ON THE UNIT GROUPS OF THE QUOTIENT RINGS
OF IMAGINARY QUADRATIC NUMBER RINGS

WEI Yang-jiang, SU Lei-lei, TANG Gao-hua
(School of Mathematics and Statistics, Guangxi Teachers Education University,
Nanning 530023, China)

Abstract: In this paper, we investigate the unit groups of the quotient rings of the integer rings R_d of the quadratic fields $\mathbb{Q}(\sqrt{d})$ over the rational number field \mathbb{Q}. By employing the polynomial expansions and the theory of finite groups, we completely determine the unit groups of $R_d/\langle \vartheta^n \rangle$ for $d = -3, -7, -11, -19, -43, -67, -163$, where ϑ is a prime in R_d, and n is an arbitrary positive integer. The results in this paper generalize the study of the unit groups of $R_d/\langle \vartheta^n \rangle$ for $d = -1$, which obtained by J. T. Cross (1983), G. H. Tang and H. D. Su (2010) and for the case $d = -2$ by Y. J. Wei (2016).

Keywords: imaginary quadratic number ring; quotient ring; unit group; quadratic field

2010 MR Subject Classification: 11R04; 20K01

1 Introduction

Let $K = \mathbb{Q}(\sqrt{d})$, the quadratic field over \mathbb{Q}, where \mathbb{Q} is the rational number field and d is a square-free integer other than 0 and 1. The ring of algebraic integers of K is denoted by R_d, and it is very important for the study of dynamical systems, e.g., see [1, 2]. We call R_d an imaginary quadratic number ring if $d < 0$. From the work of Stark [3], we know that there are only finite negative integers d such that the complex quadratic ring R_d is a unique-factorization domain, namely, $d = -1, -2, -3, -7, -11, -19, -43, -67, -163$. For an arbitrary prime element $\vartheta \in R_d$, and a positive integer n, the unit groups of $R_d/\langle \vartheta^n \rangle$ were determined for the cases $d = -1, -2, -3$ in [4–6], respectively. Moreover, the square mapping graphs for the Gaussian integer ring modulo n is studied in paper [7]. In this paper, we investigate the unit groups of $R_d/\langle \vartheta^n \rangle$ for the cases $d = -3, -7, -11, -19, -43, -67, -163$, and we make some corrections to the case of $d = -3$ in paper [6].

Throughout this paper, we denote by \mathbb{Z} the set of rational integers, \mathbb{Z}_n is the additive cyclic group of order n, $\mathbb{Z}/\langle n \rangle$ is the ring of integers modulo n, and $o(\theta)$ is the order of θ in $\mathbb{Z}/\langle n \rangle$.
a group. For a given ring R, let $U(R)$ denote the unit group of R, let $\langle \gamma \rangle$ denote the ideal of R generated by $\gamma \in R$. If γ is an element of a given group G, we also use $\langle \gamma \rangle$ to denote the subgroup of G generated by $\gamma \in G$. The Legendre symbol $\left(\frac{a}{p} \right)$, where a is an integer, p is a prime and $p \nmid a$, is defined as follows: if there exists an integer x such that $x^2 \equiv a \pmod{p}$, then $\left(\frac{a}{p} \right) = 1$, otherwise, $\left(\frac{a}{p} \right) = -1$.

Lemma 1.1 [8, Lemma 2.4.2] The ring R_d of algebraic integers of $K = \mathbb{Q}(\sqrt{d})$ is

1. $R_d = \{a + b\sqrt{d} : a, b \in \mathbb{Z}\}$, if $d \equiv 2, 3 \pmod{4}$.
2. $R_d = \left\{ \frac{1}{2}(a + b\sqrt{d}) : a, b \in \mathbb{Z} \text{ are of the same parity} \right\}$, if $d \equiv 1 \pmod{4}$.

By Lemma 1.1, for $d = -3, -7, -11, -19, -43, -67, -163$, the elements of R_d are all of the form $\frac{1}{2}(a + b\sqrt{d})$, where $a, b \in \mathbb{Z}$ are of the same parity. Moreover, we know that $U(R_d) = \{\pm 1\}$ for all $d = -3, -7, -11, -19, -43, -67, -163$.

Now, we need to identify all primes in the ring R_d. The following theorem is obtained from [9, Theorem 9.29].

Theorem 1.2 For $d = -3, -7, -11, -19, -43, -67, -163$, up to multiplication by units, the primes of R_d are the following three types ($D = -d$):

1. \mathfrak{p}, where $\mathfrak{p} \in \mathbb{Z}$ is a prime satisfying the Legendre symbol $\left(\frac{\mathfrak{p}}{d} \right) = -1$;
2. $\pi \sigma$ or π, where $\pi = \pi\sigma \in \mathbb{Z}$ is a prime satisfying the Legendre symbol $\left(\frac{\pi}{d} \right) = 1$;
3. $\delta = \sqrt{d}$.

2 Main Results

Throughout this section, $d = -3, -7, -11, -19, -43, -67, -163$. For conveniences, we denote by $D = -d$. Let n be a positive integer, and ϑ is a prime in R_d. We determine the structure of unit groups of $R_d/(\vartheta^n)$.

First, we characterize the equivalence classes of $R_d/(\vartheta^n)$, where ϑ is prime in R_d. For $\alpha \in R_d$, we denote by $[\alpha] \in R_d/(\vartheta^n)$ the equivalence class which α belongs to. Simultaneously, we make corrections to the equivalence classes which are given in [6, Theorem 3.2] for the case $d = -3$.

Theorem 2.3 Let ϑ denote a prime of R_d, $\delta = \sqrt{d}$, $D = -d$. For an arbitrary positive integer n, the equivalence classes of $R_d/(\vartheta^n)$ are of the following types:

1. $R_d/(\delta^{2m}) = \{[r_1 + r_2\sqrt{d}] : 0 \leq r_i \leq D^m - 1, r_i \in \mathbb{Z}, i = 1, 2\}$, $m \geq 1$;
2. $R_d/(\delta^{2m+1}) = \{[r_1 + r_2\sqrt{d}] : 0 \leq r_i \leq D^{m+1} - 1, 0 \leq r_2 \leq D^m - 1, r_1, r_2 \in \mathbb{Z}\}$, $m \geq 0$;
3. $R_d/(\vartheta^n) = \{[r_1 + r_2\sqrt{d}] : 0 \leq r_i \leq \vartheta^n - 1, r_i \in \mathbb{Z}, i = 1, 2\}$, where ϑ is a prime in \mathbb{Z} satisfying the Legendre symbol $\left(\frac{\vartheta}{D} \right) = -1$;
4. $R_d/(\pi^n) = \{[a] : 0 \leq a \leq q^n - 1, a \in \mathbb{Z}\}$, where $q = \pi\sigma$ is a prime in \mathbb{Z} satisfying the Legendre symbol $\left(\frac{\pi}{D} \right) = 1$;
5. Suppose that $d \neq -7$. Then
 (a) $R_d/(2) = \{0, [1], [\frac{1}{2} + \frac{1}{2}\sqrt{d}], [\frac{1}{2} - \frac{1}{2}\sqrt{d}]\}$.
(b) For \(n \geq 2 \), \(R_d/\langle 2^n \rangle = R_1 \cup R_2 \cup R_3 \), where
\[
R_1 = \left\{ \left[r_i + r_2 \sqrt{d} \right] : 0 \leq r_i \leq 2^{n-1} - 1, \ r_i \in \mathbb{Z}, \ i = 1, 2 \right\},
\]
\[
R_2 = \left\{ \left[r_i - r_2 \sqrt{d} \right] : 0 \leq r_i \leq 2^{n-1} - 1, \ 1 \leq r_2 \leq 2^{n-1}, \ r_1, r_2 \in \mathbb{Z} \right\},
\]
\[
R_3 = \left\{ \left[\frac{r_1}{2} \pm \frac{r_2}{2} \sqrt{d} \right] : 1 \leq r_i \leq 2^n - 1, \ r_i \in \mathbb{Z}, \ 2 \nmid r_i, \ i = 1, 2 \right\}.
\]

Proof (1) As \(\delta^{2m} = d^n \), we get that \(\langle \delta^{2m} \rangle = \langle D^m \rangle \). Suppose \(\alpha = a_1 + a_2 \sqrt{d} \in R_d \), where \(a_1, a_2 \in \mathbb{Z} \). Let \(a_i = D^m k_i + r_i \) with \(0 \leq r_i \leq D^m - 1, \ k_i \in \mathbb{Z}, \ i = 1, 2 \). Then \(\alpha = (r_1 + r_2 \sqrt{d}) + D^m (k_1 + k_2 \sqrt{d}) \). So \(\alpha \) and \(r_1 + r_2 \sqrt{d} \) belong to the same equivalence class of \(R_d/\langle \delta^{2m} \rangle \).

On the other hand, let \(\beta = \frac{1}{2}(b_1 + b_2 \sqrt{d}) \in R_d \), where \(b_1 \) and \(b_2 \) are odd integers. Since \(D \) is odd for \(i = 1, 2 \), there exists a unique integer \(g_i \in \{0, 1, \cdots, D^m - 1\} \) satisfying the congruence \(2g_i \equiv b_i \pmod{D^m} \). Hence, there exists an odd integer \(x_i \) such that \(b_i = D^m x_i + 2g_i, \ i = 1, 2 \). Therefore, \(\gamma = \frac{\beta}{2} + \frac{\alpha}{2} \sqrt{d} \in R_d \), and \(\beta = (g_1 + g_2 \sqrt{d}) + D^m \gamma \), which implies that \(\beta \) and \(g_1 + g_2 \sqrt{d} \) belong to the same equivalence class of \(R_d/\langle \delta^{2m} \rangle \). Finally, it is easy to verify that the classes of (1) are distinct.

(2) As \(\delta^{2m+1} = d^n \delta \), we get that \(\langle \delta^{2m+1} \rangle = \langle D^m \sqrt{d} \rangle \). Suppose \(\alpha = a_1 + a_2 \sqrt{d} \in R_d \), where \(a_1, a_2 \in \mathbb{Z} \). Let \(a_i = D^{m+1} k_i + r_i \) with \(0 \leq r_i \leq D^{m+1} - 1 \). Let \(a_2 = D^m k_2 + r_2 \) with \(0 \leq r_2 \leq D^m - 1 \). Then \(\alpha = (r_1 + r_2 \sqrt{d}) + D^m \sqrt{d} (k_2 - k_1 \sqrt{d}) \). So \(\alpha \) and \(r_1 + r_2 \sqrt{d} \) belong to the same equivalence class of \(R_d/\langle \delta^{2m+1} \rangle \).

On the other hand, let \(\beta = \frac{1}{2}(b_1 + b_2 \sqrt{d}) \in R_d \), where \(b_1 \) and \(b_2 \) are odd integers. Since \(D \) is odd, there exists a unique integer \(g_1 \in \{0, 1, \cdots, D^{m+1} - 1\} \) satisfying congruence \(2g_1 \equiv b_1 \pmod{D^{m+1}} \). Analogously, there exists a unique integer \(g_2 \in \{0, 1, \cdots, D^m - 1\} \) satisfying congruence \(2g_2 \equiv b_2 \pmod{D^m} \). Therefore, there exist odd integers \(x_1, x_2 \) such that \(b_1 = D^{m+1} x_1 + 2g_1 \), and \(b_2 = D^m x_2 + 2g_2 \). Hence, \(\gamma = \frac{\beta}{2} + \frac{\alpha}{2} \sqrt{d} \in R_d \), and \(\beta = (g_1 + g_2 \sqrt{d}) + D^m \sqrt{d} (\frac{x_2}{2} - \frac{x_1}{2} \sqrt{d}) \), which implies that \(\beta \) and \(g_1 + g_2 \sqrt{d} \) belong to the same equivalence class of \(R_d/\langle \delta^{2m+1} \rangle \).

Finally, it is easy to verify that the classes of (2) are distinct.

(3) It can be proved with the similar method to (1). Suppose \(\alpha = a_1 + a_2 \sqrt{d} \in R_d \), where \(a_1, a_2 \in \mathbb{Z} \). Let \(a_i = p^n k_i + r_i \) with \(0 \leq r_i \leq p^n - 1, \ k_i \in \mathbb{Z}, \ i = 1, 2 \). Then \(\alpha = (r_1 + r_2 \sqrt{d}) + p^n (k_1 + k_2 \sqrt{d}) \). So \(\alpha \) and \(r_1 + r_2 \sqrt{d} \) belong to the same equivalence class of \(R_d/\langle p^n \rangle \).

On the other hand, let \(\beta = \frac{1}{2}(b_1 + b_2 \sqrt{d}) \in R_d \), where \(b_1 \) and \(b_2 \) are odd integers. Since \(p \) is odd for \(i = 1, 2 \), there exists a unique integer \(g_i \in \{0, 1, \cdots, p^n - 1\} \) satisfying the congruence \(2g_i \equiv b_i \pmod{p^n} \). Hence, there exists an odd integer \(x_i \) such that \(b_i = p^n x_i + 2g_i, \ i = 1, 2 \). Therefore, \(\gamma = \frac{\beta}{2} + \frac{\alpha}{2} \sqrt{d} \in R_d \), and \(\beta = (g_1 + g_2 \sqrt{d}) + p^n \gamma \), which implies that \(\beta \) and \(g_1 + g_2 \sqrt{d} \) belong to the same equivalence class of \(R_d/\langle p^n \rangle \). Finally, it is easy to verify that the classes of (3) are distinct.

(4) Let \(q = \pi \pi \) be a prime in \(\mathbb{Z} \) satisfying the Legendre symbol \(\left(\frac{\pi}{q} \right) = 1 \). Let \(\pi^n = \frac{1}{2} (s + t \sqrt{d}) \), where \(s, t \in \mathbb{Z} \) are of the same parity. Then it is clear that \(q \nmid st \). Suppose that
\(\beta = \frac{1}{2}(b_1 + b_2 \sqrt{d}) \in R_d, \) where \(b_1, b_2 \in \mathbb{Z} \) are of the same parity. We show that in the quotient ring \(R_d/(\pi^n) \), \(\beta \) belongs to the equivalence class \([a]\) for some \(a \in \{0, 1, \cdots, q^n - 1\} \). Indeed, let \(\gamma = \frac{1}{2}(x + y\sqrt{d}) \in R_d \), where \(x, y \in \mathbb{Z} \) are of the same parity, such that \(\beta = a + \pi^n \gamma \). Then the following equations hold

\[
\begin{align*}
 a + \frac{1}{4}xs + \frac{1}{4}dys &= \frac{1}{2}b_1, \\
 \frac{1}{4}ys + \frac{1}{4}xt &= \frac{1}{2}b_2.
\end{align*}
\] (2.1) (2.2)

Now we solve the integer \(a \) from the above equations. By equation (2.1), we obtain

\[4as + xs^2 + dys = 2b_1s.\] (2.3)

And by equation (2.2), we get \(-dys - dt^2x = -2b_2dt\). Eliminating \(dys \) between this equation and (2.3), we obtain

\[4as + x(s^2 - dt^2) = 2(b_1s - db_2t).\] (2.4)

Note that \(q = \pi \pi \) and \(\pi^n = \frac{1}{2}(s + t\sqrt{d}) \), we have \(s^2 - dt^2 = 4q^n \). Substituting this into (2.4), it follows that

\[4as + 4q^n x = 2(b_1s - db_2t).\] (2.5)

Moreover, since \(s, t \in \mathbb{Z} \) are of the same parity and \(b_1, b_2 \in \mathbb{Z} \) are of the same parity and note that \(d \) is odd, we derive \(b_1s - db_2t \) is even. Hence, equation (2.5) can be written as

\[as + q^n x = \frac{1}{2}(b_1s - db_2t)\]

which implies that

\[as \equiv \frac{1}{2}(b_1s - db_2t) \pmod{q^n}.\] (2.6)

Because \(q \nmid s \), the last congruence (2.6) in \(a \) has a unique solution \(a \in \{0, 1, \cdots, q^n - 1\} \). Therefore, \(\beta \) belongs to the equivalence class \([a]\), as desired.

Finally, it is easy to verify that the classes of \(4 \) are distinct.

(5) Suppose \(d \neq -7 \).

(a) We first determine the structure of the quotient ring \(R_d/(2) \). Suppose \(\alpha_1 = a \in \mathbb{Z} \). If \(a \) is even, then \(\frac{a}{2} \in R_d \). It follows from \(\alpha_1 = 0 + 2 \times \frac{a}{2} \) that \(\alpha_1 \) belongs to the equivalence class \([0]\) in the quotient ring \(R_d/(2) \). If \(a \) is odd, then \(a = 1 + 2k \) for some \(k \in \mathbb{Z} \). Then clearly \(\alpha_1 \) belongs to the equivalence class \([1]\).

Suppose \(\alpha_2 = b\sqrt{d} \), where \(b \in \mathbb{Z} \). If \(b \) is even, then \(\frac{b}{2} \sqrt{d} \in R_d \). We have

\[\alpha_2 = b\sqrt{d} = 0 + 2 \times \frac{b}{2} \sqrt{d}.\]

So clearly \(\alpha_2 \) belongs to the equivalence class \([0]\). If \(b \) is odd, then

\[\alpha_2 = b\sqrt{d} = 1 + 2(-\frac{1}{2} + \frac{b}{2} \sqrt{d}).\]

Therefore, \(\alpha_2 \) belongs to the equivalence class \([1]\).
Suppose \(\alpha_3 = s + t\sqrt{d} \in R_d \), where \(s, t \in \mathbb{Z} \). If \(s \) and \(t \) are of the same parity, then \(\frac{s}{2} + \frac{t}{2}\sqrt{d} \in R_d \). Moreover, we have \(s + t\sqrt{d} = 0 + 2(\frac{s}{2} + \frac{t}{2}\sqrt{d}) \). Hence, \(\alpha_3 \) belongs to the equivalence class \([0]\). If \(s \) and \(t \) are not of the same parity, then \(\frac{s}{2} + \frac{t}{2}\sqrt{d} \in R_d \). Since \(s + t\sqrt{d} = 1 + 2(\frac{s+1}{2} + \frac{t}{2}\sqrt{d}) \), we obtain that \(\alpha_3 \) belongs to the equivalence class \([1]\).

Now, suppose \(\alpha_4 = \frac{s}{2} + \frac{t}{2}\sqrt{d} \), where \(x = 2k_1 + 1, y = 2k_2 + 1, k_1, k_2 \in \mathbb{Z} \). If \(k_1 \) and \(k_2 \) are of the same parity, then \(\frac{k_1}{2} + \frac{k_2}{2}\sqrt{d} \in R_d \). Moreover, since \(\alpha_4 = (\frac{s}{2} + \frac{t}{2}\sqrt{d}) + 2(\frac{k_1}{2} + \frac{k_2}{2}\sqrt{d}) \), we obtain that \(\alpha_4 \) belongs to the equivalence class \([\frac{1}{2} + \frac{1}{2}\sqrt{d}] \). If \(k_1 \) and \(k_2 \) are not of the same parity, then \(\frac{k_1}{2} + \frac{k_2+1}{2}\sqrt{d} \in R_d \). Furthermore, \(\alpha_4 = (\frac{1}{2} - \frac{1}{2}\sqrt{d}) + 2(\frac{k_1}{2} + \frac{k_2+1}{2}\sqrt{d}) \).

Thus, \(\alpha_4 \) belongs to the equivalence class \([\frac{1}{2} - \frac{1}{2}\sqrt{d}] \).

Finally, we show that the classes of (5) (a) are distinct. Clearly

\[[0] \neq [1] \neq \left[\frac{1}{2} \pm \frac{1}{2}\sqrt{d} \right] \neq [0]. \]

If \(\left[\frac{1}{2} + \frac{1}{2}\sqrt{d} \right] = \left[\frac{1}{2} - \frac{1}{2}\sqrt{d} \right] \), then there exists \(\gamma = \frac{x_1}{2} + \frac{x_2}{2}\sqrt{d} \in R_d \), where \(x_1, x_2 \in \mathbb{Z} \) are of the same parity, such that

\[\frac{1}{2} + \frac{1}{2}\sqrt{d} = (\frac{1}{2} - \frac{1}{2}\sqrt{d}) + 2(\frac{x_1}{2} + \frac{x_2}{2}\sqrt{d}). \]

Clearly, the above equation holds if and only if \(x_1 = 0 \) and \(x_2 = 1 \), which is impossible, since \(x_1, x_2 \in \mathbb{Z} \) must be of the same parity. Hence, we conclude that \(\left[\frac{1}{2} + \frac{1}{2}\sqrt{d} \right] \neq \left[\frac{1}{2} - \frac{1}{2}\sqrt{d} \right] \).

Therefore, the classes of (5) (a) are distinct.

(b) Now, let \(n \geq 2 \). We determine the structure of the quotient ring \(R_d/(2^n) \). Suppose \(\beta_1 = a_1 + a_2\sqrt{d} \in R_d \), where \(a_1, a_2 \in \mathbb{Z} \). Let \(a_i = 2^{n-1}k_i + r_i, k_i, r_i \in \mathbb{Z} \), and \(0 \leq r_i \leq 2^{n-1} - 1 \) for \(i = 1, 2 \). First, if \(k_1 \) and \(k_2 \) are of the same parity, then \(\frac{k_1}{2} + \frac{k_2}{2}\sqrt{d} \in R_d \). Moreover, since \(\beta_1 = (r_1 + r_2\sqrt{d}) + 2^n(\frac{k_1}{2} + \frac{k_2}{2}\sqrt{d}) \), we conclude that \(\beta_1 \) and \(r_1 + r_2\sqrt{d} \) belong to the same equivalence class in the quotient ring \(R_d/(2^n) \). Secondly, if \(k_1 \) and \(k_2 \) are not of the same parity, then \(\frac{k_1}{2} + \frac{k_2+1}{2}\sqrt{d} \in R_d \). Since \(\beta_1 = (r_1 - (2^n - r_2)\sqrt{d}) + 2^n(\frac{k_1}{2} + \frac{k_2+1}{2}\sqrt{d}) \), we obtain that \(\beta_1 \) and \(r_1 - (2^n - r_2)\sqrt{d} \) belong to the same equivalence class. Furthermore, since \(0 \leq r_2 \leq 2^{n-1} - 1 \), we derive that \(1 \leq 2^{n-1} - r_2 \leq 2^{n-1} - 1 \). So in the second case, i.e., \(k_1 \) and \(k_2 \) are not of the same parity, we get that \(\beta_1 \) and \(r_1 - r_2\sqrt{d} \) belong to the same equivalence class, where \(1 \leq r_2 \leq 2^{n-1} \) and \(r_2' \geq 2^n - 1 \). Next, suppose that \(\beta_2 = \frac{b_1}{2} + \frac{b_2}{2}\sqrt{d} \), where \(b_1 \) and \(b_2 \) are odd integers. Let \(b_i = 2^nk_i + r_i \), where \(k_i, r_i \in \mathbb{Z}, 1 \leq r_i \leq 2^n - 1 \) and \(2 \mid r_i \) for \(i = 1, 2 \). First, if \(k_1 \) and \(k_2 \) are of the same parity, then \(\frac{k_1}{2} + \frac{k_2}{2}\sqrt{d} \in R_d \). Moreover, since \(\beta_2 = (\frac{b_1}{2} + \frac{b_2}{2}\sqrt{d}) + 2^n(\frac{k_1}{2} + \frac{k_2}{2}\sqrt{d}) \), we obtain that \(\beta_2 \) and \(\frac{k_1}{2} + \frac{k_2}{2}\sqrt{d} \) belong to the same equivalence class. Secondly, if \(k_1 \) and \(k_2 \) are not of the same parity, then \(\frac{k_1}{2} + \frac{k_2+1}{2}\sqrt{d} \in R_d \). Since \(\beta_2 = (\frac{b_1}{2} - \frac{2^n - r_2}{2}\sqrt{d}) + 2^n(\frac{k_1}{2} + \frac{k_2+1}{2}\sqrt{d}) \), it follows that \(\beta_2 \) and \(\frac{b_1}{2} - \frac{2^n - r_2}{2}\sqrt{d} \) belong to the same equivalence class. Furthermore, according to \(1 \leq r_2 \leq 2^n - 1 \), we have \(1 \leq 2^n - r_2 \leq 2^{n-1} - 1 \). So, in the second case, i.e., \(k_1 \) and \(k_2 \) are not of the same parity, we obtain that \(\beta_2 \) and \(\frac{b_1}{2} - \frac{2^n - r_2}{2}\sqrt{d} \) belong to the same equivalence class, where \(1 \leq r_2 \leq 2^n - 1 \) and \(r_2' = 2^n - r_2 \).

Finally, we claim that the classes of (5) (b) are distinct. We only show that

\[\left[\frac{r_1}{2} + \frac{r_2}{2}\sqrt{d} \right] \neq \left[\frac{x_1}{2} - \frac{x_2}{2}\sqrt{d} \right]. \]
where \(r_i, x_i \in \{1, 3, \cdots, 2^n - 1\} \) with \(2 \nmid r_i, x_i \) for \(i = 1, 2 \). Indeed, if \(\frac{1}{2} + \frac{1}{2} \sqrt{d} = \frac{1}{2} - \frac{3}{2} \sqrt{d} \), then there exist \(t_1, t_2 \in \mathbb{Z} \) of the same parity such that

\[
\frac{r_1}{2} + \frac{r_2}{2} \sqrt{d} = (\frac{x_1}{2} - \frac{x_2}{2} \sqrt{d}) + 2^n (\frac{t_1}{2} + \frac{t_2}{2} \sqrt{d}).
\]

So we obtain \(r_1 = x_1 + 2^n t_1 \) and \(r_2 = -x_2 + 2^n t_2 \). It is easy to show that \(t_1 = 0 \) and \(t_2 = 1 \), which is a contradiction.

Example 2.4 To illustrate the case \(d = -19 \), \(q = 23 = \pi \tau \) and \(n = 2 \), let \(\gamma = \frac{1}{2}(b_1 + b_2 \sqrt{-19}) \in R_d \), where \(b_1 = 3 \) and \(b_2 = 1 \). We give the equivalence class in \(R_d/(\pi^2) \) which \(\gamma \) belongs to. Since \(\pi = 2 - \sqrt{-19} \) is a proper factor of \(q \) in \(R_d \), \(\pi^2 = -15 - 4\sqrt{-19} = -30 + \frac{8}{9} \sqrt{-19} \). Denoted by \(s = -30 \), \(t = -8 \). Substituting the values for \(s, t, b_1, b_2, d, q \) and \(n \) into congruence (2.6), we get that \(a = 198 \) is a solution to congruence (2.6). Moreover, substituting the values for \(a, s, t, b_1, b_2 \) and \(d \) into equations (2.1) and (2.2), we have \(x = 11 \) and \(y = -3 \). Therefore,

\[
\gamma = \frac{3}{2} + \frac{1}{2} \sqrt{-19} = 198 + \pi^2 (\frac{11}{2} - \frac{3}{2} \sqrt{-19}),
\]

which implies that \(\gamma \) belongs to the class \([198] \).

As an easy consequence of Theorem 2.1 (5), we have

Corollary 2.5 Suppose that \(2 \) is prime in \(R_d \). Let \(\alpha = [a + b\sqrt{d}] \in R_d/(2^n) \), where \(0 \leq a, b \leq 2^{n-1} - 1 \), \(a, b \in \mathbb{Z} \). Then

1. \(\alpha = [1] \) if and only if \(a = 2^{n-1}k_1 + 1, b = 2^{n-1}k_2 \), where \(k_1, k_2 \in \mathbb{Z} \) are of the same parity.
2. If \(a = 2^n k_1 + 1, b = 2^n k_2 \), \(k_1, k_2 \in \mathbb{Z} \), then \(\alpha = [1] \).

Now, we determine the structure of unit groups of \(R_d/(\vartheta^n) \) for an arbitrary prime \(\vartheta \) of \(R_d \). First of all, we consider the case of \(\vartheta = \delta = \sqrt{d} \). Let \(\mathcal{R} = R_d/(\delta^n) \). For \(\alpha = [a + b\sqrt{d}] \in \mathcal{R} \), it is easy to show that \(\alpha \in U(\mathcal{R}) \) if and only if \(d \nmid (a^2 - db^2) \), if and only if \(d \nmid a \), if and only if \(D \nmid a \).

Theorem 2.6 Let \(\mathcal{R} = R_d/(\sqrt{d})^n \), \(n \) is an arbitrary positive integer. Let \(D = -d \). Then the unit groups \(U(\mathcal{R}) \) of \(\mathcal{R} \) are as the follows:

1. Let \(n = 1 \). Then \(U(\mathcal{R}) \cong \mathbb{Z}_{D-1} \).
2. Let \(n = 2 \). Then \(U(\mathcal{R}) \cong \mathbb{Z}_{D-1} \times \mathbb{Z}_D \).
3. Let \(n = 2m \) with \(m \geq 2 \).

 (a) If \(d \neq -3 \), then \(U(\mathcal{R}) \cong \mathbb{Z}_{D-1} \times \mathbb{Z}_{Dm-1} \times \mathbb{Z}_{Dm} \);

 (b) If \(d = -3 \), then \(U(\mathcal{R}) \cong \mathbb{Z}_2 \times \mathbb{Z}_3 \times \mathbb{Z}_{3m-1} \times \mathbb{Z}_{3m} \).
4. If \(n = 2m + 1 \) with \(m \geq 1 \), then \(U(\mathcal{R}) \cong \mathbb{Z}_{D-1} \times \mathbb{Z}_{Dm} \times \mathbb{Z}_{Dm} \).

Proof (1) If \(n = 1 \), by Theorem 2.1 (2), \(\mathcal{R} \) is a field of order \(D = -d \), so \(|U(\mathcal{R})| = D - 1 \). Therefore, \(U(\mathcal{R}) \) is a cyclic group of order \(D - 1 \) and hence \(U(\mathcal{R}) \cong \mathbb{Z}_{D-1} \).

(2) If \(n = 2 \), then \(|U(\mathcal{R})| = (D - d - 1) = D(D - 1) \). Note that \(D \) is a prime, moreover \(D \) and \(D - 1 \) are relatively prime, we get that \(U(\mathcal{R}) \cong H \times \mathbb{Z}_D \), where \(H \) is a subgroup of order \(D - 1 \). Moreover, we can easily show that \(D - 1 \) is square-free for \(D = 3, 7, 11, 43 \) and 67.
On the other hand, if $D = 19$, then $D - 1 = 2 \times 3^2$, clearly $[4] \in U(R)$ is of order 3^2. If $D = 163$, then $D - 1 = 2 \times 3^4$, clearly $[4] \in U(R)$ is of order 3^4. Therefore $H \cong \mathbb{Z}_{D-1}$. So $U(R) \cong \mathbb{Z}_{D-1} \times \mathbb{Z}_D$.

(3) (a) Suppose that $d \neq -3$. Let $m = 2m$ with $m \geq 2$. Let $\alpha = [a + b\sqrt{d}] \in \mathbb{R}$, where $a, b \in \{0, 1, \cdots, D^m - 1\}$. Since $\alpha \in U(R)$ if and only if $D \nmid a$, $|U(R)| = (D - 1)D^{2m-1}$, and we can write $U(R) = P \times H$, where P, H are finite groups, and $|P| = D - 1$, $|H| = D^{2m-1}$.

We determine the structure of H. Let $\alpha = [a + b\sqrt{d}] \in R$ with $D \nmid a$. By Theorem 2.1 (1), for an arbitrary odd integer $W > 1$, α^W equals to the equivalence class $[1]$, i.e., $\alpha^W = [1]$ if and only if the following congruences hold

$$a^W + d(W) a^{W-2} b^2 + \cdots + d (W) \equiv 1 \pmod{D^m},$$

$$\frac{1}{W} a^{W-1} b + d(W) a^{W-3} b^3 + \cdots + d (W) b^W \equiv 0 \pmod{D^m}.$$

First, we claim that for any $\alpha \in H$, $\alpha^D = [1]$. Let $W = D^m$. Since $d^m \nmid d(W)$ for $j \geq 1$, the congruence (2.7) is equivalent to $a^{D^m} \equiv 1 \pmod{D^m}$. It is well known that the unit group of the ring $\mathbb{Z}/(D^m)$ is isomorphic to $\mathbb{Z}_{D^m-1} \times \mathbb{Z}_{D-1}$. Hence, we obtain that $a^{D^m} \equiv 1 \pmod{D^m}$ if and only if $a \in \mathbb{Z}_{D^m-1}$. So in the set $\{0, 1, \cdots, D^m - 1\}$, there are precisely D^{m-1} elements a such that $a^{D^m} \equiv 1 \pmod{D^m}$.

On the other hand, since $d^m \mid d(W)$ for $j \geq 0$, congruence (2.8) holds for any positive integer b. Therefore, we can conclude that $\alpha^W = [1]$ if and only if $a \in \mathbb{Z}_{D^m-1}$ and $b \in \{0, 1, \cdots, D^m - 1\}$. Hence, the number of $\alpha \in U(R)$ satisfying $\alpha^{D^m} = [1]$ is

$$D^{m-1} \times D^m = D^{2m-1}.$$
case of $d^2 \mid b$, we have $d^m \mid d^j \left(\frac{W}{2} \right) b^2$ for $j \geq 1$. Hence, in the case of $d^2 \mid b$ congruence (2.7) holds if and only if $aW \equiv 1 \pmod{D^m}$. Clearly, the number of solutions of the last congruence is D^{m-2}. Thus the number of $\alpha \in H$ such that $\alpha^{D^{m-2}} = 1$ is $D^{m-2} \times D^{m-2} = d^{2m-4}$. So we derive that the number of elements of order D^{m-1} in $U(\mathbb{R})$ is

$$D^{2m-2} - D^{2m-4} = d^{2m-4}(d^2 - 1).$$

(2.10)

Now, let $\beta = [1 + \sqrt{d}] \in \mathbb{R}$. Then by the above argument, we know that β is of order D^m. Since $m \geq 2$, clearly $\beta \in H$. Therefore \mathbb{Z}_{D^m} is a subgroup of H and we can suppose $H \cong \mathbb{Z}_{D^m} \times \mathbb{Z}_{D^1} \times \cdots \times \mathbb{Z}_{D^{t}}$, where $l_1 + \cdots + l_h = m - 1$. If $h \geq 2$, then $1 \leq l_i \leq m - 2$ for $i = 1, \ldots, h$ and hence there are exactly $(D - 1) \cdot D^{m-3}$ elements in H of order D^{m-1}, which contradicts the above result (2.10). If $h = 1$, then $H \cong \mathbb{Z}_{D^m} \times \mathbb{Z}_{D^{m-1}}$. Therefore, the number of elements of order D^{m-1} in H is $D^{m-1} \times D^{m-1} - D^{m-2} \times D^{m-2} = d^{2m-4}(d^2 - 1)$, which is the same as (2.10). So we can conclude that $h = 1$ and $H \cong \mathbb{Z}_{D^m} \times \mathbb{Z}_{D^{m-1}}$.

In the following, we determine the structure of the subgroup P of $U(\mathbb{R})$, where $|P| = -d - 1$. Clearly, $-d - 1$ is square-free for $d = -7, -11, -43, -67$ and hence $P \cong \mathbb{Z}_{D-1}$ in these cases. If $d = -19$, then $|P| = 18 = 2 \times 3^2$.

On the other hand, let $a < 19^m$ be a positive integer. If $a^{19^t} \equiv 1 \pmod{19^m}$ for some integers $t > 1$, then clearly $a = 1 + 19x$ for some non-negative integers x. Hence, $4^{19^t} \not\equiv 1 \pmod{19^m}$ and $(4^3)^{19^t} \not\equiv 1 \pmod{19^m}$ for any $t > 1$. Furthermore, we have

$$4^{9 \times 19^{m-1}} = 262144^{19^{m-1}} = (19 \times 13797 + 1)^{19^{m-1}} = 19^{19^{m-1}} \times 13797^{19^{m-1}} + \cdots + 19^{m-1} \times 19 \times 13797 + 1 \\ \equiv 1 \pmod{19^m}.$$

Thus, if $d = -19$, the class $[4] \in \mathbb{R}$ is of order $3^2 \cdot 19^{m-1}$, so $P \cong \mathbb{Z}_2 \times \mathbb{Z}_{3^2} \cong \mathbb{Z}_{18}$. Analogously, if $d = -163$, we have

$$4^{8^1 \times 163^{m-1}} = (4^{8^1} - 1 + 1)^{163^{m-1}} = (4^{8^1} - 1)^{163^{m-1}} + 163^{m-1}(4^{8^1} - 1)^{163^{m-1}} - \cdots + 163^{m-1}(4^{8^1} - 1) + 1 \\ \equiv 1 \pmod{163^m}.$$

Since $163 \parallel (4^{8^1} - 1)$, the element $[4] \in \mathbb{R}$ in the case of $d = -163$ is of order $3^4 \times 163^{m-1}$, so $P \cong \mathbb{Z}_2 \times \mathbb{Z}_{3^4} \cong \mathbb{Z}_{162}$. Therefore, we can conclude that $P \cong \mathbb{Z}_{D-1}$ for $d = -7, -11, -19, -43, -67, -163$. Accordingly, $U(\mathbb{R}) \cong P \times H \cong \mathbb{Z}_{D^m} \times \mathbb{Z}_{D^{m-1}} \times \mathbb{Z}_{D-1}$, as desired.

(b) Suppose that $d = -3$, $n = 2m$, $m \geq 1$. Let $\alpha = [a + b\sqrt{d}] \in U(\mathbb{R})$, where $a, b \in \{0, 1, \ldots, 3^m - 1\}$ and $3 \nmid a$. Since $|U(\mathbb{R})| = 2 \times 3^{2m-1}$, we can write $U(\mathbb{R}) \cong \mathbb{Z}_2 \times Q$, where $|Q| = 3^{2m-1}$. We claim that $\alpha^{3^{m-1}} = [1]$ for $\alpha \in Q$. Let $W = 3^{m-1}$. Since $3^m \mid 3^j \left(\frac{W}{2} \right)$ for $j \geq 1$, congruence (2.7) holds if and only if $a^{3^{m-1}} \equiv 1 \pmod{3^m}$, if and only if $a \in \mathbb{Z}_{3^{m-1}}$.

No. 4 On the unit groups of the quotient rings of imaginary quadratic number rings 609
On the other hand, note that $3^n \mid 3^j \left(\frac{W}{2} + 1 \right)$ for $2 \leq j \leq \frac{W-1}{2}$, congruence (2.8) is equivalent to

$$b \left[a^2 - \frac{(3^{m-1} - 1)(3^{m-1} - 2)}{2} \right] \equiv 0 \pmod{3}. \quad (2.11)$$

If $3 \mid b$, then clearly congruence (2.11) holds. If $3 \nmid b$, we show that congruence (2.11) holds, too. Indeed, since $3 \nmid b$, we have $2 - 2b^2 \equiv 0 \pmod{3}$. The last congruence holds for $3 \nmid b$. Hence, congruence (2.12) holds for any integers b. So we can conclude that $\alpha^{3^{m-1}} = [1]$ if and only if

$$a \in \mathbb{Z}_{3^{m-1}}, \ b \in \{0, 1, \ldots, 3^m - 1\}. \quad (2.13)$$

Thus there are precisely $3^{m-1} \times 3^m = 3^{2m-1}$ elements $\alpha \in U(\mathbb{R})$ such that $\alpha^{3^{m-1}} = [1]$. Recall that $|Q| = 3^{2m-1}$, we obtain $\alpha^{3^{m-1}} = [1]$ for $\alpha \in Q$.

Next, we show that there exist elements in Q with order 3^{m-1}. Indeed, putting $W = 3^{m-2}$. Substituting the value for W into congruence (2.7). Note that $3^m \mid 3^j \left(3^{m-2} \right)$ for $j \geq 2$, we derive that congruence (2.7) holds if and only if

$$2a^{3^{m-2}} - 3^{m-1}(3^{m-2} - 1)a^{3^{m-2} - 2}b^2 \equiv 2 \pmod{3^m}. \quad (2.14)$$

If we substitute $a = b = 1$ into congruence (2.14), we have $3^{m-1}(3^{m-2} - 1) \equiv 0 \pmod{3^m}$, which is impossible for $m > 2$. Accordingly, congruence (2.7) does not hold for $a = b = 1$, which implies that $(1 + \sqrt{-3})^{3^{m-2}} \neq [1]$. Moreover, by the condition (2.13), $(1 + \sqrt{-3})^{3^{m-1}} = [1]$. So $\beta = [1 + \sqrt{-3}] \in Q$. Hence β is of order 3^{m-1}. So $(1 + \sqrt{-3}) \cong \mathbb{Z}_{3^{m-1}}$. Thus $Q \cong \mathbb{Z}_{3^{m-1}} \times J$, where J is a subgroup of Q with order 3^m.

Now, we claim that there are elements in J with order 3^{m-1}. We first note that $(1 + \sqrt{-3})^3 = -8$, thus $(1 + \sqrt{-3})^t \in \mathbb{Z}$ for $t > 1$. Moreover, since $(1 + \sqrt{-3})^2 = -2 + 2\sqrt{-3}$, we conclude that $(1 + \sqrt{-3})^s = x + y\sqrt{-3}$, where $3 \nmid y$ and $3 \nmid s$. Let $\gamma = [1 + 3\sqrt{-3}]$. By condition (2.13), $\gamma \in Q$. Thus $\gamma^{3^{m-1}} = [1]$ but $\gamma \notin (1 + \sqrt{-3})$. Hence, $\gamma \in J$. Substituting $a = 1$, $b = 3$ and $W = 3^{m-2}$ into congruence (2.8), and note that $3^m \mid 3^j \left(\frac{3^{m-2}}{2} + 1 \right)$ for $j \geq 2$, we derive that congruence (2.8) holds if and only if

$$3^{m-1} - \frac{3^{m+1}(3^{m-2} - 1)(3^{m-2} - 2)}{2} \equiv 0 \pmod{3^m}. \quad (2.15)$$

The above congruence does not hold for $m \geq 2$. It follows that $(1 + 3\sqrt{-3})^{3^{m-2}} \neq [1]$. Thus, $\gamma \in J$ is of order 3^{m-1}. Hence, $\mathbb{Z}_{3^{m-1}}$ is a subgroup of J, and $J \cong \mathbb{Z}_{3^{m-1}} \times \mathbb{Z}_3$. Accordingly, if $d = -3$, then $U(\mathbb{R}) \cong \mathbb{Z}_2 \times \mathbb{Z}_3 \times \mathbb{Z}_{3^{m-1}} \times \mathbb{Z}_{3^{m-1}}$, as desired.

(4) (a) Suppose that $d \neq -3$. Let $n = 2m + 1$ with $m \geq 1$. For $\alpha = [a + b\sqrt{d}] \in \mathbb{R}$, we know that $\alpha \in U(\mathbb{R})$ if and only if $D \nmid a$. Then, for $n = 2m + 1$, we have $|U(\mathbb{R})| = (D-1) \cdot D^{2m}$. So $U(\mathbb{R}) = K \times G$, where K, G are finite groups, and $|K| = D - 1, |G| = D^{2m}$.
We now determine the structure of G. Consider the polynomial expansions of α^X, where X is an arbitrary integer. By Theorem 2.1 (2), α^X equals to the equivalence class $[1]$ if and only if the following congruences hold

\[
a^X + d \left(\frac{X}{3} \right) a^{X-2} b^2 + \cdots + d^{\frac{X-2}{2}} \left(\frac{X}{3} \right) a b^{X-1} \equiv 1 \pmod{D^{m+1}},
\]

\[
(\frac{X}{3}) a^{X-1} b + d \left(\frac{X}{3} \right) a^{X-3} b^3 + \cdots + d^{\frac{X-3}{2}} b^X \equiv 0 \pmod{D^m}.
\]

Firstly, putting $X = D^m$, and noting that $D^{m+1} | d^j \left(\frac{D^m}{j} \right)$ for $j \geq 1$, we derive that congruence (2.15) holds if and only if $aD^m \equiv 1 \pmod{D^{m+1}}$, and if and only if $a \in \{1, 2, \ldots, D^{m+1} - 1\}$ with $a \in \mathbb{Z}_{D^m}$. Therefore, congruence $aD^m \equiv 1 \pmod{D^{m+1}}$ has precisely D^m solutions.

On the other hand, congruence (2.16) holds for $b \in \{1, 2, \ldots, D^m - 1\}$. Hence, the number of elements in $U(\mathbb{R})$ satisfying $\alpha D^m = [1]$ is $D^m \times D^m = D^{2m}$. Recall that $|G| = D^{2m}$, we derive that $\alpha D^m = [1]$ if and only if $\alpha \in G$.

Secondly, substituting $X = D^{m-1}$ into congruence (2.16). If $\alpha D^{m-1} = [1]$, clearly $\alpha \in G$. Since $d \neq -3$, we have $D^m | d \left(\frac{D^{m-1}}{2} \right)$ for $j \geq 1$. Therefore, congruence (2.16) holds if and only if $D \mid b$. In the case of $D \mid b$, congruence (2.15) holds if and only if $a \in \mathbb{Z}_{D^{m-1}}$. Therefore, the number of elements in G satisfying $\alpha D^{m-1} = [1]$ is $D^{m-1} \times D^{m-1} = D^{2m-2}$. Hence, there are precisely

\[
D^{2m} - D^{2m-2} = (d^2 - 1) \cdot d^{2m-2}
\]

elements of order D^m in \mathbb{R}.

Now, let $\beta = [1+\sqrt{d}]$. Then $\beta D^m = [1]$. However, by the above argument, we know that $\beta D^{m-1} \neq [1]$. So the order of β is D^m. Therefore \mathbb{Z}_{D^m} is a subgroup of G, and $G \cong \mathbb{Z}_{D^m} \times G_2$, where $(1 + \sqrt{d}) \cong \mathbb{Z}_{D^m}$ and $|G_2| = D^m$.

Suppose $G_2 \cong \mathbb{Z}_{D^{s_1}} \times \cdots \times \mathbb{Z}_{D^{s_h}}$, where $s_1 + \cdots + s_h = m$. If $h \geq 2$, then $1 \leq s_j \leq m - 1$ for $j = 1, \ldots, h$. Hence, there are precisely $(D-1) \cdot D^{2m-1}$ elements of order D^m in \mathbb{R}, which contradicts the above result (2.17). If $h = 1$, then $G_2 \cong \mathbb{Z}_{D^m}$ and hence $G \cong \mathbb{Z}_{D^m} \times \mathbb{Z}_{D^m}$. Thus the number of elements in \mathbb{R} of order D^m is $(d^2 - 1) \cdot d^{2m-2}$, which is the same as (2.17). Hence, we conclude that $h = 1$ and $G_2 \cong \mathbb{Z}_{D^m}$. Therefore, if $n = 2m + 1$ with $m \geq 1$, then $U(\mathbb{R}) \cong K \times \mathbb{Z}_{D^m} \times \mathbb{Z}_{D^m}$.

Finally, we determine the structure of the subgroup K for each case. Recall that $|K| = D - 1$. If $d = -7$, then $|K| = 6 = 2 \times 3$, we have $K \cong \mathbb{Z}_2 \times \mathbb{Z}_3 \cong \mathbb{Z}_{D-1}$. If $d = -11$, then $|K| = 10 = 2 \times 5$, thus $K \cong \mathbb{Z}_2 \times \mathbb{Z}_5 \cong \mathbb{Z}_{D-1}$. If $d = -19$, then $|K| = 18 = 2 \times 3^2$, and by the similar argument to (3) above, the element $[4] \in \mathbb{R}$ is of order $3^2 \times 19^m$. So $K \cong \mathbb{Z}_2 \times \mathbb{Z}_{19} \cong \mathbb{Z}_{D-1}$. If $d = -43$, then $|K| = 42 = 6 \times 7$, so $K \cong \mathbb{Z}_6 \times \mathbb{Z}_7 \cong \mathbb{Z}_{D-1}$. If $d = -67$, then $|K| = 66 = 6 \times 11$, thus $K \cong \mathbb{Z}_6 \times \mathbb{Z}_{11} \cong \mathbb{Z}_{D-1}$. If $d = -163$, then $|K| = 162 = 2 \times 3^4$, and by the similar argument to (3) above, the element $[4] \in \mathbb{R}$ is of order $3^4 \times 163^m$. So $K \cong \mathbb{Z}_2 \times \mathbb{Z}_{163} \cong \mathbb{Z}_{D-1}$. Hence $K \cong \mathbb{Z}_{D-1}$ for each case. Thus $U(\mathbb{R}) \cong \mathbb{Z}_{D-1} \times \mathbb{Z}_{D^m} \times \mathbb{Z}_{D^m}$, as desired.

(b) Suppose $d = -3$. Let $\alpha = [a + b\sqrt{-3}] \in \mathbb{R}$, where $3 \mid a$. Then $|U(\mathbb{R})| = 2 \times 3^{2m}$. So $U(\mathbb{R}) = \mathbb{Z}_2 \times G$, where $|G| = 3^{2m}$. Applying the similar argument of above (a) for the case
Now substituting $X = 3^{m-1}$ into congruence (2.16). We obtain that congruence (2.16) holds if and only if $2a^2b - (3^{m-1} - 1)(3^{m-1} - 2)b^3 \equiv 0 \pmod{3}$. We can verify that the last congruence holds for any integers b.

On the other hand, congruence (2.15) holds if and only if

$$2a^{3^{m-1}} - 3^m(3^{m-1} - 1)a^{3^{m-1}-2}b^2 \equiv 2 \pmod{3^{m+1}}.$$ \hfill (2.18)

Clearly, the above congruence (2.18) does not hold, if $a = b = 1$. So $(1 + \sqrt{-3})^m = [1]$, but $(1 + \sqrt{-3})^{3^{m-1}} \neq [1]$. Hence, $\beta = [1 + \sqrt{-3}] \in G$ is of order 3^m. Then $G \cong \mathbb{Z}_3^m \times E$, where $(1 + \sqrt{-3}) \cong \mathbb{Z}_3$, $|E| = 3^m$.

Furthermore, if we substitute $a = 2$, $b = 3$ into above congruence (2.18), we have

$$2^{3^{m-1}} - 1 \equiv 0 \pmod{3^{m+1}}.$$ \hfill (2.19)

However,

$$2^{3^{m-1}} - 1 = (3 - 1)^{3^{m-1}} - 1 = 3^{3^{m-1}} - \left(\left(\frac{3^2}{3} \right)^{3^{m-1}-1} + \cdots + \left(\frac{3^2}{3} \right)^{1} \right) \times 3^{m-2} - 2 \equiv 3^m - 2 \pmod{3^{m+1}}.$$

Therefore, congruence (2.19) does not hold for $m \geq 1$. Hence, if we let $\gamma = [2 + 3\sqrt{-3}]$, then by the above argument, we have $\gamma^{3^m} = [1]$, but $\gamma^{3^{m-1}} \neq [1]$. Thus, γ is of order 3^m. It leads to $\gamma \in G$. Moreover, $(1 + \sqrt{-3})^t \in \mathbb{Z}$ for $t \geq 1$, $(1 + \sqrt{-3})^s = x + y\sqrt{-3}$, where $3 \nmid y$ and $3 \nmid s$. So we get that $\gamma \not\in (1 + \sqrt{-3})$, which implies that $\gamma \in E$. Recall that $|E| = 3^m$, therefore we have $E \cong (2 + 3\sqrt{-3}) \cong \mathbb{Z}_3$.

Hence, if $d = -3$, then $U(\mathbb{R}) \cong \mathbb{Z}_2 \times \mathbb{Z}_3 \times \mathbb{Z}_3$, as desired.

Theorem 2.7 Let $p \in \mathbb{Z}$ be an odd prime satisfying the Legendre symbol \(\left(\frac{p}{d} \right) = -1 \). Let $\mathbb{R} = R_d/\langle p^n \rangle$, $n \geq 1$. Then $U(\mathbb{R}) \cong \mathbb{Z}_{p^2-1} \times \mathbb{Z}_{p^{n-1}} \times \mathbb{Z}_{p^{n-1}}$.

Proof For $\alpha = [a + b\sqrt{d}] \in R_d/\langle p^n \rangle$, where $0 \leq a, b \leq p^n - 1$, it is easy to prove that α is a unit of \mathbb{R} if and only if $p \nmid (a^2 - db^2)$. So $|U(\mathbb{R})| = (p^2 - 1)p^{2n-2}$.

If $n = 1$, as p is prime in \mathbb{R}, then $R_d/\langle p \rangle$ is a field with p^2 elements. Therefore $U(\mathbb{R}) \cong \mathbb{Z}_{p^2-1}$.

If $n \geq 2$, then $U(\mathbb{R}) \cong G_1 \times G_2$, where G_1 and G_2 are finite groups, and $|G_1| = p^2 - 1$, $|G_2| = p^{2n-2}$.

First, we prove that $G_1 \cong \mathbb{Z}_{p^2-1}$. Clearly, there is an epimorphism of rings

$$\phi : R_d/\langle p^n \rangle \rightarrow R_d/\langle p \rangle.$$

So there exists an epimorphism of groups

$$\varphi : U(R_d/\langle p^n \rangle) \rightarrow U(R_d/\langle p \rangle).$$
That is $\varphi : U(\mathbb{R}) \to \mathbb{Z}_{p^2-1}$. Clearly, the kernel $\ker(\varphi)$ of φ is G_2. If $\mathbb{Z}_{p^2-1} = \langle \eta \rangle$, then there exists $\theta \in U(\mathbb{R})$ such that $\varphi(\theta) = \eta$. Suppose the order of $\theta \in U(\mathbb{R})$ is t, then $\varphi(\theta^t) = 1$. Since the order of $\eta \in \mathbb{Z}_{p^2-1}$ is $p^2 - 1$, we have $\varphi(\theta^{p^2-1}) = \eta^{p^2-1} = 1$. Therefore, $\varphi(\theta^t) = \varphi(\theta^{p^2-1})$, i.e., $\eta^t = \eta^{p^2-1} = 1$. Thus we easily find that $(p^2 - 1) \mid t$, that is $(p^2 - 1) \mid \omega(\theta)$. Recall that $\ker(\varphi) = G_2$, and $\varphi(\theta) = \eta \neq 1$, so $\theta \notin \ker(\varphi) = G_2$. Thus $\theta \in G_1$, and $\omega(\theta) \mid (p^2 - 1)$. Therefore, $\omega(\theta) = p^2 - 1$. So we may conclude that $G_1 \cong \mathbb{Z}_{p^2-1}$.

In the following, we investigate the structure of G_2. For $\alpha = [a + b\sqrt{d}] \in G_2$. It is obvious that either $p \nmid a$ or $p \nmid b$. Consider the polynomial expansions of α^N, where $N > 1$ is an arbitrary odd integer. It is evident that $\alpha^N = [1]$ if and only if the following congruences hold

\[
a^N + d\left(\frac{\eta}{\alpha}\right)n^{-1}b^2 + \cdots + d\left(\frac{N-1}{\alpha}\right)ab^{N-1} \equiv 1 \pmod{p^N}, \tag{2.20}
\]

\[
(\frac{\eta}{\alpha})a^{N-1}b + d\left(\frac{\eta}{\alpha}\right)a^{N-2}b^3 + \cdots + d\left(\frac{N-2}{\alpha}\right)b^N \equiv 0 \pmod{p^N}. \tag{2.21}
\]

By the similar argument to Theorem 2.6 (3), we know that $\alpha^{p^2-1} = 1$ for all $\alpha \in G_2$, and there are precisely p^{2n-4} elements $\gamma \in G_2$ satisfying $\gamma^{p^{n-2}} = [1]$.

Moreover, let $\beta = [c + d\sqrt{d}] \in G_2$ with $p \nmid c$ and $p \parallel e$. By the polynomial expansions of $\beta^{p^{n-2}}$, we know that $\beta^{p^{n-2}} \neq 1$, which implies $\omega(\beta) = p^{n-1}$. So $G_2 \cong H \times P$, where $H = \langle \beta \rangle \cong \mathbb{Z}_{p^{n-1}}$ and $|P| = p^{n-1}$.

Suppose $G_2 \cong \mathbb{Z}_{p^{n-1}} \times \mathbb{Z}_{p^{n-1}} \times \cdots \times \mathbb{Z}_{p^{n-1}}$, where $h_1 + \cdots + h_r = n - 1$. If $r \geq 2$, then $1 \leq h_i \leq n - 2$ for $i = 1, \ldots, r$. Thus there are $p^{n-2}p^{h_1} \cdots p^{h_r}$ elements $\gamma \in G_2$ satisfying $\gamma^{p^{n-2}} = [1]$, which contradicts the above result. If $r = 1$, then $G_2 \cong \mathbb{Z}_{p^{n-1}} \times \mathbb{Z}_{p^{n-1}}$. So there are exactly $p^{n-2}p^{n-3} = p^{2n-4}$ elements $\gamma \in G_2$ satisfying $\gamma^{p^{n-2}} = [1]$, which is the same as above result. So we derive that $r = 1$ and this leads to $G_2 \cong \mathbb{Z}_{p^{n-1}} \times \mathbb{Z}_{p^{n-1}}$. This completes the proof.

Theorem 2.8 Let $q \in \mathbb{Z}$ be a prime satisfying the Legendre symbol $(\frac{d}{q}) = 1$. Suppose that π is a proper factor of q. Let $\overline{R} = R_d/(\pi^n)$, $n \geq 1$.

(1) Suppose $q = 2$. Then $U(\overline{R}) \cong \mathbb{Z}_1$ if $n = 1$, $U(\overline{R}) \cong \mathbb{Z}_2$ if $n = 2$, $U(\overline{R}) \cong \mathbb{Z}_2 \times \mathbb{Z}_{2^{n-2}}$ if $n > 2$.

(2) Suppose $q \neq 2$. Then $U(\overline{R}) \cong \mathbb{Z}_{q^{n-1}} \times \mathbb{Z}_{q-1}$.

Proof Applying Theorem 2.1 (4), we derive that $\overline{R} \cong \mathbb{Z}/(q^n)$. So the theorem follows.

We obtain the proof of Theorem 1.2 that 2 is not a prime in R_d if $d = -7$. So we may assume $d \neq -7$ in the following theorems. We investigate the unit groups of $R_d/(2^n)$ for $d = -3, -11, -19, -43, -67, -163$.

Theorem 2.9 Suppose $d = -3, -11, -19, -43, -67, -163$. Let $\overline{R} = R_d/(2^n)$, $n \geq 2$.

Then

(1) $U(\overline{R}) = \overline{R}_1 \cup \overline{R}_2 \cup \overline{R}_3$, where

$\overline{R}_1 = \left\{ [r_1 + r_2\sqrt{d}] : 0 \leq r_1, r_2 \leq 2^{n-1} - 1, r_1, r_2 \in \mathbb{Z} \text{ are not of the same parity} \right\}$,

$\overline{R}_2 = \left\{ [r_1 - r_2\sqrt{d}] : 0 \leq r_1 \leq 2^{n-1} - 1, 1 \leq r_2 \leq 2^{n-1}, r_1, r_2 \in \mathbb{Z} \text{ are not of the same parity} \right\}$,

$\overline{R}_3 = \left\{ [\frac{r_1}{2} \pm \frac{r_2}{2}\sqrt{d}] : 1 \leq r_1 \leq 2^{n-1} - 1, r_1, r_2 \in \mathbb{Z}, 2 \mid r_i, i = 1, 2 \right\}$.

(2) Suppose $n \geq 4$. Then there are exactly 8 elements $\alpha \in \overline{R}_1 \cup \overline{R}_2$ satisfying $\alpha^2 = [1]$.

(3) Suppose \(n \geq 5 \). Then there are exactly 32 elements \(\alpha \in \mathbb{R}_1 \cup \mathbb{R}_2 \) satisfying \(\alpha^4 = [1] \).

Proof
(1) If \(\alpha = [r_1 \pm r_2 \sqrt{2}] \in \mathbb{R} \), where \(r_1, r_2 \in \mathbb{Z} \), it is easy to show that \(\alpha \in U(\mathbb{R}) \) if and only if \(2 \nmid N(\alpha) \), i.e., \(2 \nmid (r_1^2 - dr_2^2) \), if and only if \(r_1 \) and \(r_2 \) are not of the same parity.

If \(\alpha = [\frac{1}{2} \pm \frac{1}{2} \sqrt{2}] \in \mathbb{R} \), where \(r_1, r_2 \in \mathbb{Z} \) with \(2 \nmid r_1r_2 \), then \(\alpha \in U(\mathbb{R}) \) if and only if \(2 \nmid N(\alpha) \), i.e., \(2 \nmid (r_1^2 - dr_2^2) \), if and only if \(8 \nmid (r_1^2 - dr_2^2) \). Let \(r_i = 2k_i + 1, i = 1, 2 \). Then

\[
r_1^2 - dr_2^2 = 4(k_1^2 + k_1 - dk_2^2 - dk_2) + (1 - d).
\]

Clearly, \(2 \mid (k_1^2 + k_1 - dk_2^2 - dk_2) \). However, \(4 \| (1 - d) \) for \(d = -3, -11, -19, -43, -67, -163 \). Therefore, \(8 \nmid (r_1^2 - dr_2^2) \). Hence, \(\alpha \in U(\mathbb{R}) \).

(2) First, let \(\alpha = a \in \mathbb{Z} \), where \(1 \leq a \leq 2^n-1 \). Then \(\alpha \in U(\mathbb{R}) \) if and only if \(2 \nmid a \). By Corollary 2.5, \(\alpha^2 = [1] \) if and only if \(a^2 \equiv 1 \pmod{2^n} \). The last congruence has precisely 2 solutions.

Second, let \(\alpha = \pm b\sqrt{d} \), where \(1 \leq b \leq 2^n-1 \). Then \(\alpha \in U(\mathbb{R}) \) if and only if \(2 \nmid b \). Let \(b = 2k + 1 \). By Corollary 2.5, \(\alpha^2 = [1] \) if and only if \(d(4k^2 + 4k + 1) \equiv 1 \pmod{2^n} \). Since \(d - 1 = -4x \), where \(x = 1, 3, 5, 11, 17, 41 \), we obtain that \(d(4k^2 + 4k + 1) - 1 = 4(k^2d + kd - x) \). Note that \(2 \nmid (k^2d + kd - x) \), we derive that \(d(4k^2 + 4k + 1) \not\equiv 1 \pmod{2^n} \). Therefore \(\alpha^2 \not\equiv [1] \).

Thirdly, let \(\alpha = a + b\sqrt{d} \), where \(1 \leq a, b \leq 2^n-1 \). Since \(a, b \in \mathbb{Z} \) are not of the same parity. By Corollary 2.5, \(\alpha^2 = [1] \) if and only if the following congruences hold

\[
a^2 + b^2d = 2^{n-1}k_1 + 1, \tag{22.2}
\]
\[
2ab = 2^{n-1}k_2. \tag{22.3}
\]

where \(k_1 \) and \(k_2 \) are of the same parity. If \(2 \nmid a \) while \(2 \nmid b \), then (22.3) reduces to \(a \equiv 0 \pmod{2^n-2} \). Recall that \(1 \leq a \leq 2^n-1 \), so the last congruence has exactly one solution \(a = 2^n-2 \). Hence, the left hand of (22.3) is \(2ab = 2^n-1a \) with \(2 \nmid a \). The left hand of (22.2) is \(a^2 + b^2d = 2^{n-4} + b^2d \). So equality (22.2) holds for some odd integers \(k_1 \) if and only if \(b^2d = 2^n-1h+1 \) for some odd integers \(h \). Putting \(b = 2s+1 \), then \(b^2d-1 = 4d(s^2+s)+(d-1) \). Because \(s^2 + s \) is even and \(4 \| (d-1) \) for \(d = -3, -11, -19, -43, -67, -163 \), we obtain that \(4 \| (b^2d-1) \). Therefore, for \(n \geq 4 \), \(b^2d \not\equiv 2^n-1h+1 \) for any integers \(h \). So we can conclude that in the case of \(2 \nmid a \) and \(2 \nmid b \), there are exactly 2 elements \(\alpha \) satisfying \(\alpha^2 = [1] \).

On the other hand, suppose that \(2 \mid a \) while \(2 \nmid b \). Then (22.3) reduces to \(a \equiv 0 \pmod{2^n-2} \). Recall that \(1 \leq a \leq 2^n-1 \), so the last congruence has exactly one solution \(a = 2^n-2 \). Hence, the left hand of (22.3) is \(2ab = 2^n-1b \) with \(2 \nmid b \). The left hand of (22.2) is \(a^2 + b^2d = 2^n-4 + b^2d \). So equality (22.2) holds for some odd integers \(k_1 \) if and only if \(b^2d = 2^n-1h+1 \) for some odd integers \(h \). Putting \(b = 2s+1 \), then \(b^2d-1 = 4d(s^2+s)+(d-1) \). Because \(s^2 + s \) is even and \(4 \| (d-1) \) for \(d = -3, -11, -19, -43, -67, -163 \), we obtain that \(4 \| (b^2d-1) \). Therefore, for \(n \geq 4 \), \(b^2d \not\equiv 2^n-1h+1 \) for any integers \(h \). So we can conclude that in the case of \(2 \nmid a \) and \(2 \mid b \), there does not exist any element \(\alpha \) satisfying \(\alpha^2 = [1] \).

Finally, let \(\alpha = a - b\sqrt{d} \), where \(1 \leq a \leq 2^n-1 \), \(1 \leq b \leq 2^n-1 \), \(a, b \in \mathbb{Z} \) are not of the same parity. If \(2 \nmid a \) while \(2 \mid b \), then (22.3) reduces to \(b \equiv 0 \pmod{2^n-2} \). Thus \(b = 2^n-2 \) or \(2^n-1 \). In the case of \(b = 2^n-2 \), applying the similar argument of above, we get that \(\alpha^2 = [1] \) if and only if \(a = 2^n-2 + 1 \). For the other case \(b = 2^n-1 \), equality (22.3) reduces to \(2ab = 2^n a \),
and the left hand of equality (2.22) is $a^2 + b^2d = a^2 + 2^{2n-2}d$. By Corollary 2.5, $\alpha^2 = [1]$ if and only if $a^2 \equiv 1 \pmod{2^n}$, if and only if $a = 1, 2^{n-1} - 1$. Therefore, there are exactly 4 elements α satisfying $\alpha^2 = [1]$, if $2 \mid a$ and $2 \nmid b$.

On the other hand, if $2 \nmid a$ while $2 \nmid b$, by the similar above argument, we obtain that $\alpha^2 \neq [1]$.

Thus, there are exactly 8 elements $\alpha \in \mathcal{R}_1 \cup \mathcal{R}_2$ satisfying $\alpha^2 = [1]$, as desired.

(3) Firstly, let $\alpha = a \in \mathbb{Z}$, where $1 \leq a < 2^{n-1} - 1$ with $2 \nmid a$, $a \in \mathbb{Z}$. By Corollary 2.5, $\alpha^4 = [1]$ if and only if $a^4 \equiv 1 \pmod{2^n}$. The last congruence has precisely 4 solutions.

Secondly, let $\alpha = \pm b\sqrt{d}$, where $1 \leq b < 2^{n-1} - 1$ with $2 \nmid b$, $b \in \mathbb{Z}$. Let $b = 2k + 1$. By Corollary 2.5, $\alpha^4 = [1]$ if and only if $b^4d^2 - 1 \equiv 0 \pmod{2^n}$, i.e.,

$$8d^2(2k^4 + 4k^3 + 3k^2 + k) + (d^2 - 1) \equiv 0 \pmod{2^n}. \quad (2.24)$$

It is evident that $2^4 \mid (d^2 - 1)$ for $d = -3, -11, -19, -43, -67, -163$. So $b^4d^2 - 1 \neq 0 \pmod{2^n}$ for $n \geq 5$. Thus, $\alpha^4 \neq [1]$.

Thirdly, let $\alpha = a + b\sqrt{d}$, where $1 \leq a, b < 2^{n-1} - 1$, a and b are not of the same parity. By Corollary 2.5, $\alpha^4 = [1]$ if and only if the following congruences hold

$$a^4 + b^4(6a^2d + b^2d^2) = 2^{n-1}k_1 + 1, \quad (2.25)$$
$$4b(a^3 + ab^2d) = 2^{n-1}k_2, \quad (2.26)$$

where k_1 and k_2 are of the same parity. If $2 \nmid a$ while $2 \mid b$, then (2.26) reduces to $b \equiv 0 \pmod{2^{n-3}}$. The last congruence has exactly three solutions $b = 2^{n-3}x$, where $x = 1, 2, 3$. Suppose first that $b = 2^{n-3}x$, $x = 1, 3$. Then the left hand of equation (2.26) equals $4b(a^3 + ab^2d) = 2^{n-1}k_2$, where $k_2 = x(a^3 + ab^2d)$ is odd.

On the other hand, the left hand of equation (2.25) equals $a^4 + 2^{n-1}(3 \times 2^{n-4}a^2d + 2^{3n-11}d^2x^2)x^2$. Since $n \geq 5$, we get that $(3 \times 2^{n-4}a^2d + 2^{3n-11}d^2x^2)x^2$ is even. Therefore, $\alpha^4 = [1]$ if and only if $a^4 = 2^{n-1}s + 1$ for some odd integers s. Since $1 \leq a < 2^{n-1} - 1$, clearly there are exactly 4 elements a satisfying $a^4 = 2^{n-1}s + 1$ for some odd integers s. Now suppose $b = 2^{n-3}x$, where $x = 2$. Then the left hand of equation (2.26) equals $4b(a^3 + ab^2d) = 2^n(a^3 + ab^2d)$. Therefore, by equation (2.25), we obtain that $\alpha^4 = [1]$ if and only if $a^4 \equiv 1 \pmod{2^n}$. The last congruence has exactly 4 solutions $a \in \{1, \ldots, 2^{n-1} - 1\}$. Hence, there are totally 12 elements α satisfying $\alpha^4 = [1]$, in the case of $2 \mid a$ and $2 \nmid b$.

For another case of $2 \mid a$ and $2 \mid b$, we reduce from equation (2.25) that $2^{n-3} \mid a$. Hence, $a = 2^{n-3}y$, where $y = 1, 2, 3$. Suppose $a = 2^{n-3}y$, where $y = 1, 3$. Then by equations (2.25) and (2.26), $\alpha^4 = [1]$ if and only if $b^4d^2 = 2^{n-1}s + 1$ for some odd integers s. Let $b = 2k + 1$, then $b^4d^2 - 1$ is equal to the left side of congruence (2.24). Since $2^4 \mid (d^2 - 1)$ for $d = -3, -11, -19, -43, -67, -163$. So $b^4d^2 - 1 \neq 0 \pmod{2^{n-1}}$ for $n \geq 5$. Thus, $\alpha^4 \neq [1]$.

Next, we assume that $a = 2^{n-3}y$, where $y = 2$. Then by equations (2.25) and (2.26), $\alpha^4 = [1]$ if and only if $b^4d^2 \equiv 1 \pmod{2^2}$, and if and only if congruence (2.24) holds for any integers k and n. However, this congruence does not hold for $n \geq 5$. Therefore, we can conclude that
in the case of $2 \mid a$ and $2 \nmid b$, there does not exist any element α satisfying $\alpha^4 = [1]$. Hence, there are totally 12 elements $\alpha = [a + b\sqrt{d}] \in \mathfrak{R}_1$ satisfying $\alpha^4 = [1]$, where $a \neq 0$ and $b \neq 0$.

Finally, let $\alpha = a - b\sqrt{d}$, where $1 \leq a \leq 2^{n-1} - 1$, $1 \leq b \leq 2^{n-1}$, a and b are not of the same parity. If $2 \mid a$ while $2 \nmid b$, then (2.26) reduces to $b \equiv 0$ (mod 2^{n-3}). The last congruence has exactly four solutions, namely $b = 2^{n-3}x$, where $x = 1, 2, 3, 4$. Applying the similar argument above, we obtain that there are exactly 16 elements $\alpha \in \mathfrak{R}_2$ satisfying $\alpha^4 = [1]$, where $a \neq 0$. On the other hand, if $2 \mid a$ and $2 \nmid b$, there does not exist any element $\alpha \in \mathfrak{R}_2$ satisfying $\alpha^4 = [1]$.

Thus, there are exactly 32 elements $\alpha \in \mathfrak{R}_1 \cup \mathfrak{R}_2$ satisfying $\alpha^4 = [1]$, as desired.

In the sequel, we assume that 2 is prime in the ring R_d. If $n = 1$, by Theorem 2.1 (5) and Theorem 2.9, $R_d/(2)$ is a field with 4 elements. Therefore, $U(R_d/(2^n)) \cong \mathbb{Z}_3$.

If $n = 2$, then $|U(R_d/(2^n))| = 3 \times 2^2$. The unit group of $R_d/(2^n)$ is

\[\left\{ 1, \pm \sqrt{d}, 1 - 2\sqrt{d}, \frac{1}{2} \pm \frac{1}{2} \sqrt{d}, \frac{1}{2} \pm \frac{3}{2} \sqrt{d}, \frac{3}{2} \pm \frac{1}{2} \sqrt{d}, \frac{3}{2} \pm \frac{3}{2} \sqrt{d} \right\}.
\]

By calculation, we obtain that for $d = -3, -11, -19, -43, -67, -163, (\pm \sqrt{d})^2 = 4k + 1$ for some integers k. So by Corollary 2.5, $\pm \sqrt{d}$ is of order 2. Similarly, $(\frac{3}{2} \pm \frac{4}{2} \sqrt{d}) = 27 = [1]$.

So the order of $\frac{1}{2} \pm \frac{3}{2} \sqrt{d}$ is 3. Moreover, we show that $o(1 - 2\sqrt{d}) = 2$, $o(\frac{1}{2} \pm \frac{1}{2} \sqrt{d}) = o(\frac{1}{2} \pm \frac{3}{2} \sqrt{d}) = 6$. Hence, $U(R_d/(2^2)) \cong \mathbb{Z}_3 \times \mathbb{Z}_2 \times \mathbb{Z}_2$.

Analogously, if $n = 3$, then $|U(R_d/(2^3))| = 3 \times 2^4$. The unit group of $R_d/(2^3)$ is

\[\left\{ 1, 3, \pm \sqrt{d}, \pm 3\sqrt{d}, 1 \pm 2\sqrt{d}, 2 \pm \sqrt{d}, 2 \pm 3\sqrt{d}, 3 \pm 2\sqrt{d}, 1 - 4\sqrt{d}, 3 - 4\sqrt{d} \right\} \cup \left\{ \frac{a}{2} \pm \frac{b}{2} \sqrt{d} : a, b = 1, 3, 5, 7 \right\}.
\]

By calculation, we obtain that $o(3) = o(1 \pm 2\sqrt{d}) = o(3 \pm 2\sqrt{d}) = o(1 - 4\sqrt{d}) = o(3 - 4\sqrt{d}) = 2$, and $o(\pm \sqrt{d}) = o(\pm 3\sqrt{d}) = o(\pm 2\sqrt{d}) = o(2 - \sqrt{d}) = o(2 - 3\sqrt{d}) = 4$. Moreover, $o(\frac{a}{2} \pm \frac{b}{2} \sqrt{d}) \neq 4$ for $a, b = 1, 3, 5, 7$. Therefore, $U(R_d/(2^3)) \cong \mathbb{Z}_3 \times \mathbb{Z}_2 \times \mathbb{Z}_2 \times \mathbb{Z}_2$.

Theorem 2.10 Suppose that $d = -3, -11, -19, -43, -67$ or -163. Then

1. $U(R_d/(2^2)) \cong \mathbb{Z}_3$.
2. $U(R_d/(2^3)) \cong \mathbb{Z}_3 \times \mathbb{Z}_2 \times \mathbb{Z}_2 \times \mathbb{Z}_2$ for $n \geq 2$.

Proof The unit groups for the cases of $n = 1, 2, 3$ have been stated above. So we assume $n \geq 4$ in the following. By Theorem 2.9, we get $|U(R_d/(2^n))| = 3 \times 2^{n-2}$. Thus $U(R_d/(2^n)) \cong \mathbb{Z}_3 \times H$, where H is a subgroup with order 2^{2n-2}.

Firstly, we claim that $\alpha^{2^{n-1}} = [1]$ for $\alpha \in \mathfrak{R}_1 \cup \mathfrak{R}_2$, where \mathfrak{R}_1 and \mathfrak{R}_2 are stated in Theorem 2.9. Indeed, if we put $\alpha = a + b\sqrt{d} \in \mathfrak{R}_1$, $\alpha^M = A + B\sqrt{d}$, M is even, then

\[A = a^M + d(M_\frac{1}{2})a^{M-2}b^2 + d^2(M_\frac{1}{4})a^{M-4}b^4 + \cdots + d^M (M_{M-2}) a^2 b^{M-2} + d^M b^M,\]

\[B = (M_\frac{1}{4}) a^{M-1} b + d(M_\frac{3}{4}) a^{M-3} b^3 + \cdots + d^M (M_{M-3}) a^3 b^{M-3} + d^M (M_{M-1}) a b^{M-1}.
\]

Let $M = 2^{n-1}$. If $2 \mid a$ while $2 \nmid b$, then $2^n \mid (2^{n-1}) b^s$ for $1 \leq s \leq 2^{n-1}$. So we derive $2^n \mid (A - a^{2^{n-1}})$ and $2^n \mid B$. Hence, $A = 2^n t + a^{2^{n-1}}$ and $B = 2^n k$ for some integers t, k. By
Corollary 2.5, $\alpha^{2^{n-1}} = [1]$ if and only if $a^{2^{n-1}} \equiv 1 \pmod{2^n}$. Because $U(\mathbb{Z}/(2^n)) \cong \mathbb{Z}_2 \times \mathbb{Z}_{2^{n-2}}$ for $n \geq 3$, we derive that $a^{2^{n-1}} \equiv 1 \pmod{2^n}$ for $2 \nmid a$ and $n \geq 3$. Thus $\alpha^{2^{n-1}} = [1]$ in the case of $2 \nmid a$ and $2 \mid b$.

On the other hand, suppose $2 \mid a$ while $2 \nmid b$. Since $2^n | (2^{n-1}) a^{2^{n-1}-s}$ for $0 \leq s \leq 2^{n-1} - 1$, it is obvious that $2^n | (A - d^{2^{n-2}} b^{2^{n-1}})$ and $2^n | B$. Since $d, b \in U(\mathbb{Z}/(2^n))$, we must have $d^{2^{n-2}} \equiv 1 \pmod{2^n}$ and $b^{2^{n-1}} \equiv 1 \pmod{2^n}$. Hence, $d^{2^{n-2}} b^{2^{n-1}} \equiv 1 \pmod{2^n}$. Therefore, $\alpha^{2^{n-1}} = [1]$ in the case of $2 \mid a$ and $2 \nmid b$. So we conclude that $\alpha^{2^{n-1}} = [1]$ for $\alpha \in \mathcal{R}_1$. Similarly, we have $\alpha^{2^{n-1}} = [1]$ for $\alpha \in \mathcal{R}_2$. Thus, our claim follows.

Secondly, we prove that $\mathbb{Z}_{2^{n-1}}$ is a subgroup of H. Since the number of the set $\mathcal{R}_1 \cup \mathcal{R}_2$ is precisely 2^{2n-2} and note that the subgroup H is of order 2^{2n-2}, we can conclude that $\alpha \in H$ if and only if $\alpha \in \mathcal{R}_1 \cup \mathcal{R}_2$. So $H = \mathcal{R}_1 \cup \mathcal{R}_2$. Furthermore, let $a_0 = [2 + \sqrt{d}] \in H$.

We prove that $a_0^{2^{n-3}} \neq [1]$. Setting $a = 2, b = 1, M = 2^{n-2}$. Substituting these values into the expressions for A and B. Since $2^n | (2^{n-3}) a^s$ for $3 \leq s \leq 2^{n-2}$, and $2^n \parallel (2^{n-3}) a^s$ for $s = 1, 2$, we derive that $2^{n-1} | (A - d^{2^{n-3}})$ and $2^{n-1} \parallel B$. So $A = 2^{n-1} k + d^{2^{n-3}}$ for some odd integers k. Moreover, owing to Corollary 2.5, $a_0^{2^{n-3}} = [1]$ if and only if $A = 2^{n-1} k + 1$ for some odd integers t, i.e., $A = 2^{n-1} k + d^{2^{n-3}} = 2^{n-1} t + 1$, and if only if $d^{2^{n-3}} = 2^{n-1} (t - k) + 1$. Since $2 \parallel kt$, we have $t - k$ is even. Therefore, $a_0^{2^{n-3}} = [1]$ if and only if $d^{2^{n-3}} \equiv 1 \pmod{2^n}$. In the following, we show that $d^{2^{n-3}} \neq 1 \pmod{2^n}$ for $d = -3, -11, -19, -43, -67$ or -163. Indeed, we have $-d = 4e - 1$ for some odd integers e. Then

$$d^{2^{n-3}} - 1 = (4e - 1)^{2^{n-3}} - 1 = (4e)^{2^{n-3}} - (2^{n-3}) (4e)^{2^{n-3}-1} + \cdots + (2^{n-3})^2 (4e)^2 - (2^{n-3}) 4e.$$

It is evident that $2^n | (2^{n-3}) (4e)^{s}$ for $2 \leq s \leq 2^{n-3}$. However, $(2^{n-3}) 4e = 2^{n-1} e$ is not divisible by 2^n. Thus $d^{2^{n-3}} \neq 1 \pmod{2^n}$. Hence, $a_0^{2^{n-3}} \neq [1]$, which implies that a_0 is of order 2^{n-1}. Therefore, $\mathbb{Z}_{2^{n-1}}$ is a subgroup of H, as desired.

Now, owing to Theorem 2.9 (2), we obtain that $H \cong \mathbb{Z}_{2^{n-1}} \times \mathbb{Z}_2 \times \mathbb{Z}_2$, where $i, j \geq 1$ and $i + j = n - 1$. If $n = 4$, then $i + j = 3$. Hence, $H \cong \mathbb{Z}_{2^{n-1}} \times \mathbb{Z}_2 \times \mathbb{Z}_2$ for the case $n = 4$. Next, we assume that $n > 4$. If $i, j \geq 2$, then there are precisely 64 elements $\alpha \in \mathbb{Z}_{2^{n-1}} \times \mathbb{Z}_2 \times \mathbb{Z}_2$ satisfying $\alpha^4 = [1]$, which contradicts Theorem 2.9 (3). If $i = n - 2$ and $j = 1$, then there are precisely 32 elements $\alpha \in \mathbb{Z}_{2^{n-1}} \times \mathbb{Z}_2 \times \mathbb{Z}_2$ satisfying $\alpha^4 = [1]$, which is the same as Theorem 2.9 (3). Therefore, we conclude that $H \cong \mathbb{Z}_{2^{n-1}} \times \mathbb{Z}_{2^{n-2}} \times \mathbb{Z}_2$. This completes the proof of the theorem.

References

虚二次环的商环的单位群

韦扬江，苏磊磊，唐高华
(广西师范大学数学与统计科学学院，广西 南宁 530023)

关键词：虚二次环；商环；单位群；二次域

MR(2010)主题分类号：11R04; 20K01 中图分类号：O152.1; O156.1