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Abstract: In this paper, we introduce and investigate the concept of Nabla-Hukuhara deriva-
tive of fuzzy-valued functions on time scales. By using the theory of time scales, we show some
basic properties of the Nabla-Hukuhara derivative, which extend and improve the related ones in
[12].
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1 Introduction

The Hukuhara derivative was the starting point for the topic of set differential equations
and later also for fuzzy differential equations. But the Hukuhara derivative in FDE suffers
certain disadvantages (see [3]) related to the properties of the space K™ of all nonempty
compact sets of R™ and in particular to the fact that Minkowski addition does not possess an
inverse subtraction. To overcome this obstacle, several generalized fuzzy derivative concepts
were studied from different viewpoints by some authors [4-8].

Recently, the authors in [9] introduced the concept of fuzzy derivative for fuzzy-valued
functions on time scales, which provides a natural extension of the Hukuhara derivative. In
this paper, we define the Nabla-Hukuhara derivative of fuzzy-valued functions on time scales,
which gives another type of generalization of the Hukuhara derivative. We also show some
basic properties of the Nabla-Hukuhara derivative. Results obtained in this paper extend

and improve the related ones in [12].

2 Preliminaries

In this section, we recall some basic definitions, notation, properties and results on fuzzy
sets and the time scale calculus, which are used throughout the paper. Let us denote by Rz
the class of fuzzy subsets of the reals u : R — [0, 1], satisfying the following properties

(1) u is normal, i.e., there exists o € R with u(zg) = 1;
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(2) u is a convex fuzzy set, i.e., for all 1,22 € R, A € (0,1), we have
u(Azy + (1 — Nag) > min{u(x), u(z2)};

(3) u is upper semi-continuous;
(4) [u]® = {x € R:u(z) > 0} is compact, where A denotes the closure of the set A.

Then Ry is called the space of fuzzy numbers. For 0 < o < 1, denote [u]* = {z € R :
u(z) > a}. From conditions (1) to (4), it follows that the a-level set [u]* is a nonempty
compact interval for all « € [0, 1]. We write [u]* = [u®, u®] and denote the lower and upper
branches of u by u and u, respectively. For u,v € R and A € R, the sum u & v and the
product between crisp numbers and fuzzy numbers, A®u, is defined by [u®v]* = [u|* + [v]*,
A ®u]® = Au]* respectively for all « € [0, 1], where [u]® + [v]* is the Minkowski addition of
sets and A[u]® is the product between real numbers and intervals of R.
As a distance between fuzzy numbers, we use the Hausdorff metric defined by
D(u,v) = sup max{|u® — v, |[u® —v®|}
a€l0,1]

for u,v € Rxr. Then (Rg, D) is a complete metric space.

A time scale T is a nonempty closed subset of R with the subspace topology inherited
from the standard topology on R. For ¢ € T, we define the forward jump operator o(t) by
o(t) = inf{s >t : s € T} where inf() = sup{T}, while the backward jump operator p(t)
is defined by p(t) = sup{s < ¢t : s € T} where sup® = inf{T}. If o(t) > ¢, we say that
t is right-scattered, while if p(t) < ¢, we say that ¢ is left-scattered. If o(t) = t, we say
that t is right-dense, while if p(t) = t, we say that ¢ is left-dense. A point ¢ € T is dense
if it is both right and left dense; isolated if it is both right and left scattered. The forward
graininess function p and the backward graininess function 7 are defined by pu(t) = o(t) —t,
n(t) =t — p(t) for all t € T, respectively. If sup T is finite and left-scattered, then we define
T* := T\ sup T, otherwise T* := T; if inf T is finite and right-scattered, then T}, := T\ inf T,
otherwise Tj, := T.

Definition 2.1 [7] A function f : [a,b] — Ry is said to be left differentiable at ¢ if there
exist A and 6 > 0, such that

(1) f(t)e f(t — h) exists for 0 < h < § and hlir{){f FO(ft)© f(t—h)) = A; or

(2) f(t—h) S f(t) exists for 0 < h < § and hhj(rﬁ = O (f(t—h)e f(t) = A

The element A is said to be the left derivative of f at ¢, noted as f’ ().

Definition 2.2 [7] A function f : [a,b] — Rz is said to be right differentiable at ¢ if
there exist A and § > 0, such that

(1) f(t+ h) o f(t) exists for 0 < h < § and hliér(r)l+ FO(ft+h)e f(t) = A4; or

(2) f(t)© f(t+ h) exists for 0 < h < § and hlijél+ Lo (ft)o ft+h) = A

The element A is said to be the right derivative of f at ¢, noted as f’ (t).

Definition 2.3 [7] A function f : [a,b] — Rz is said to be differentiable at ¢ if f is
both left and right differentiable at ¢, and f’ (t) = f.(t). The element f’ (t) or f’ (t) is said
to be the derivative of f at ¢, denoted as f'(t).
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3 Nabla-Hukuhara Derivative

Definition 3.1 Assume that f: T — R is a fuzzy function and let ¢t € Ty. Then we
define fV#(t) to be the number (provided that it exists) with the property that given any
€ > 0, there exists a neighborhood U of t (i.e., U = (t — 6, + §) N T for some § > 0) such
that

D[f(t+h) g f(t), £ () (h+n(t))] < elh+n(B)],
D[f(t) ©g f(t = h), £ (t)(h = n(t))] < elh = n(t)]

forallt —h,t+h e U with 0 < h < 6.

We call fV#(t) the Nabla-Hukuhara derivative (V g-derivative for short) at t. Moreover,
we say that f is Vpy-differentiable on T}, provided that fV#(t) exists for all t € Tj. The
fuzzy function fV#(t) : T, — R is then called the V y-derivative on Ty.

Some useful properties of the V g-derivative of f are given in the next theorem.

Theorem 3.2 Let f: T — Ryr and t € T. Then we have the following.

(i) Function f has at most one V g-derivative at t.

(ii) If f is Vy-differentiable at ¢, then f is continuous at ¢.

(iii) If f is continuous at t and ¢ is left-scattered, then f is V y-differentiable at ¢ with

p
n(t)
(iv) If ¢ is left-dense, then f is V y-differentiable at ¢ if and only if the limits hlim+ w
—0

and lim ft)Ogf(t—h)
h

exist as a finite number and are equal. In this case,
h—0t

Ouy = i LEEW SISO S S, FE—h)

h—0+ h—0+ h

(v) If fis Vg-differentiable, then f(t) = f°(t) & fYV= (t)n(t).
Proof (i) The proof is easy and will be omitted.
(ii) Assume that f is Vpy-differentiable at ¢t. Let € € (0,1). Denote

T3 )

6*

Then €* € (0,1), here we have for u € Rz, D[u, 0] = ||u||= with 0, a zero element of Rz. By
Definition 3.1 there exists a neighborhood U of t such that

D[f(t+h) ©q f(), £V () (h + n(t))] < € [h +n(t)],
D[f7(t) ©g f(t = h), £ (t)(h = n(t))] < € [h = n(t)|
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for all t — h,t + h € U. Therefore, for all t — h,t + h € UN(t — €*,t + €*) we have

D[f(t+h), f(B)]

= DI[f({t+h)Og f(1), F(t) Og f*(1)]

< DI[f(t+h) 6y f*(t),0] + D[f(t) &4 f7(1),0]

< D[f(t+h) &y f2(), Y () (h+n(t)] + DIV () (h + (1)), 0]
+D[f(t) g f2(t), 7 ()n(®)] + DIFY" (t)n(t), 0]

< DUf(t+h) S f2(), f¥7 () (R + ()] + DI (E) &g £7(1), [V ()n(t)]

(b + 20(t) DI (1), 0
&b+ ()| + € In(t)] + (b + 20(8) |7 ()]
2he* + he* + 3R £ (Dllx < € (3h+ 317 (B)]5) = e.

IAIA

Similarly, we can prove that D[f(t), f(t — h)] < e. Therefore, f is continuous at ¢.

(iii) Assume that f is continuous at ¢ and ¢ is left-scattered. By the continuity,
P P P _ P
o JEER S, ) [ ) L 08, =R [0S, ()
h—0+ h+n(t) n(t) h—0+ h —n(t) —n(t)

F®)Sa P PS4 f(1)
n(t) ()

Moreover, D[ ] = 0. Hence, given € > 0, there exists a neighborhood U

of ¢ such that

S+ )0, () F(8) S, 2(0) o0 Sy FE— ) F() S, F7(2)
R e Rty e LI e e e B

for all t — h,t 4+ h € U. It follows that
DIf(t+ 1) S, f2(8), L0 (h 4 (1)) < b+ n(8)],
DIfo(t) O f(t = h), HOTE (h = 0(2))] < el h = (1)
forall t — h,t +h € U. Hence we get the desired result

f({t) ©4 [7(2)

n(t)

(iv) Assume that f is Vp-differentiable at ¢ and ¢ is left-dense. Then for each € > 0,
there exists a neighborhood U of ¢ such that

{DU@+M@mW®JWWwM+n®HSdh+mwh

fYu) =

D[f?(t) ©g f(t —h), fYE () (h —n(t)] < elh —n(t)|
for all t — h,t + h € U. Since p(t) = t,n(t) = 0, we have that
D[f(t+h) &y f(1),hfY" ()] < eh and D[f(t) 4 f(t —h),hfV" (t)] < eh.

It follows that
fit+h) e, f(t)
h

f(t) 84 St~ 1)
o| i

V)] <e and D , fVH(t)] <e
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Hence we get the desired result

FlE+R) 0, 10 _

h—0t h—0t

f{t) ©g f(t—h)
; :

On the other hand, if the limits

lim f(t+h)@gf(t) and lim f(t)@gf(t_h)

h—0+ h—0+ h

exist as a finite number and are equal to u € Rz, then for each € > 0, there exists a
neighborhood U of ¢ such that

flt+h) S, f(2)

OEN I
h

D h YUl =

,u|l < e and D[

forallt—h,t+heU.
Since t is left-dense, we have

D[f(t+h)Sy f*(t), u(h+n(t))] < elh+n(t)| and D[f*(t)Sy f(t—h), u(h—n(t))] < e[h—n(t)].
Hence f is V g-differentiable at ¢t and

o) i SEER OO

h—0t h h—0t

f{t) ©g f(t—h)
; :

(v) If t is a left-dense point, then p(t) = t,7(t) = 0 and we have

F&)y=fo) @ fY (m(t).

If ¢ is left-scattered, then by (iii), we have f(t) = f*(t) & fV#(t)n(t), and the proof of part
(v) is completed.

Now, we present two examples to show that the Nabla-Hukuhara derivative is more
general than the generalized derivative proposed in [7].

Example 3.3 We consider the two cases T =R and T = Z.

(i) I T =R, then f: R — Rz is Vy-differentiable at ¢ if and only if the limits

lim f(t+h)@gf(t) and lim f(t) @gf(t_h)
h—0t h h—0*t h

exist as a finite number and are equal. In this case,

winy _ e JEER) S, f() L f(E) Oy f(E—h)
Y = hlir(r)l+ h N hlﬂ%i h ‘

If T = [a,b], the Nabla-Hukuhara derivative reduces to the generalized derivative proposed
in [7].
(ii) If T = Z, then f : Z — Rz is Vy-differentiable at ¢ with

f(t) S f7(1)

) = n(t)

= f(t) Sy f(t=1).
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Example 3.4 If f: T — Ry is defined by f(t) = [0,?] for all t € T := {% : n € Ny},
then from Theorem 3.2 (ii), we have that f is Vy-differentiable at ¢ with
t Pt 0,t?] —[0,t2 —t+ 1 1
va(t):f()@gf():[ ] [1 4]:[0,%_7}
n(t) 3 2
Theorem 3.5 Assume that f,g: T — Rz are Vg-differentiable at t € T),. Then
(i) for any constants Aj, Aa, the sum (A; f @ A2g) : T — Rz is Vy-differentiable at ¢ with

(Af @ X2g)V 7 (8) = M fV (1) @ Aog ¥ (8);

(ii) if f and g are continuous, then the product fg: T — Ry is Vy-differentiable at ¢
with
(f9)Vm(t) = fY(t)g(t) ® f7(1)g7 " (t) = f(t)g” " (t) @ fV (t)g"(t).
Proof (i) Since f and g are Vy-differentiable at ¢t € Ty, for any e > 0, there exist
neighborhoods U; and U, of t with

DA f(t+ D) ©g M fP(t), M fYe () (h+n(t))]
DM fP(t) ©g MF(t—h), M fYa () (h = n(t))]
for all t — h,t+ h € Uy with 0 < h < 1, and
Dag(t +h) ©4 Aag? (), AagV 7 () (h + n(1))] < [Aale[h +n(t)],
DAag?(t) ©g Aag(t — h), AagV 1 () (h —n(1))] < |
forall t — h,t +h € Uy with 0 < h < 6,.
Let U = Uy NUs, 6 = min{dy,d2}, A = max{A;, \a}. Then we have, for all t € U,

DA f @ Xag)(t+ h) O (A f @ Xag)? (1), A fY (1) © Aag¥ ™ (8)) (b + n(t))]
DA (tA+h) ©g M fP(6), M fY 7 (8)(h +n(t))]

+D[Xag(t +h) ©g Aag? (1), hag V" (t)(h + n(t))]

[Alell 4+ n(t)| + [Aalelh +n(t)| < [Ale[h +n(t)],

IN

IN

and

DA f @ Xa2g)’(t) ©g (Af @ Xag)(t = h), A fY 7 (1) © Aag¥ () (h — n(t))]
DA fP(t) ©9 MF(E—=h), M fYVo(8) (R — n(t))]

+D[Aag” (1) ©g Aag(t — h), Aag¥ " (t)(h — n(1))]

< el = ()] + [Xalelh = n(t)] < [Alelh —n(t)]-

IN

Therefore (A1 f @ A2g) is V y-differentiable with

ALf @ Xeg) V7 (1) = M fY7 (1) © Xag¥ 7 (1).
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(ii) Let 0 < € < 1. Denote

€
IR O EE VRO ER FACIOl P

*

then 0 < €* < 1. Since f,g: T — R are Vg-differentiable at ¢, there exist neighborhoods U,
and U, of ¢t with

DIf(t+h) ©g fr(t), f¥ () (h +n(t))] < € [h +n(t)],
D[f?(t) S f(t = h), fY () (h = n(t))] < €[k —n(t)]

for allt — h,t + h € U; with 0 < h < 4y, and

Dlg(t+h) &4 g7(t), V" ()(h +n(t))] < € |h +n(t),
D[g"(t) 4 g(t — h), gV (t)(h — n(t))] < €*[h —n(t)|

for all t — h,t + h € Uy with 0 < h < §5, and there exists neighborhoods Us of t such that

Dlg(t+h),g(t)] <€, Dlg(t),g(t —h)] < €,
D[g(t+h),0] < D[g(t),0] + 1, D[g(t— h),0] < D[g(t),0] + 1

for all t — h,t + h € Us with 0 < h < J3.
Let U = U1 N UQ N U3,6 = min{51,52,53}. Then

D10+ 09t 1) &, O 0. (77 0500 & 170 0) (- 10
= Dlste+ w8, PO B ale+ 00, (000 © 057 0)

(h + () @g<t+h>fp<t>}

IN

D{(#a-40) 8, 20 gt + Whgta-+ 105 00+ )] + 0| (st +1) 0, °0)) (0,

f”(t)gv”(t)(h+n(t))] ; D[ﬁ,g@fvﬂ(t)(m n() S, gt + 1) 7 () (h + n(t»}

IN

Df(t+h)@gf”()fVH(t><h+n<t))] lg(t -+ 1,7 + {<t+h>egg<>
gVH<t><h+n<t>>} ), 1+D[Og @ggt+h]DfVH Wk + ()]

[ +n() - (Dlg(t +1),0]+ DI ()01 + DIF¥ (1), 0))

elh+n)]- (1+ gl + 17l + 177 (@) F)
elh +n(t)]

ININ A
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forallt — h,t+ h € U with 0 < h < 4. We also have

D £2(0)9°(0) &, £t — gt — b, (17 (Dg(t) & 1()g™ () (h ~ n(t»]

= D|[P()g"(1) 0y £t~ Mglt —h) @ g(t — h) (1), (17" (gt) © F(0)g 7 (1))

(h—n(t)) & glt — h>fp<t>}

< D[ (7004 e~ 1)alt = 1).a(e = 70 = 0(0)] + D (00, a0 - ) 770,
F7(0g7 () (h — n<t>>]+D[ GO F7 (1) (h —n(t))egg<t—h>fvﬂ<t><h—n<t>>}

< D[fp(t)@gf(t—h),f“(tﬂ <t>>] lg(t - >o1+D[ (8) &4 gt — h),
g% (8)(h — <t>>} ), 1+D[o g<>egg<th)]D[fVH<t>,6]|hn<t>|

< elh=n®)|- (Dlglt = ),0] + DIF*(1),0] + DIFT# (1),0])

< Eh—n®]- (L+ 19O s+ 12Ol + 17 O)ll)

< dh—n()

Thus (fg)V# (t) = fV¥ (t)g(t) & fr(t)gV " (¢).
The other product rule formula follows by interchanging the roles of functions f and g.
Conclusions This paper investigate the Nabla-Hukuhara derivative of fuzzy-valued
functions on time scales, which extends and improve the related ones in [12]. Another
research is to investigate the Nabla-Hukuhara derivative of fuzzy-valued functions on time
scales in other different directions rather than the one considered here. For instance, instead
of following the Nabla approach that we adopt, one can develop a diamond, or a symmetric

Hukuhara derivative. These problems will be subject of future research.
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