbb{Z}_{D-1}$. So $U(\bar{R}) \cong \mathbb{Z}_{D-1} \times \mathbb{Z}_{D}$.
(3) (a) Suppose that $d \neq-3$. Let $n=2 m$ with $m \geqslant 2$. Let $\alpha=[a+b \sqrt{d}] \in \bar{R}$, where $a, b \in\left\{0,1, \cdots, D^{m}-1\right\}$. Since $\alpha \in U(\bar{R})$ if and only if $D \nmid a,|U(\bar{R})|=(D-1) D^{2 m-1}$, and we can write $U(\bar{R})=P \times H$, where P, H are finite groups, and $|P|=D-1,|H|=D^{2 m-1}$.

We determine the structure of H. Let $\alpha=[a+b \sqrt{d}] \in \bar{R}$ with $D \nmid a$. By Theorem 2.1 (1), for an arbitrary odd integer $W>1, \alpha^{W}$ equals to the equivalence class [1], i.e., $\alpha^{W}=[1]$ if and only if the following congruences hold

$$
\begin{align*}
& a^{W}+d\binom{W}{2} a^{W-2} b^{2}+\cdots+d^{\frac{W-1}{2}}\binom{W}{W-1} a b^{W-1} \equiv 1\left(\bmod D^{m}\right) \tag{2.7}\\
& \binom{W}{1} a^{W-1} b+d\binom{W}{3} a^{W-3} b^{3}+\cdots+d^{\frac{W-1}{2}} b^{W} \equiv 0\left(\bmod D^{m}\right) \tag{2.8}
\end{align*}
$$

First, we claim that for any $\alpha \in H, \alpha^{D^{m}}=[1]$. Let $W=D^{m}$. Since $d^{m} \left\lvert\, d^{j}\binom{W}{2 j}\right.$ for $j \geqslant 1$, the congruence (2.7) is equivalent to $a^{D^{m}} \equiv 1\left(\bmod D^{m}\right)$. It is well known that the unit group of the ring $\mathbb{Z} /\left\langle D^{m}\right\rangle$ is isomorphic to $\mathbb{Z}_{D^{m-1}} \times \mathbb{Z}_{D-1}$. Hence, we obtain that $a^{D^{m}} \equiv 1\left(\bmod D^{m}\right)$ if and only if $a \in \mathbb{Z}_{D^{m-1}}$. So in the set $\left\{0,1, \cdots, D^{m}-1\right\}$, there are precisely D^{m-1} elements a such that $a^{D^{m}} \equiv 1\left(\bmod D^{m}\right)$.

On the other hand, since $d^{m} \left\lvert\, d^{j}\binom{W}{2 j+1}\right.$ for $j \geqslant 0$, congruence (2.8) holds for any positive integer b. Therefore, we can conclude that $\alpha^{W}=[1]$ if and only if $a \in \mathbb{Z}_{D^{m-1}}$ and $b \in$ $\left\{0,1, \cdots, D^{m}-1\right\}$. Hence, the number of $\alpha \in U(\bar{R})$ satisfying $\alpha^{D^{m}}=[1]$ is

$$
D^{m-1} \times D^{m}=D^{2 m-1}
$$

Recall that $U(\bar{R})=P \times H$ with $|P|=D-1$ and $|H|=D^{2 m-1}$, we get that $\alpha^{D^{m}}=[1]$ for $\alpha \in H$.

Second, we consider the number of $\alpha \in U(\bar{R})$ satisfying $\alpha^{D^{m-1}}=[1]$. Let $W=D^{m-1}$. Since $d^{m} \left\lvert\, d^{j}\binom{W}{2 j}\right.$ for $j \geqslant 1$, congruence (2.7) holds if and only if $a^{D^{m-1}} \equiv 1\left(\bmod D^{m}\right)$, if and only if $a \in \mathbb{Z}_{D^{m-1}}$.

On the other hand, note that $d \neq-3$ and $d^{m} \left\lvert\, d^{j}\binom{W}{2 j+1}\right.$ for $1 \leqslant j \leqslant \frac{W-1}{2}$, congruence (2.8) is equivalent to $D^{m-1} a^{D^{m-1}-1} b \equiv 0\left(\bmod D^{m}\right)$. That is, $D^{m-1} b \equiv 0\left(\bmod D^{m}\right)$, since $D \nmid a$. Hence, we obtain $d \mid b$. So the solutions to congruence (2.8) are $b=D \cdot l$ with $l=0,1, \cdots, D^{m-1}-1$. Thus the number of $\alpha \in U(\bar{R})$ satisfying $\alpha^{D^{m-1}}=[1]$ is $D^{m-1} \times D^{m-1}=D^{2 m-2}$. Then the number of elements of order D^{m} in $U(\bar{R})$ is

$$
D^{2 m-1}-D^{2 m-2}=d^{2 m-2}(-d-1) .
$$

Finally, let we calculate the number of $\alpha \in H$ satisfying $\alpha^{D^{m-2}} \equiv 1\left(\bmod D^{m}\right)$. Let $W=D^{m-2}$. Since $d^{m} \left\lvert\, d^{j}\binom{W}{2 j+1}\right.$ for $2 \leqslant j \leqslant \frac{W-1}{2}$, congruence (2.8) holds if and only if

$$
\begin{equation*}
W a^{W-3} b\left[6 a^{2}+d(W-1)(W-2) b^{2}\right] \equiv 0\left(\bmod D^{m}\right) \tag{2.9}
\end{equation*}
$$

Since $D \nmid a$ and $d \neq-3$, we derive that $D \nmid\left[6 a^{2}+d(W-1)(W-2) b^{2}\right]$. So congruence (2.9) holds if and only if $d^{2} \mid b$, i.e., congruence (2.8) holds if and only if $d^{2} \mid b$. Furthermore, in the
case of $d^{2} \mid b$, we have $d^{m} \left\lvert\, d^{j}\binom{W}{2 j} b^{2 j}\right.$ for $j \geqslant 1$. Hence, in the case of $d^{2} \mid b$ congruence (2.7) holds if and only if $a^{W} \equiv 1\left(\bmod D^{m}\right)$. Clearly, the number of solutions of the last congruence is D^{m-2}. Thus the number of $\alpha \in H$ such that $\alpha^{D^{m-2}}=1$ is $D^{m-2} \times D^{m-2}=d^{2 m-4}$. So we derive that the number of elements of order D^{m-1} in $U(\bar{R})$ is

$$
\begin{equation*}
D^{2 m-2}-D^{2 m-4}=d^{2 m-4}\left(d^{2}-1\right) \tag{2.10}
\end{equation*}
$$

Now, let $\beta=[1+\sqrt{d}] \in \bar{R}$. Then by the above argument, we know that β is of order D^{m}. Since $m \geqslant 2$, clearly $\beta \in H$. Therefore $\mathbb{Z}_{D^{m}}$ is a subgroup of H and we can suppose $H \cong \mathbb{Z}_{D^{m}} \times \mathbb{Z}_{D^{l_{1}}} \times \cdots \times \mathbb{Z}_{D^{l_{h}}}$, where $l_{1}+\cdots+l_{h}=m-1$. If $h \geqslant 2$, then $1 \leqslant l_{i} \leqslant m-2$ for $i=1, \cdots, h$ and hence there are exactly $(D-1) \cdot D^{2 m-3}$ elements in H of order D^{m-1}, which contradicts the above result (2.10). If $h=1$, then $H \cong \mathbb{Z}_{D^{m}} \times \mathbb{Z}_{D^{m-1}}$. Therefore, the number of elements of order D^{m-1} in H is $D^{m-1} \times D^{m-1}-D^{m-2} \times D^{m-2}=d^{2 m-4}\left(d^{2}-1\right)$, which is the same as (2.10). So we can conclude that $h=1$ and $H \cong \mathbb{Z}_{D^{m}} \times \mathbb{Z}_{D^{m-1}}$.

In the following, we determine the structure of the subgroup P of $U(\bar{R})$, where $|P|=$ $-d-1$. Clearly, $-d-1$ is square-free for $d=-7,-11,-43,-67$ and hence $P \cong \mathbb{Z}_{D-1}$ in these cases. If $d=-19$, then $|P|=18=2 \times 3^{2}$.

On the other hand, let $a<19^{m}$ be a positive integer. If $a^{19^{t}} \equiv 1\left(\bmod 19^{m}\right)$ for some integers $t>1$, then clearly $a=1+19 x$ for some non-negative integers x. Hence, $4^{19^{t}} \not \equiv 1\left(\bmod 19^{m}\right)$ and $\left(4^{3}\right)^{19^{t}} \not \equiv 1\left(\bmod 19^{m}\right)$ for any $t>1$. Furthermore, we have

$$
\begin{aligned}
4^{9 \times 19^{m-1}} & =262144^{19^{m-1}} \\
& =(19 \times 13797+1)^{19^{m-1}} \\
& =19^{19^{m-1}} \times 13797^{19^{m-1}}+\cdots+19^{m-1} \times 19 \times 13797+1 \\
& \equiv 1\left(\bmod 19^{m}\right)
\end{aligned}
$$

Thus, if $d=-19$, the class [4] $\in \bar{R}$ is of order $3^{2} \cdot 19^{m-1}$, so $P \cong \mathbb{Z}_{2} \times \mathbb{Z}_{3^{2}} \cong \mathbb{Z}_{18}$. Analogously, if $d=-163$, we have

$$
\begin{aligned}
4^{81 \times 163^{m-1}} & =\left(4^{81}-1+1\right)^{163^{m-1}} \\
& =\left(4^{81}-1\right)^{163^{m-1}}+163^{m-1}\left(4^{81}-1\right)^{163^{m-1}-1}+\cdots+163^{m-1}\left(4^{81}-1\right)+1 \\
& \equiv 1\left(\bmod 163^{m}\right)
\end{aligned}
$$

Since $163 \|\left(4^{81}-1\right)$, the element $[4] \in \bar{R}$ in the case of $d=-163$ is of order $3^{4} \times$ 163^{m-1}, so $P \cong \mathbb{Z}_{2} \times \mathbb{Z}_{3^{4}} \cong \mathbb{Z}_{162}$. Therefore, we can conclude that $P \cong \mathbb{Z}_{D-1}$ for $d=-7,-11,-19,-43,-67,-163$. Accordingly, $U(\bar{R}) \cong P \times H \cong \mathbb{Z}_{D^{m}} \times \mathbb{Z}_{D^{m-1}} \times \mathbb{Z}_{D-1}$, as desired.
(b) Suppose that $d=-3, n=2 m, m \geqslant 1$. Let $\alpha=[a+b \sqrt{d}] \in U(\bar{R})$, where $a, b \in\left\{0,1, \cdots, 3^{m}-1\right\}$ and $3 \nmid a$. Since $|U(\bar{R})|=2 \times 3^{2 m-1}$, we can write $U(\bar{R}) \cong \mathbb{Z}_{2} \times Q$, where $|Q|=3^{2 m-1}$. We claim that $\alpha^{3^{m-1}}=[1]$ for $\alpha \in Q$. Let $W=3^{m-1}$. Since $3^{m} \left\lvert\, 3^{j}\binom{W}{2 j}\right.$ for $j \geqslant 1$, congruence (2.7) holds if and only if $a^{3^{m-1}} \equiv 1\left(\bmod 3^{m}\right)$, if and only if $a \in \mathbb{Z}_{3^{m-1}}$.

On the other hand, note that $3^{m} \left\lvert\, 3^{j}\binom{W}{2 j+1}\right.$ for $2 \leqslant j \leqslant \frac{W-1}{2}$, congruence (2.8) is equivalent to

$$
\begin{equation*}
b\left[a^{2}-\frac{\left(3^{m-1}-1\right)\left(3^{m-1}-2\right)}{2} b^{2}\right] \equiv 0(\bmod 3) \tag{2.11}
\end{equation*}
$$

If $3 \mid b$, then clearly congruence (2.11) holds. If $3 \nmid b$, we show that congruence (2.11) holds, too. Indeed, since $3 \nmid b$, it follows from congruence (2.11) that

$$
\begin{equation*}
2 a^{2}-\left(3^{m-1}-1\right)\left(3^{m-1}-2\right) b^{2} \equiv 0(\bmod 3) \tag{2.12}
\end{equation*}
$$

Moreover, we have $2 a^{2} \equiv 2(\bmod 3)$ for $3 \nmid a$. Thus congruence (2.12) reduces to $2-2 b^{2} \equiv$ $0(\bmod 3)$. The last congruence holds for $3 \nmid b$. Hence, congruence (2.12) holds for any integers b. So we can conclude that $\alpha^{3^{m-1}}=[1]$ if and only if

$$
\begin{equation*}
a \in \mathbb{Z}_{3^{m-1}}, \quad b \in\left\{0,1, \cdots, 3^{m}-1\right\} . \tag{2.13}
\end{equation*}
$$

Thus there are precisely $3^{m-1} \times 3^{m}=3^{2 m-1}$ elements $\alpha \in U(\bar{R})$ such that $\alpha^{3^{m-1}}=[1]$. Recall that $|Q|=3^{2 m-1}$, we obtain $\alpha^{3^{m-1}}=[1]$ for $\alpha \in Q$.

Next, we show that there exist elements in Q with order 3^{m-1}. Indeed, putting $W=$ 3^{m-2}. Substituting the value for W into congruence (2.7). Note that $3^{m} \left\lvert\, 3^{j}\binom{3^{m-2}}{2 j}\right.$ for $j \geqslant 2$, we derive that congruence (2.7) holds if and only if

$$
\begin{equation*}
2 a^{3^{m-2}}-3^{m-1}\left(3^{m-2}-1\right) a^{3^{m-2}-2} b^{2} \equiv 2\left(\bmod 3^{m}\right) \tag{2.14}
\end{equation*}
$$

If we substitute $a=b=1$ into congruence (2.14), we have $3^{m-1}\left(3^{m-2}-1\right) \equiv 0\left(\bmod 3^{m}\right)$, which is impossible for $m \geqslant 2$. Accordingly, congruence (2.7) does not hold for $a=b=1$, which implies that $(1+\sqrt{-3})^{3^{m-2}} \neq[1]$. Moreover, by the condition $(2.13),(1+\sqrt{-3})^{3^{m-1}}=$ [1]. So $\beta=[1+\sqrt{-3}] \in Q$. Hence β is of order 3^{m-1}. So $\langle 1+\sqrt{-3}\rangle \cong \mathbb{Z}_{3^{m-1}}$. Thus $Q \cong \mathbb{Z}_{3^{m-1}} \times J$, where J is a subgroup of Q with order 3^{m}.

Now, we claim that there are elements in J with order 3^{m-1}. We first note that $(1+$ $\sqrt{-3})^{3}=-8$, thus $(1+\sqrt{-3})^{3 t} \in \mathbb{Z}$ for $t \geqslant 1$. Moreover, since $(1+\sqrt{-3})^{2}=-2+2 \sqrt{-3}$, we conclude that $(1+\sqrt{-3})^{s}=x+y \sqrt{-3}$, where $3 \nmid y$ and $3 \nmid s$. Let $\gamma=[1+3 \sqrt{-3}]$. By condition (2.13), $\gamma \in Q$. Thus $\gamma^{3^{m-1}}=[1]$ but $\gamma \notin\langle 1+\sqrt{-3}\rangle$. Hence, $\gamma \in J$. Substituting $a=1, b=3$ and $W=3^{m-2}$ into congruence (2.8), and note that $3^{m} \left\lvert\, 3^{j}\binom{3^{m-2}}{2 j+1}\right.$ for $j \geqslant 2$, we derive that congruence (2.8) holds if and only if

$$
3^{m-1}-\frac{3^{m+1}\left(3^{m-2}-1\right)\left(3^{m-2}-2\right)}{2} \equiv 0\left(\bmod 3^{m}\right)
$$

The above congruence does not hold for $m \geqslant 2$. It follows that $(1+3 \sqrt{-3})^{3^{m-2}} \neq[1]$. Thus, $\gamma \in J$ is of order 3^{m-1}. Hence, $\mathbb{Z}_{3^{m-1}}$ is a subgroup of J, and $J \cong \mathbb{Z}_{3^{m-1}} \times \mathbb{Z}_{3}$. Accordingly, if $d=-3$, then $U(\bar{R}) \cong \mathbb{Z}_{2} \times \mathbb{Z}_{3} \times \mathbb{Z}_{3^{m-1}} \times \mathbb{Z}_{3^{m-1}}$, as desired.
(4) (a) Suppose that $d \neq-3$. Let $n=2 m+1$ with $m \geqslant 1$. For $\alpha=[a+b \sqrt{d}] \in \bar{R}$, we know that $\alpha \in U(\bar{R})$ if and only if $D \nmid a$. Then, for $n=2 m+1$, we have $|U(\bar{R})|=(D-1) \cdot D^{2 m}$. So $U(\bar{R})=K \times G$, where K, G are finite groups, and $|K|=D-1,|G|=D^{2 m}$.

We now determine the structure of G. Consider the polynomial expansions of α^{X}, where X is an arbitrary integer. By Theorem 2.1 (2), α^{X} equals to the equivalence class [1] if and only if the following congruences hold

$$
\begin{align*}
& a^{X}+d\binom{X}{2} a^{X-2} b^{2}+\cdots+d^{\frac{X-1}{2}}\binom{X}{X^{-1}} a b^{X-1} \equiv 1\left(\bmod D^{m+1}\right), \tag{2.15}\\
& \binom{X}{1} a^{X-1} b+d\binom{X}{3} a^{X-3} b^{3}+\cdots+d^{\frac{X-1}{2}} b^{X} \equiv 0\left(\bmod D^{m}\right) . \tag{2.16}
\end{align*}
$$

Firstly, putting $X=D^{m}$, and noting that $D^{m+1} \left\lvert\, d^{j}\binom{D_{2 j}^{m}}{2 j}\right.$ for $j \geqslant 1$, we derive that congruence (2.15) holds if and only if $a^{D^{m}} \equiv 1\left(\bmod D^{m+1}\right)$, if and only if $a \in\left\{1,2, \cdots, D^{m+1}-1\right\}$ with $a \in \mathbb{Z}_{D^{m}}$. Therefore, congruence $a^{D^{m}} \equiv 1\left(\bmod D^{m+1}\right)$ has precisely D^{m} solutions.

On the other hand, congruence (2.16) holds for $b \in\left\{1,2, \cdots, D^{m}-1\right\}$. Hence, the number of elements in $U(\bar{R})$ satisfying $\alpha^{D^{m}}=[1]$ is $D^{m} \times D^{m}=D^{2 m}$. Recall that $|G|=D^{2 m}$, we derive that $\alpha^{D^{m}}=[1]$ if and only if $\alpha \in G$.

Secondly, substituting $X=D^{m-1}$ into congruence (2.16). If $\alpha^{D^{m-1}}=[1]$, clearly $\alpha \in G$. Since $d \neq-3$, we have $D^{m} \left\lvert\, d^{j}\binom{D_{2 j+1}^{m-1}}{2 j}\right.$ for $j \geqslant 1$. Therefore, congruence (2.16) holds if and only if $D \mid b$. In the case of $D \mid b$, congruence (2.15) holds if and only $a^{D^{m-1}} \equiv 1\left(\bmod D^{m+1}\right)$, if and only if $a \in \mathbb{Z}_{D^{m-1}}$. Therefore, the number of elements in G satisfying $\alpha^{D^{m-1}}=[1]$ is $D^{m-1} \times D^{m-1}=D^{2 m-2}$. Hence, there are precisely

$$
\begin{equation*}
D^{2 m}-D^{2 m-2}=\left(d^{2}-1\right) \cdot d^{2 m-2} \tag{2.17}
\end{equation*}
$$

elements of order D^{m} in \bar{R}.
Now, let $\beta=[1+\sqrt{d}]$. Then $\beta^{D^{m}}=[1]$. However, by the above argument, we know that $\beta^{D^{m-1}} \neq[1]$. So the order of β is D^{m}. Therefore $\mathbb{Z}_{D^{m}}$ is a subgroup of G, and $G \cong \mathbb{Z}_{D^{m}} \times G_{2}$, where $\langle 1+\sqrt{d}\rangle \cong \mathbb{Z}_{D^{m}}$ and $\left|G_{2}\right|=D^{m}$.

Suppose $G_{2} \cong \mathbb{Z}_{D^{s_{1}}} \times \cdots \times \mathbb{Z}_{D^{s_{h}}}$, where $s_{1}+\cdots+s_{h}=m$. If $h \geqslant 2$, then $1 \leqslant s_{j} \leqslant m-1$ for $j=1, \cdots, h$. Hence, there are precisely $(D-1) \cdot D^{2 m-1}$ elements of order D^{m} in \bar{R}, which contradicts the above result (2.17). If $h=1$, then $G_{2} \cong \mathbb{Z}_{D^{m}}$ and hence $G \cong \mathbb{Z}_{D^{m}} \times \mathbb{Z}_{D^{m}}$. Thus the number of elements in \bar{R} of order D^{m} is $\left(d^{2}-1\right) \cdot d^{2 m-2}$, which is the same as (2.17). Hence, we conclude that $h=1$ and $G_{2} \cong \mathbb{Z}_{D^{m}}$. Therefore, if $n=2 m+1$ with $m \geqslant 1$, then $U(\bar{R}) \cong K \times \mathbb{Z}_{D^{m}} \times \mathbb{Z}_{D^{m}}$.

Finally, we determine the structure of the subgroup K for each case. Recall that $|K|=$ $D-1$. If $d=-7$, then $|K|=6=2 \times 3$, we have $K \cong \mathbb{Z}_{2} \times \mathbb{Z}_{3} \cong \mathbb{Z}_{D-1}$. If $d=-11$, then $|K|=10=2 \times 5$, thus $K \cong \mathbb{Z}_{2} \times \mathbb{Z}_{5} \cong \mathbb{Z}_{D-1}$. If $d=-19$, then $|K|=18=2 \times 3^{2}$, and by the similar argument to (3) above, the element [4] \bar{R} is of order $3^{2} \times 19^{m}$. So $K \cong \mathbb{Z}_{2} \times \mathbb{Z}_{3^{2}} \cong \mathbb{Z}_{D-1}$. If $d=-43$, then $|K|=42=6 \times 7$, so $K \cong \mathbb{Z}_{6} \times \mathbb{Z}_{7} \cong \mathbb{Z}_{D-1}$. If $d=-67$, then $|K|=66=6 \times 11$, thus $K \cong \mathbb{Z}_{6} \times \mathbb{Z}_{11} \cong \mathbb{Z}_{D-1}$. If $d=-163$, then $|K|=162=2 \times 3^{4}$, and by the similar argument to (3) above, the element [4] $\in \bar{R}$ is of order $3^{4} \times 163^{m}$. So $K \cong \mathbb{Z}_{2} \times \mathbb{Z}_{3^{4}} \cong \mathbb{Z}_{D-1}$. Hence $K \cong \mathbb{Z}_{D-1}$ for each case. Thus $U(\bar{R}) \cong \mathbb{Z}_{D-1} \times \mathbb{Z}_{D^{m}} \times \mathbb{Z}_{D^{m}}$, as desired.
(b) Suppose $d=-3$. Let $\alpha=[a+b \sqrt{-3}] \in \bar{R}$, where $3 \nmid a$. Then $|U(\bar{R})|=2 \times 3^{2 m}$. So $U(\bar{R})=\mathbb{Z}_{2} \times G$, where $|G|=3^{2 m}$. Applying the similar argument of above (a) for the case
$d \neq-3$, we get that $\alpha^{D^{m}}=[1]$ if and only if $a \in \mathbb{Z}_{3^{m}}$ and $b \in\left\{0,1, \cdots, 3^{m}-1\right\}$, if and only if $\alpha \in G$.

Now, substituting $X=3^{m-1}$ into congruence (2.16). We obtain that congruence (2.16) holds if and only if $2 a^{2} b-\left(3^{m-1}-1\right)\left(3^{m-1}-2\right) b^{3} \equiv 0(\bmod 3)$. We can verify that the last congruence holds for any integers b.

On the other hand, congruence (2.15) holds if and only if

$$
\begin{equation*}
2 a^{3^{m-1}}-3^{m}\left(3^{m-1}-1\right) a^{3^{m-1}-2} b^{2} \equiv 2\left(\bmod 3^{m+1}\right) \tag{2.18}
\end{equation*}
$$

Clearly, the above congruence (2.18) does not hold, if $a=b=1$. So $(1+\sqrt{-3})^{3^{m}}=[1]$, but $(1+\sqrt{-3})^{3^{m-1}} \neq[1]$. Hence, $\beta=[1+\sqrt{-3}] \in G$ is of order 3^{m}. Then $G \cong \mathbb{Z}_{3^{m}} \times E$, where $\langle 1+\sqrt{-3}\rangle \cong \mathbb{Z}_{3^{m}},|E|=3^{m}$.

Furthermore, if we substitute $a=2, b=3$ into above congruence (2.18), we have

$$
\begin{equation*}
2^{3^{m-1}}-1 \equiv 0\left(\bmod 3^{m+1}\right) \tag{2.19}
\end{equation*}
$$

However,

$$
\begin{aligned}
2^{3^{m-1}}-1 & =(3-1)^{3^{m-1}}-1 \\
& =3^{3^{m-1}}-\binom{3^{m-1}}{1} 3^{3^{m-1}-1}+\cdots-\binom{3^{m-1}}{2} \times 3^{2}+\binom{3^{m-1}}{1} \times 3-2 \\
& \equiv 3^{m}-2\left(\bmod 3^{m+1}\right)
\end{aligned}
$$

Therefore, congruence (2.19) does not hold for $m \geqslant 1$. Hence, if we let $\gamma=[2+3 \sqrt{-3}]$, then by the above argument, we have $\gamma^{3^{m}}=[1]$, but $\gamma^{3^{m-1}} \neq[1]$. Thus, γ is of order 3^{m}. It leads to $\gamma \in G$. Moreover, $(1+\sqrt{-3})^{3 t} \in \mathbb{Z}$ for $t \geqslant 1,(1+\sqrt{-3})^{s}=x+y \sqrt{-3}$, where $3 \nmid y$ and $3 \nmid s$. So we get that $\gamma \notin\langle 1+\sqrt{-3}\rangle$, which implies that $\gamma \in E$. Recall that $|E|=3^{m}$, therefore we have $E \cong\langle 2+3 \sqrt{-3}\rangle \cong \mathbb{Z}_{3^{m}}$.

Hence, if $d=-3$, then $U(\bar{R}) \cong \mathbb{Z}_{2} \times \mathbb{Z}_{3^{m}} \times \mathbb{Z}_{3^{m}}$, as desired.
Theorem 2.7 Let $p \in \mathbb{Z}$ be an odd prime satisfying the Legendre symbol $\left(\frac{p}{-d}\right)=-1$. Let $\bar{R}=R_{d} /\left\langle p^{n}\right\rangle, n \geqslant 1$. Then $U(\bar{R}) \cong \mathbb{Z}_{p^{2}-1} \times \mathbb{Z}_{p^{n-1}} \times \mathbb{Z}_{p^{n-1}}$.

Proof For $\alpha=[a+b \sqrt{d}] \in R_{d} /\left\langle p^{n}\right\rangle$, where $0 \leqslant a, b \leqslant p^{n}-1$, it is easy to prove that α is a unit of \bar{R} if and only if $p \nmid\left(a^{2}-d b^{2}\right)$. So $|U(\bar{R})|=\left(p^{2}-1\right) p^{2 n-2}$.

If $n=1$, as p is prime in \bar{R}, then $R_{d} /\langle p\rangle$ is a field with p^{2} elements. Therefore $U(\bar{R}) \cong \mathbb{Z}_{p^{2}-1}$.

If $n \geqslant 2$, then $U(\bar{R}) \cong G_{1} \times G_{2}$, where G_{1} and G_{2} are finite groups, and $\left|G_{1}\right|=p^{2}-1$, $\left|G_{2}\right|=p^{2 n-2}$. First, we prove that $G_{1} \cong \mathbb{Z}_{p^{2}-1}$. Clearly, there is an epimorphism of rings

$$
\phi: \quad R_{d} /\left\langle p^{n}\right\rangle \rightarrow R_{d} /\langle p\rangle .
$$

So there exists an epimorphism of groups

$$
\varphi: U\left(R_{d} /\left\langle p^{n}\right\rangle\right) \rightarrow U\left(R_{d} /\langle p\rangle\right) .
$$

That is $\varphi: U(\bar{R}) \rightarrow \mathbb{Z}_{p^{2}-1}$. Clearly, the $\operatorname{kernel} \operatorname{ker}(\varphi)$ of φ is G_{2}. If $\mathbb{Z}_{p^{2}-1}=\langle\eta\rangle$, then there exists $\theta \in U(\bar{R})$ such that $\varphi(\theta)=\eta$. Suppose the order of $\theta \in U(\bar{R})$ is t, then $\varphi\left(\theta^{t}\right)=1$. Since the order of $\eta \in \mathbb{Z}_{p^{2}-1}$ is $p^{2}-1$, we have $\varphi\left(\theta^{p^{2}-1}\right)=\eta^{p^{2}-1}=1$. Therefore, $\varphi\left(\theta^{t}\right)=\varphi\left(\theta^{p^{2}-1}\right)$, i.e., $\eta^{t}=\eta^{p^{2}-1}=1$. Thus we easily find that $\left(p^{2}-1\right) \mid t$, that is $\left(p^{2}-1\right) \mid o(\theta)$. Recall that $\operatorname{ker}(\varphi)=G_{2}$, and $\varphi(\theta)=\eta \neq 1$, so $\theta \notin \operatorname{ker}(\varphi)=G_{2}$. Thus $\theta \in G_{1}$, and $o(\theta) \mid\left(p^{2}-1\right)$. Therefore, $o(\theta)=p^{2}-1$. So we may conclude that $G_{1} \cong \mathbb{Z}_{p^{2}-1}$.

In the following, we investigate the structure of G_{2}. For $\alpha=[a+b \sqrt{d}] \in G_{2}$. It is obvious that either $p \nmid a$ or $p \nmid b$. Consider the polynomial expansions of α^{N}, where $N>1$ is an arbitrary odd integer. It is evident that $\alpha^{N}=[1]$ if and only if the following congruences hold

$$
\begin{align*}
& a^{N}+d\binom{N}{2} a^{N-2} b^{2}+\cdots+d^{\frac{N-1}{2}}\binom{N}{N_{-1}} a b^{N-1} \equiv 1\left(\bmod p^{n}\right), \tag{2.20}\\
& \binom{N}{1} a^{N-1} b+d\binom{N}{3} a^{N-3} b^{3}+\cdots+d^{\frac{N-1}{2}} b^{N} \equiv 0\left(\bmod p^{n}\right) . \tag{2.21}
\end{align*}
$$

By the similar argument to Theorem 2.6 (3), we know that $\alpha^{p^{n-1}}=1$ for all $\alpha \in G_{2}$, and there are precisely $p^{2 n-4}$ elements $\gamma \in G_{2}$ satisfying $\gamma^{p^{n-2}}=[1]$.

Moreover, let $\beta=[c+e \sqrt{d}] \in G_{2}$ with $p \nmid c$ and $p \| e$. By the polynomial expansions of $\beta^{p^{n-2}}$, we know that $\beta^{p^{n-2}} \neq 1$, which implies $o(\beta)=p^{n-1}$. So $G_{2} \cong H \times P$, where $H=\langle\beta\rangle \cong \mathbb{Z}_{p^{n-1}}$ and $|P|=p^{n-1}$.

Suppose $G_{2} \cong \mathbb{Z}_{p^{n-1}} \times \mathbb{Z}_{p^{h_{1}}} \times \cdots \times \mathbb{Z}_{p^{h r}}$, where $h_{1}+\cdots+h_{r}=n-1$. If $r \geqslant 2$, then $1 \leqslant h_{i} \leqslant n-2$ for $i=1, \cdots, r$. Thus there are $p^{n-2} p^{h_{1}} \cdots p^{h_{r}}=p^{2 n-3}$ elements $\gamma \in G_{2}$ satisfying $\gamma^{p^{n-2}}=[1]$, which contradicts the above result. If $r=1$, then $G_{2} \cong \mathbb{Z}_{p^{n-1}} \times \mathbb{Z}_{p^{n-1}}$. So there are exactly $p^{n-2} p^{n-2}=p^{2 n-4}$ elements $\gamma \in G_{2}$ satisfying $\gamma^{p^{n-2}}=[1]$, which is the same as above result. So we derive that $r=1$ and this leads to $G_{2} \cong \mathbb{Z}_{p^{n-1}} \times \mathbb{Z}_{p^{n-1}}$. This completes the proof.

Theorem 2.8 Let $q \in \mathbb{Z}$ be a prime satisfying the Legendre symbol $\left(\frac{q}{-d}\right)=1$. Suppose that π is a proper factor of q. Let $\bar{R}=R_{d} /\left\langle\pi^{n}\right\rangle, n \geqslant 1$.
(1) Suppose $q=2$. Then $U(\bar{R}) \cong \mathbb{Z}_{1}$ if $n=1, U(\bar{R}) \cong \mathbb{Z}_{2}$ if $n=2, U(\bar{R}) \cong \mathbb{Z}_{2} \times \mathbb{Z}_{2^{n-2}}$ if $n>2$.
(2) Suppose $q \neq 2$. Then $U(\bar{R}) \cong \mathbb{Z}_{q^{n-1}} \times \mathbb{Z}_{q-1}$.

Proof Applying Theorem 2.1 (4), we derive that $\bar{R} \cong \mathbb{Z} /\left\langle q^{n}\right\rangle$. So the theorem follows.
We obtain from the proof of Theorem 1.2 that 2 is not a prime in R_{d} if $d=-7$. So we may assume $d \neq-7$ in the following theorems. We investigate the unit groups of $R_{d} /\left\langle 2^{n}\right\rangle$ for $d=-3,-11,-19,-43,-67,-163$.

Theorem 2.9 Suppose $d=-3,-11,-19,-43,-67,-163$. Let $\bar{R}=R_{d} /\left\langle 2^{n}\right\rangle, n \geqslant 2$. Then
(1) $U(\bar{R})=\bar{R}_{1} \cup \bar{R}_{2} \cup \bar{R}_{3}$, where
$\bar{R}_{1}=\left\{\left[r_{1}+r_{2} \sqrt{d}\right]: 0 \leqslant r_{1}, r_{2} \leqslant 2^{n-1}-1, r_{1}, r_{2} \in \mathbb{Z}\right.$ are not of the same parity $\}$, $\bar{R}_{2}=\left\{\left[r_{1}-r_{2} \sqrt{d}\right]: 0 \leqslant r_{1} \leqslant 2^{n-1}-1,1 \leqslant r_{2} \leqslant 2^{n-1}, r_{1}, r_{2} \in \mathbb{Z}\right.$ are not of the same parity $\}$, $\bar{R}_{3}=\left\{\left[\frac{r_{1}}{2} \pm \frac{r_{2}}{2} \sqrt{d}\right]: 1 \leqslant r_{i} \leqslant 2^{n}-1, r_{i} \in \mathbb{Z}, 2 \nmid r_{i}, i=1,2\right\}$.
(2) Suppose $n \geqslant 4$. Then there are exactly 8 elements $\alpha \in \bar{R}_{1} \cup \bar{R}_{2}$ satisfying $\alpha^{2}=[1]$.
(3) Suppose $n \geqslant 5$. Then there are exactly 32 elements $\alpha \in \bar{R}_{1} \cup \bar{R}_{2}$ satisfying $\alpha^{4}=[1]$.

Proof (1) If $\alpha=\left[r_{1} \pm r_{2} \sqrt{d}\right] \in \bar{R}$, where $r_{1}, r_{2} \in \mathbb{Z}$, it is easy to show that $\alpha \in U(\bar{R})$ if and only if $2 \nmid N(\alpha)$, i.e., $2 \nmid\left(r_{1}^{2}-d r_{2}^{2}\right)$, if and only if r_{1} and r_{2} are not of the same parity.

If $\alpha=\left[\frac{r_{1}}{2} \pm \frac{r_{2}}{2} \sqrt{d}\right] \in \bar{R}$, where $r_{1}, r_{2} \in \mathbb{Z}$ with $2 \nmid r_{1} r_{2}$, then $\alpha \in U(\bar{R})$ if and only if $2 \nmid N(\alpha)$, i.e., $2 \nmid \frac{1}{4}\left(r_{1}^{2}-d r_{2}^{2}\right)$, if and only if $8 \nmid\left(r_{1}^{2}-d r_{2}^{2}\right)$. Let $r_{i}=2 k_{i}+1, i=1,2$. Then

$$
r_{1}^{2}-d r_{2}^{2}=4\left(k_{1}^{2}+k_{1}-d k_{2}^{2}-d k_{2}\right)+(1-d) .
$$

Clearly, $2 \mid\left(k_{1}^{2}+k_{1}-d k_{2}^{2}-d k_{2}\right)$. However, $4 \|(1-d)$ for $d=-3,-11,-19,-43,-67,-163$. Therefore, $8 \nmid\left(r_{1}^{2}-d r_{2}^{2}\right)$. Hence, $\alpha \in U(\bar{R})$.
(2) First, let $\alpha=a \in \mathbb{Z}$, where $1 \leqslant a \leqslant 2^{n-1}-1$. Then $\alpha \in U(\bar{R})$ if and only if $2 \nmid a$. By Corollary $2.5, \alpha^{2}=[1]$ if and only if $a^{2} \equiv 1\left(\bmod 2^{n}\right)$. The last congruence has precisely 2 solutions.

Second, let $\alpha= \pm b \sqrt{d}$, where $1 \leqslant b \leqslant 2^{n-1}-1$. Then $\alpha \in U(\bar{R})$ if and only if $2 \nmid b$. Let $b=2 k+1$. By Corollary $2.5, \alpha^{2}=[1]$ if and only if $d\left(4 k^{2}+4 k+1\right) \equiv 1\left(\bmod 2^{n}\right)$. Since $d-1=-4 x$, where $x=1,3,5,11,17,41$, we obtain that $d\left(4 k^{2}+4 k+1\right)-1=4\left(k^{2} d+k d-x\right)$. Note that $2 \nmid\left(k^{2} d+k d-x\right)$, we derive that $d\left(4 k^{2}+4 k+1\right) \not \equiv 1\left(\bmod 2^{n}\right)$. Therefore $\alpha^{2} \neq[1]$.

Thirdly, let $\alpha=a+b \sqrt{d}$, where $1 \leqslant a, b \leqslant 2^{n-1}-1, a, b \in \mathbb{Z}$ are not of the same parity. By Corollary 2.5, $\alpha^{2}=[1]$ if and only if the following congruences hold

$$
\begin{align*}
& a^{2}+b^{2} d=2^{n-1} k_{1}+1, \tag{2.22}\\
& 2 a b=2^{n-1} k_{2}, \tag{2.23}
\end{align*}
$$

where k_{1} and k_{2} are of the same parity. If $2 \nmid a$ while $2 \mid b$, then (2.23) reduces to $b \equiv$ $0\left(\bmod 2^{n-2}\right)$. Recall that $1 \leqslant b \leqslant 2^{n-1}-1$, so the last congruence has exactly one solution $b=2^{n-2}$. Hence, the left hand of (2.23) is $2 a b=2^{n-1} a$ with $2 \nmid a$. The left hand of (2.22) is $a^{2}+b^{2} d=a^{2}+2^{2 n-4} d=a^{2}+2^{n-1} \times 2^{n-3} d$. Because $n \geqslant 4$, so 2^{n-3} is even. Then equality (2.22) holds for some odd integers k_{1} if and only if $a^{2}=2^{n-1} k+1$ for some odd integers k, if and only if $a=2^{n-2} \pm 1$. So we can conclude that in the case of $2 \nmid a$ and $2 \mid b$, there are exactly 2 elements α satisfying $\alpha^{2}=[1]$.

On the other hand, suppose that $2 \mid a$ while $2 \nmid b$. Then (2.23) reduces to $a \equiv 0\left(\bmod 2^{n-2}\right)$. Recall that $1 \leqslant a \leqslant 2^{n-1}-1$, so the last congruence has exactly one solution $a=2^{n-2}$. Hence, the left hand of (2.23) is $2 a b=2^{n-1} b$ with $2 \nmid b$. The left hand of (2.22) is $a^{2}+b^{2} d=$ $2^{2 n-4}+b^{2} d=2^{n-1} \times 2^{n-3}+b^{2} d$. So equality (2.22) holds for some odd integers k_{1} if and only if $b^{2} d=2^{n-1} h+1$ for some odd integers h. Putting $b=2 s+1$, then $b^{2} d-1=4 d\left(s^{2}+s\right)+(d-1)$. Because $s^{2}+s$ is even and $4 \|(d-1)$ for $d=-3,-11,-19,-43,-67,-163$, we obtain that $4 \|\left(b^{2} d-1\right)$. Therefore, for $n \geqslant 4, b^{2} d \neq 2^{n-1} h+1$ for any integers h. So we can conclude that in the case of $2 \mid a$ and $2 \nmid b$, there does not exist any element α satisfying $\alpha^{2}=[1]$.

Finally, let $\alpha=a-b \sqrt{d}$, where $1 \leqslant a \leqslant 2^{n-1}-1,1 \leqslant b \leqslant 2^{n-1}, a, b \in \mathbb{Z}$ are not of the same parity. If $2 \nmid a$ while $2 \mid b$, then (2.23) reduces to $b \equiv 0\left(\bmod 2^{n-2}\right)$. Thus $b=2^{n-2}$ or 2^{n-1}. In the case of $b=2^{n-2}$, applying the similar argument of above, we get that $\alpha^{2}=[1]$ if and only if $a=2^{n-2} \pm 1$. For the other case $b=2^{n-1}$, equality (2.23) reduces to $2 a b=2^{n} a$,
and the left hand of equality (2.22) is $a^{2}+b^{2} d=a^{2}+2^{2 n-2} d$. By Corollary $2.5, \alpha^{2}=[1]$ if and only if $a^{2} \equiv 1\left(\bmod 2^{n}\right)$, if and only if $a=1,2^{n-1}-1$. Therefore, there are exactly 4 elements α satisfying $\alpha^{2}=[1]$, if $2 \nmid a$ and $2 \mid b$.

On the other hand, if $2 \mid a$ while $2 \nmid b$, by the similar above argument, we obtain that $\alpha^{2} \neq[1]$.

Thus, there are exactly 8 elements $\alpha \in \bar{R}_{1} \cup \bar{R}_{2}$ satisfying $\alpha^{2}=[1]$, as desired.
(3) Firstly, let $\alpha=a \in \mathbb{Z}$, where $1 \leqslant a \leqslant 2^{n-1}-1$ with $2 \nmid a, a \in \mathbb{Z}$. By Corollary 2.5, $\alpha^{4}=[1]$ if and only if $a^{4} \equiv 1\left(\bmod 2^{n}\right)$. The last congruence has precisely 4 solutions.

Secondly, let $\alpha= \pm b \sqrt{d}$, where $1 \leqslant b \leqslant 2^{n-1}-1$ with $2 \nmid b, b \in \mathbb{Z}$. Let $b=2 k+1$. By Corollary $2.5, \alpha^{4}=[1]$ if and only if $b^{4} d^{2}-1 \equiv 0\left(\bmod 2^{n}\right)$, i.e.,

$$
\begin{equation*}
8 d^{2}\left(2 k^{4}+4 k^{3}+3 k^{2}+k\right)+\left(d^{2}-1\right) \equiv 0\left(\bmod 2^{n}\right) \tag{2.24}
\end{equation*}
$$

It is evident that $2^{4} \nmid\left(d^{2}-1\right)$ for $d=-3,-11,-19,-43,-67,-163$. So $b^{4} d^{2}-1 \not \equiv 0\left(\bmod 2^{n}\right)$ for $n \geqslant 5$. Thus, $\alpha^{4} \neq[1]$.

Thirdly, let $\alpha=a+b \sqrt{d}$, where $1 \leqslant a, b \leqslant 2^{n-1}-1, a$ and b are not of the same parity. By Corollary 2.5, $\alpha^{4}=[1]$ if and only if the following congruences hold

$$
\begin{align*}
& a^{4}+b^{2}\left(6 a^{2} d+b^{2} d^{2}\right)=2^{n-1} k_{1}+1 \tag{2.25}\\
& 4 b\left(a^{3}+a b^{2} d\right)=2^{n-1} k_{2} \tag{2.26}
\end{align*}
$$

where k_{1} and k_{2} are of the same parity. If $2 \nmid a$ while $2 \mid b$, then (2.26) reduces to $b \equiv$ $0\left(\bmod 2^{n-3}\right)$. The last congruence has exactly three solutions $b=2^{n-3} x$, where $x=1,2,3$. Suppose first that $b=2^{n-3} x, x=1,3$. Then the left hand of equation (2.26) equals $4 b\left(a^{3}+a b^{2} d\right)=2^{n-1} k_{2}$, where $k_{2}=x\left(a^{3}+a b^{2} d\right)$ is odd.

On the other hand, the left hand of equation (2.25) equals $a^{4}+2^{n-1}\left(3 \times 2^{n-4} a^{2} d+\right.$ $\left.2^{3 n-11} d^{2} x^{2}\right) x^{2}$. Since $n \geqslant 5$, we get that $\left(3 \times 2^{n-4} a^{2} d+2^{3 n-11} d^{2} x^{2}\right) x^{2}$ is even. Therefore, $\alpha^{4}=[1]$ if and only if $a^{4}=2^{n-1} s+1$ for some odd integers s. Since $1 \leqslant a \leqslant 2^{n-1}-1$, clearly there are exactly 4 elements a satisfying $a^{4}=2^{n-1} s+1$ for some odd integers s. Now suppose $b=2^{n-3} x$, where $x=2$. Then the left hand of equation (2.26) equals $4 b\left(a^{3}+a b^{2} d\right)=2^{n}\left(a^{3}+a b^{2} d\right)$. Therefore, by equation (2.25), we obtain that $\alpha^{4}=[1]$ if and only if $a^{4} \equiv 1\left(\bmod 2^{n}\right)$. The last congruence has exactly 4 solutions $a \in\left\{1, \cdots, 2^{n-1}-1\right\}$. Hence, there are totally 12 elements α satisfying $\alpha^{4}=[1]$, in the case of $2 \nmid a$ and $2 \mid b$. For another case of $2 \mid a$ and $2 \nmid b$, we reduce from equation (2.25) that $2^{n-3} \mid a$. Hence, $a=2^{n-3} y$, where $y=1,2,3$. Suppose $a=2^{n-3} y$, where $y=1,3$. Then by equations (2.25) and (2.26), $\alpha^{4}=[1]$ if and only if $b^{4} d^{2}=2^{n-1} s+1$ for some odd integers s. Let $b=2 k+1$, then $b^{4} d^{2}-1$ is equal to the left side of congruence (2.24). Since $2^{4} \nmid\left(d^{2}-1\right)$ for $d=-3,-11,-19,-43,-67,-163$. So $b^{4} d^{2}-1 \not \equiv 0\left(\bmod 2^{n-1}\right)$ for $n \geqslant 5$. Thus, $\alpha^{4} \neq[1]$. Next, we assume that $a=2^{n-3} y$, where $y=2$. Then by equations (2.25) and (2.26), $\alpha^{4}=[1]$ if and only if $b^{4} d^{2} \equiv 1\left(\bmod 2^{n}\right)$, if and only if congruence (2.24) holds for any integers k and n. However, this congruence does not hold for $n \geqslant 5$. Therefore, we can conclude that
in the case of $2 \mid a$ and $2 \nmid b$, there does not exist any element α satisfying $\alpha^{4}=[1]$. Hence, there are totally 12 elements $\alpha=[a+b \sqrt{d}] \in \bar{R}_{1}$ satisfying $\alpha^{4}=[1]$, where $a \neq 0$ and $b \neq 0$.

Finally, let $\alpha=a-b \sqrt{d}$, where $1 \leqslant a \leqslant 2^{n-1}-1,1 \leqslant b \leqslant 2^{n-1}$, a and b are not of the same parity. If $2 \nmid a$ while $2 \mid b$, then (2.26) reduces to $b \equiv 0\left(\bmod 2^{n-3}\right)$. The last congruence has exactly four solutions, namely $b=2^{n-3} x$, where $x=1,2,3,4$. Applying the similar argument above, we obtain that there are exactly 16 elements $\alpha \in \bar{R}_{2}$ satisfying $\alpha^{4}=[1]$, where $a \neq 0$. On the other hand, if $2 \mid a$ and $2 \nmid b$, there does not exist any element $\alpha \in \bar{R}_{2}$ satisfying $\alpha^{4}=[1]$.

Thus, there are exactly 32 elements $\alpha \in \bar{R}_{1} \cup \bar{R}_{2}$ satisfying $\alpha^{4}=[1]$, as desired.
In the sequel, we assume that 2 is prime in the ring R_{d}. If $n=1$, by Theorem 2.1 (5) and Theorem 2.9, $R_{d} /\langle 2\rangle$ is a field with 4 elements. Therefore, $U\left(R_{d} /\left\langle 2^{n}\right\rangle\right) \cong \mathbb{Z}_{3}$.

If $n=2$, then $\left|U\left(R_{d} /\left\langle 2^{n}\right\rangle\right)\right|=3 \times 2^{2}$. The unit group of $R_{d} /\left\langle 2^{n}\right\rangle$ is

$$
\left\{1, \pm \sqrt{d}, 1-2 \sqrt{d}, \frac{1}{2} \pm \frac{1}{2} \sqrt{d}, \frac{1}{2} \pm \frac{3}{2} \sqrt{d}, \frac{3}{2} \pm \frac{1}{2} \sqrt{d}, \frac{3}{2} \pm \frac{3}{2} \sqrt{d}\right\}
$$

By calculation, we obtain that for $d=-3,-11,-19,-43,-67,-163,(\pm \sqrt{d})^{2}=4 k+1$ for some integers k. So by Corollary 2.5, $\pm \sqrt{d}$ is of order 2. Similarly, $\left(\frac{3}{2} \pm \frac{3}{2} \sqrt{d}\right)^{3}=-27=[1]$. So the order of $\frac{3}{2} \pm \frac{3}{2} \sqrt{d}$ is 3. Moreover, we show that $o(1-2 \sqrt{d})=2, o\left(\frac{1}{2} \pm \frac{1}{2} \sqrt{d}\right)=$ $o\left(\frac{1}{2} \pm \frac{3}{2} \sqrt{d}\right)=o\left(\frac{3}{2} \pm \frac{1}{2} \sqrt{d}\right)=6$. Hence, $U\left(R_{d} /\left\langle 2^{2}\right\rangle\right) \cong \mathbb{Z}_{3} \times \mathbb{Z}_{2} \times \mathbb{Z}_{2}$.

Analogously, if $n=3$, then $\left|U\left(R_{d} /\left\langle 2^{n}\right\rangle\right)\right|=3 \times 2^{4}$. The unit group of $R_{d} /\left\langle 2^{n}\right\rangle$ is

$$
\begin{aligned}
& \{1,3, \pm \sqrt{d}, \pm 3 \sqrt{d}, 1 \pm 2 \sqrt{d}, 2 \pm \sqrt{d}, 2 \pm 3 \sqrt{d}, 3 \pm 2 \sqrt{d}, 1-4 \sqrt{d}, 3-4 \sqrt{d}\} \\
\cup & \left\{\frac{a}{2} \pm \frac{b}{2} \sqrt{d}: \quad a, b=1,3,5,7\right\} .
\end{aligned}
$$

By calculation, we obtain that $o(3)=o(1 \pm 2 \sqrt{d})=o(3 \pm 2 \sqrt{d})=o(1-4 \sqrt{d})=o(3-4 \sqrt{d})=2$, and $o(\pm \sqrt{d})=o(\pm 3 \sqrt{d})=o(2+\sqrt{d})=o(2+3 \sqrt{d})=o(2-\sqrt{d})=o(2-3 \sqrt{d})=4$. Moreover, $o\left(\frac{a}{2} \pm \frac{b}{2} \sqrt{d}\right) \neq 2,4$ for $a, b=1,3,5,7$. Therefore, $U\left(R_{d} /\left\langle 2^{3}\right\rangle\right) \cong \mathbb{Z}_{3} \times \mathbb{Z}_{2^{2}} \times \mathbb{Z}_{2} \times \mathbb{Z}_{2}$.

Theorem 2.10 Suppose that $d=-3,-11,-19,-43,-67$ or -163 . Then
(1) $U\left(R_{d} /\langle 2\rangle\right) \cong \mathbb{Z}_{3}$.
(2) $U\left(R_{d} /\left\langle 2^{n}\right\rangle\right) \cong \mathbb{Z}_{3} \times \mathbb{Z}_{2^{n-1}} \times \mathbb{Z}_{2^{n-2}} \times \mathbb{Z}_{2}$ for $n \geqslant 2$.

Proof The unit groups for the cases of $n=1,2,3$ have been stated above. So we assume $n \geqslant 4$ in the following. By Theorem 2.9, we get $\left|U\left(R_{d} /\left\langle 2^{n}\right\rangle\right)\right|=3 \times 2^{2 n-2}$. Thus $U\left(R_{d} /\left\langle 2^{n}\right\rangle\right) \cong \mathbb{Z}_{3} \times H$, where H is a subgroup with order $2^{2 n-2}$.

Firstly, we claim that $\alpha^{2^{n-1}}=[1]$ for $\alpha \in \bar{R}_{1} \cup \bar{R}_{2}$, where \bar{R}_{1} and \bar{R}_{2} are stated in Theorem 2.9. Indeed, if we put $\alpha=a+b \sqrt{d} \in \bar{R}_{1}, \alpha^{M}=A+B \sqrt{d}, M$ is even, then

$$
\begin{aligned}
& A=a^{M}+d\binom{M}{2} a^{M-2} b^{2}+d^{2}\binom{M}{4} a^{M-4} b^{4}+\cdots+d^{\frac{M-2}{2}}\binom{M}{M_{-2}} a^{2} b^{M-2}+d^{\frac{M}{2}} b^{M} \\
& B=\binom{M}{1} a^{M-1} b+d\binom{M}{3} a^{M-3} b^{3}+\cdots+d^{\frac{M-4}{2}}\binom{M}{M_{-3}} a^{3} b^{M-3}+d^{\frac{M-2}{2}}\binom{M}{M_{-1}} a b^{M-1} .
\end{aligned}
$$

Let $M=2^{n-1}$. If $2 \nmid a$ while $2 \mid b$, then $2^{n} \left\lvert\,\binom{ 2^{n-1}}{s} b^{s}\right.$ for $1 \leqslant s \leqslant 2^{n-1}$. So we derive $2^{n} \mid\left(A-a^{2^{n-1}}\right)$ and $2^{n} \mid B$. Hence, $A=2^{n} t+a^{2^{n-1}}$ and $B=2^{n} k$ for some integers t, k. By

Corollary 2.5, $\alpha^{2^{n-1}}=[1]$ if and only if $a^{2^{n-1}} \equiv 1\left(\bmod 2^{n}\right)$. Because $U\left(\mathbb{Z} /\left\langle 2^{n}\right\rangle\right) \cong \mathbb{Z}_{2} \times \mathbb{Z}_{2^{n-2}}$ for $n \geqslant 3$, we derive that $a^{2^{n-1}} \equiv 1\left(\bmod 2^{n}\right)$ for $2 \nmid a$ and $n \geqslant 3$. Thus $\alpha^{2^{n-1}}=[1]$ in the case of $2 \nmid a$ and $2 \mid b$.

On the other hand, suppose $2 \mid a$ while $2 \nmid b$. Since $2^{n} \left\lvert\,\binom{ 2^{n-1}}{s} a^{2^{n-1}-s}\right.$ for $0 \leqslant s \leqslant$ $2^{n-1}-1$, it is obvious that $2^{n} \mid\left(A-d^{2^{n-2}} b^{2^{n-1}}\right)$ and $2^{n} \mid B$. Since $d, b \in U\left(\mathbb{Z} /\left\langle 2^{n}\right\rangle\right)$, we must have $d^{2^{n-2}} \equiv 1\left(\bmod 2^{n}\right)$ and $b^{2^{n-1}} \equiv 1\left(\bmod 2^{n}\right)$. Hence, $d^{2^{n-2}} b^{2^{n-1}} \equiv 1\left(\bmod 2^{n}\right)$. Therefore, $\alpha^{2^{n-1}}=[1]$ in the case of $2 \mid a$ and $2 \nmid b$. So we conclude that $\alpha^{2^{n-1}}=[1]$ for $\alpha \in \bar{R}_{1}$. Similarly, we have $\alpha^{2^{n-1}}=[1]$ for $\alpha \in \bar{R}_{2}$. Thus, our claim follows.

Secondly, we prove that $\mathbb{Z}_{2^{n-1}}$ is a subgroup of H. Since the number of the set $\bar{R}_{1} \cup \bar{R}_{2}$ is precisely $2^{2 n-2}$ and note that the subgroup H is of order $2^{2 n-2}$, we can conclude that $\alpha \in H$ if and only if $\alpha \in \bar{R}_{1} \cup \bar{R}_{2}$. So $H=\bar{R}_{1} \cup \bar{R}_{2}$. Furthermore, let $\alpha_{0}=[2+\sqrt{d}] \in H$. We prove that $\alpha_{0}^{2^{n-2}} \neq[1]$. Setting $a=2, b=1, M=2^{n-2}$. Substituting these values into the expressions for A and B. Since $2^{n} \left\lvert\,\binom{ 2^{n-2}}{s} a^{s}\right.$ for $3 \leqslant s \leqslant 2^{n-2}$, and $2^{n-1} \|\binom{ 2^{n-2}}{s} a^{s}$ for $s=1,2$, we derive that $2^{n-1} \|\left(A-d^{2^{n-3}}\right)$ and $2^{n-1} \| B$. So $A=2^{n-1} k+d^{2^{n-3}}$ for some odd integers k. Moreover, owing to Corollary $2.5, \alpha_{0}^{2^{n-2}}=[1]$ if and only if $A=2^{n-1} t+1$ for some odd integers t, i.e., $A=2^{n-1} k+d^{2^{n-3}}=2^{n-1} t+1$, if and only if $d^{2^{n-3}}=2^{n-1}(t-k)+1$. Since $2 \nmid k t$, we have $t-k$ is even. Therefore, $\alpha_{0}^{2^{n-2}}=[1]$ if and only if $d^{2^{n-3}} \equiv 1\left(\bmod 2^{n}\right)$. In the following, we show that $d^{2^{n-3}} \not \equiv 1\left(\bmod 2^{n}\right)$ for $d=-3,-11,-19,-43,-67$ or -163 . Indeed, we have $-d=4 e-1$ for some odd integers e. Then
$d^{2^{n-3}}-1=(4 e-1)^{2^{n-3}}-1=(4 e)^{2^{n-3}}-\binom{2^{n-3}}{1}(4 e)^{2^{n-3}-1}+\cdots+\binom{2^{n-3}}{2}(4 e)^{2}-\binom{2^{n-3}}{1} 4 e$.
It is evident that $2^{n} \left\lvert\,\binom{ 2^{n-3}}{s}(4 e)^{s}\right.$ for $2 \leqslant s \leqslant 2^{n-3}$. However, $\binom{2^{n-3}}{1} 4 e=2^{n-1} e$ is not divisible by 2^{n}. Thus $d^{2^{n-3}} \not \equiv 1\left(\bmod 2^{n}\right)$. Hence, $\alpha_{0}^{2^{n-2}} \neq[1]$, which implies that α_{0} is of order 2^{n-1}. Therefore, $\mathbb{Z}_{2^{n-1}}$ is a subgroup of H, as desired.

Now, owing to Theorem 2.9 (2), we obtain that $H \cong \mathbb{Z}_{2^{n-1}} \times \mathbb{Z}_{2^{i}} \times \mathbb{Z}_{2^{j}}$, where $i, j \geqslant 1$ and $i+j=n-1$. If $n=4$, then $i+j=3$. Hence, $H \cong \mathbb{Z}_{2^{n-1}} \times \mathbb{Z}_{2^{2}} \times \mathbb{Z}_{2}$ for the case $n=4$. Next, we assume that $n>4$. If $i, j \geqslant 2$, then there are precisely 64 elements $\alpha \in \mathbb{Z}_{2^{n-1}} \times \mathbb{Z}_{2^{i}} \times \mathbb{Z}_{2^{j}}$ satisfying $\alpha^{4}=[1]$, which contradicts Theorem 2.9 (3). If $i=n-2$ and $j=1$, then there are precisely 32 elements $\alpha \in \mathbb{Z}_{2^{n-1}} \times \mathbb{Z}_{2^{n-2}} \times \mathbb{Z}_{2}$ satisfying $\alpha^{4}=[1]$, which is the same as Theorem 2.9 (3). Therefore, we conclude that $H \cong \mathbb{Z}_{2^{n-1}} \times \mathbb{Z}_{2^{n-2}} \times \mathbb{Z}_{2}$. This completes the proof of the theorem.

References

[1] Pezda T. Cycles of polynomial mappings in two variables over rings of integers in quadratic fields [J]. Central Eur. J. Math., 2004, 2(2): 294-331.
[2] Pezda T. Cycles of polynomial mappings in several variables over rings of integers in finite extensions of the rationals II [J]. Monatsh. Math., 2005, 145: 321-331.
[3] Stark H M. A complete determination of the complex quadratic fields of class-number one [J]. Michigan Math. J., 1967, 14(1): 1-27.
[4] Cross J T. The Euler ϕ-function in the Gaussian integers [J]. Amer. Math. Monthly, 1983, 90: 518-528.
［5］Tang Gaohua，Su Hudong，Yi Zhong．The unit groups of $\mathbb{Z}_{n}[i][J]$ ．J．Guangxi Normal Univ．，2010， 28（2）：38－41．
［6］Wei Yangjiang，Su Huadong，Tang Gaohua．The unit groups of the quotient rings of the complex quadratic rings［J］．Front．Math．China，2016，11（4）：1037－1056．
［7］Wei Yangjiang，Tang Gaohua．The square mapping graphs of the ring $\mathbb{Z}_{n}[i][J]$ ．J．Math．，2016， 36（4）：676－682．
［8］Karpilovsky G．Units groups of classical rings［M］．New York：Oxford University Press， 1988.
［9］Niven I，Zuckerman H S．An introduction to the theory of numbers［M］．New York：John Wiley Sons， 1980.

虚二次环的商环的单位群

韦扬江，苏磊磊，唐高华
（广西师范学院数学与统计科学学院，广西 南宁 530023）

摘要：本文研究了有理数域 \mathbb{Q} 的二次扩域 $\mathbb{Q}(\sqrt{d})$ 的整数环 R_{d} 的商环的单位群。利用二项式分解以及有限交换群的结构性质，获得了 $d=-3,-7,-11,-19,-43,-67,-163$ 时 $R_{d} /\left\langle\vartheta^{n}\right\rangle$ 的单位群结构，其中 ϑ 是 R_{d} 的素元，n 是任意正整数。所得的结果推广了由 J．T．Cross（1983），G．H．Tang 与 H．D．Su （2010）对 $d=-1$ ，以及 Y．J．Wei（2016）对 $d=-2$ 时关于 $R_{d} /\left\langle\vartheta^{n}\right\rangle$ 的单位群的研究。

关键词：虚二次环；商环；单位群；二次扩域
$\mathrm{MR}(2010)$ 主题分类号：11R04；20K01 中图分类号：O152．1；O156．1

[^0]: ＊Received date：2017－03－01 Accepted date：2017－06－20
 Foundation item：Supported by the National Natural Science Foundation of China（11461010； 11661013；11661014）；the Guangxi Science Research and Technology Development Project（1599005－2－ 13）．

