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Abstract: This article concerns with the definition and elementary properties of spherically

convex sets in the Euclidean unit sphere Sn−1. First, we define the spherically convex combination

of finitely many elements in the Euclidean spaces, in terms of which the spherically convex set and

the spherically convex hull of sets in Sn−1 are defined, then study the properties of the spherically

convex sets and hulls. Finally, we prove that each closed spherically convex set can be expressed

as the spherically convex hull of its extreme point set, the formulation and proof of which benifit

from the analytic approach adopted in this paper.
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1 Introduction

In light of the significance and the successful applications of the convexity of sets (in
linear spaces) in many different mathematics branches, it is not unexpected for mathemati-
cians to try to find its counterpart for sets in manifolds. Such an attempt started from the
early 1940’s with sets in Sn−1, the unit sphere in the Euclidean space Rn, since it is a typical
manifold (see [2, 6, 9–11, 13] and the references therein).

Several different definitions of convex sets in Sn−1 were proposed since 1940’s. For
instance, a set in Sn−1 is called strongly convex if it contains no antipodal points (x1, x2 ∈
Sn−1 are called (a pair of) antipodal points if x2 = −x1) and it contains, with each pair of
its points, the shorter arc of the great circle determined by them (see [2]); weakly convex
if it contains, with each pair of its points, the shorter arc or a semicircular arc of a great
circle determined by them (see [10]); Robinson-convex if it contains, with each pair of its
non-antipodal points, the shorter arc of the great circle determined by them (see [6]); Horn-
convex if it contains, with each pair of its non-antipodal points, at least one of the great
circle arcs determined by them (see [6]).
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Clearly, every strongly convex set is weakly convex and the weak convexity implies the
Robinson-convexity, and the Robinson-convexity implies the Horn-convexity (see [2]). Also,
simple examples show that all the inclusion relations here are proper.

Although various convexities for sets in Sn−1 were proposed for different purposes and a
great progress in the research was made in the early stage (see [2, 6, 9, 10, 13]) and recently
this topic regains the attentions of mathematicians (see [1, 3, 4, 7, 8] and the references
therein), the progress in this area (in particular in the aspect of geometric invariants) seems
not as fast as expected. One of the main obstacles of progressing is that all these definitions
of convexity for sets in Sn−1 are in geometric forms, which made it complicated and even
impossible to formulate or demonstrate some conclusions in the high dimension cases. This
situation can be seen from several recent important work: Lassak in 2015 defined the width of
a strongly (or spherically) convex body (see below for definition) and studied its elementary
properties (see [7]), and further investigated the properties of (spherically) reduced bodies
on spheres (see [8]), but the arguments he presented were somehow complicated due to his
pure geometric methods. Similarly, Vigodsky’s early work on demonstrating an analogue of
Carathéodory’s theorem for strongly convex sets in S2 (see [13]) was also done by a geometric
approach and thus hard to extend to the high dimension cases. Also, some authors have to
deal with sets in Sn−1 in the frame of Euclidean spaces (see [14]).

In this paper, taking strong convexity as an example, we present a pure analytic ap-
proach to defining the convexity for sets in Sn−1 and studying the basic properties of strongly
convex sets in Sn−1. As an illustration, at the end we prove a structure theorem of Minkowski
type for strongly convex sets in Sn−1.

2 Notation and Definitions

We work in the n-dimensional Euclidean space Rn with the classical inner product
〈·, ·〉 and the induced norm ‖ · ‖. For any non-zero u ∈ Rn, Hu denotes the hyperplane
{x ∈ Rn | 〈u, x〉 = 0}, H−

u (or H− simply) denotes the open half space {x ∈ Rn | 〈u, x〉 < 0},
and H̄−

u (or H̄− simply) denotes the closed half space {x ∈ Rn | 〈u, x〉 6 0}.
For non-empty C ⊂ Rn, co(C) and cone(C) denote the convex hull, the convex conical

hull of C, respectively. For other notation and terms refer to [5].
A subset of the form H− ∩ Sn−1 (resp. H̄− ∩ Sn−1) is call an open (resp. a closed)

semi-sphere and a set of the form H ∩ Sn−1 is called a hypercircle. Generally, if Hk ⊂ Rn

is a k-dimensional subspace (1 6 k 6 n − 1), then Hk ∩ Sn−1 is called a k-circle. Thus a
hypercircle is an (n− 1)-circle and a 2-circle is a great circle named by other authors.

The main tool we used in our analytic approach is the radial function

ϕ : Rn −→ Sn−1 ∪ {o},
where o stands for the origin of Rn, defined by

ϕ(x) :=

{
x
‖x‖ , x 6= o,

o, x = o.
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Observe that the radial function has the following properties
(1) ϕ ◦ ϕ = ϕ;
(2) ϕ(λx) = ϕ(x) for all x ∈ Rn and all λ > 0;
(3) ϕ(x) = x iff x ∈ Sn−1 or x = o.

In terms of the radial function, we have the following definition.
Definition 2.1 For x, y ∈ Sn−1 and 0 6 λ 6 1, we define

λx +s (1− λ)y := ϕ(λx + (1− λ)y)

called a spherically convex combination of x, y (s-convex combination for brevity).

Generally, given x1, x2, · · · , xk ∈ Sn−1, λ1, λ2, · · · , λk ∈ [0, 1] with
k∑

i=1

λi = 1, we define

their s-convex combination

(s)
k∑

i=1

λixi := ϕ(
k∑

i=1

λixi).

Natrually, when k = 2, we write λx +s (1− λ)y instead of (s)(λx + (1− λ)y).
Remark 2.1 i) x, y ∈ Sn−1 are non-antipodal points iff λx+s(1−λ)y 6= o or equivalently

λx + (1− λ)y 6= o for any 0 6 λ 6 1.
ii) In terms of Definition 2.1, the short arc of the great circle determined by non-

antipodal points x, y ∈ Sn−1 is {λx +s (1− λ)y | 0 6 λ 6 1}.
Now, we give the definition of strongly convex sets in Sn−1 in an analytic form, and we

adopt“spherically convex”instead of“strongly convex”.
Definition 2.2 A set C ⊂ Sn−1 is called spherically convex (s-convex for brevity) if

λx +s (1− λ)y ∈ C for any x, y ∈ C and 0 6 λ 6 1.
Remark 2.2 i) By Remark 2.1, an s-convex set contains no antipodal points for sure,

and C ⊂ Sn−1 is s-convex iff it contains, with each pair of its points, the short arc of the
great circle determined by them.

ii) It is easy to check that an open semi-sphere is s-convex while a closed semi-sphere,
a k-circle and Sn−1 are not since they all contain antipodal points.

The following simple property of s-convex sets will be needed later.
Proposition 2.1 Let C ⊂ Sn−1 be an s-convex set. Then we have

cone(C) =
⋃
t>0

tC = {tx | x ∈ C, t > 0}.

Moreover, cone(C) is closed iff C is closed (so compact).
Proof For the first conclusion, since

⋃
t>0

tC is clearly a cone, we need only to show that

it is convex. More precisely, we need only to show x1 +x2 ∈
⋃
t>0

tC whenever x1, x2 ∈
⋃
t>0

tC.

Without loss of generality, we may assume that both x1 and x2 are non-zero. Let x1 = t1x
′
1

and x2 = t2x
′
2 for some x′1, x

′
2 ∈ C and t1, t2 > 0. Thus by the s-convexity of C,

x :=
x1 + x2

‖x1 + x2‖ =
t1x

′
1 + t2x

′
2

‖ t1x′1 + t2x′2 ‖
=

t1
t1+t2

x′1 + t2
t1+t2

x′2
‖ t1

t1+t2
x′1 + t2

t1+t2
x′2 ‖

=
t1

t1 + t2
x′1 +s

t2
t1 + t2

x′2 ∈ C,
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where we used the fact that t1
t1+t2

+ t2
t1+t2

= 1, and so x1 + x2 = ‖x1 + x2‖x ∈
⋃
t>0

tC.

The argument for the second conclusion is standard and straightforward.

3 Properties of s-Convex Sets and s-Convex Hull of Sets

In this section, we study basic properties of s-convex sets and in turn define the spher-
ically convex hull (s-convex hull for brevity) of a set in Sn−1. We start with the following
simple property.

Proposition 3.1 i) If {Ci}i∈Λ is a family of s-convex sets in Sn−1 with C :=
⋂
i∈Λ

Ci 6= ∅,
then C is s-convex.

ii) If C is s-convex and Sk := Hk ∩ Sn−1 is a k-circle (2 6 k 6 n − 1), then C ∩ Sk is
s-convex provided that the intersection is not empty.

Proof i) For any x, y ∈ C, we have x, y ∈ Ci for each i ∈ Λ. So x +s y ∈ Ci for each
i ∈ Λ by the s-convexity of Ci and in turn x +s y ∈ C.

ii) For any x, y ∈ C∩Sk, we have x+sy ∈ C by the s-convexity of C, x+sy = x+y
‖x+y‖ ∈ Hk

and x +s y ∈ Sn−1 by the definition. So x +s y ∈ C ∩ Sk.
Next is an analogue of the conclusion for convex sets in Rn, which is not easy to formulate

and prove in a geometric approach.
Theorem 3.1 If C ⊂ Sn−1 is s-convex, then for any x1, x2, · · · , xk ∈ C and λ1, λ2, · · · , λk

∈ [0, 1] with
k∑

i=1

λi = 1, k = 1, 2, · · · , we have (s)
k∑

i=1

λixi ∈ C. In particular, o /∈ co(C).

Proof It is trivial for k = 1, 2 by Definition 2.2. Suppose the conclusion holds
for all 1 6 j 6 k − 1 (which implies, in particular, that o /∈ co{x1, x2, · · · , xj} for any

x1, x2, · · · , xj ∈ C and µ1, µ2, · · · , µj > 0 with
j∑

i=1

µi = 1). Now for x1, x2, · · · , xk ∈ C and

λi > 0,
k∑

i=1

λi = 1 (we may clearly assume λi > 0 for all i), we denote z =
k−1∑
i=1

λi
k−1∑
j=1

λj

xi.

Clearly, z 6= o and ϕ(z) = z
‖z‖ ∈ C by the induction hypothesis.

Thus we have, by Definition 2.1 and the properties of ϕ,

(s)
k∑

i=1

λixi = ϕ(
k∑

i=1

λixi) = ϕ(
k−1∑
i=1

λi
k−1∑
j=1

λj

xi + λk
k−1∑
j=1

λj

xk)

= ϕ(z + λk
k−1∑
j=1

λj

xk) = ϕ( z
‖z‖ + λk

‖z‖
k−1∑
j=1

λj

xk)

= ϕ((
k−1∑
j=1

λj) z
‖z‖ + λk

‖z‖xk) = ϕ(‖z‖(
k−1∑
j=1

λj) z
‖z‖ + λkxk)

= ϕ(
‖z‖

k−1∑
j=1

λj

‖z‖
k−1∑
j=1

λj+λk

z
‖z‖ + λk

‖z‖
k−1∑
j=1

λj+λk

xk)

=
‖z‖

k−1∑
j=1

λj

‖z‖
k−1∑
j=1

λj+λk

z
‖z‖ +s

λk

‖z‖
k−1∑
j=1

λj+λk

xk ∈ C,
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where we used the fact that z
‖z‖ , xk ∈ C and

‖z‖
k−1∑
j=1

λj

‖z‖
k−1∑
j=1

λj + λk

+
λk

‖z‖
k−1∑
j=1

λj + λk

= 1.

Now, o /∈ co(C) is trivial.
Next, we consider the spherically convex hull of a set in Sn−1, i.e., the smallest s-convex

set containing a set. Since if C ⊂ Sn−1 is s-convex, then o /∈ co(C) by the definition and
in turn o /∈ co(S) if S ⊂ C, so we see that a set S ⊂ Sn−1 has a spherically convex hull iff
o /∈ co(S).

Definition 3.1 Given S ⊂ Sn−1 with o /∈ co(S), we define its spherically convex hull
Sco(S) (s-convex hull for brevity) by

Sco(S) := ϕ(co(S)) = {(s)
k∑

i=1

λixi |xi ∈ S, λi > 0,

k∑
i=1

λi = 1, k = 1, 2, · · · }.

Theorem3.2 Let S ⊂ Sn−1 with o /∈ co(S). Then
i) Sco(S) is s-convex.
ii) Sco(S) = ∩{C ⊂ Sn−1 | C ⊃ S and C is s-convex}, i.e., Sco(S) is the smallest

s-convex set containing S.
iii) Sco(S) = cone(S) ∩ Sn−1.

Proof i) Let x := (s)
k∑

i=1

λixi, y := (s)
l∑

j=1

µiyj ∈ Sco(S) and 0 < λ < 1. Then by the

properties of ϕ (write a :=‖
k∑

i=1

λixi ‖, b :=‖
l∑

j=1

µjyj ‖),

λx +s (1− λ)y = ϕ (λx + (1− λ)y) = ϕ

(
λ
a

k∑
i=1

λixi + (1−λ)
b

l∑
j=1

µiyj

)

= ϕ

(
λb

k∑
i=1

λixi + (1− λ)a
l∑

j=1

µiyj

)
= ϕ

(
k∑

i=1

λbλi

λb+(1−λ)a
xi +

l∑
j=1

(1−λ)aµi

λb+(1−λ)a
yj

)

= (s)
(

k∑
i=1

λbλi

λb+(1−λ)a
xi +

l∑
j=1

(1−λ)aµi

λb+(1−λ)a
yj

)
∈ Sco(S),

where we used the definition of Sco(S) and the fact that

λbλi

λb + (1− λ)a
> 0,

(1− λ)aµi

λb + (1− λ)a
> 0

and
k∑

i=1

λbλi

λb + (1− λ)a
+

l∑
j=1

(1− λ)aµi

λb + (1− λ)a
= 1.

ii) Denote D := ∩{C ⊂ Sn−1 | C ⊃ S and C is s-convex} (D is well-defined since
Sco(S) ⊃ S and Sco(S) is s-convex by i)). Then D ⊂ Sco(S) clearly since Sco(S) ⊃ S and it
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is s-convex by i) above. Conversely, since for each s-convex C ⊃ S, Sco(S) ⊂ C by Theorem
3.1, we have Sco(S) ⊂ D. Therefore Sco(S) = D.

iii) Since cone(S) =
⋃
t>0

tco(S), Sco(S) ⊂ cone(S) ∩ Sn−1 clearly by the definition of

Sco(S). Conversely, if x ∈ cone(S)∩Sn−1, then x =
k∑

i=1

λixi with xi ∈ S, λi > 0 and ‖x‖ = 1

(so
k∑

i=1

λi 6= 0). Thus

x = ϕ(x) = ϕ(
x

k∑
j=1

λj

) = (s)
k∑

i=1

λi

k∑
j=1

λj

xi ∈ Sco(S)

by the definition of Sco(S) again. Hence cone(S)∩Sn−1 ⊂ Sco(S) and so Sco(S) = cone(S)∩
Sn−1.

4 A Structure Theorem of Minkowski’s Type for Closed s-Convex Sets

In this section, we establish a theorem of Minkowski type for s-convex sets, which states
that a closed s-convex set can be expressed as the s-convex hull of its s-extreme points (see
below for definition). We start with some necessary notation and terms.

For an s-convex C ⊂ Sn−1, we denote dimC = dim(cone(C)) − 1 (notice that cone(C)
is convex), called the dimension of C, rbd(C) := rbd(cone(C)) ∩ clC, where “rbd”in
the right-handed side denotes the relative boundary, called the relative boundary of C and
ri(C) := ri(cone(C))∩C = ri(coneC)∩Sn−1 (the latter equality can be checked by Proposition
2.1), where “ri”in the right-handed side denotes the relative interior, called the relative
interior of C. It is easy to show that if C ⊂ Sn−1 is s-convex, then so is ri(C) and that if C

is closed and s-convex, then C = rbd(C) ∪ ri(C).
Definition 4.1 Let C ⊂ Sn−1 be a closed s-convex set. A point x ∈ C is called an

s-extreme point of C if x = 1
2
x1 +s

1
2
x2 for some x1, x2 ∈ C, then x1 = x2. The set of

s-extreme points of C is denoted by Sext(C).
Remark 4.1 It is easy to check that if x is an s-extreme point of C, then x ∈ rbd(C).
Proposition 4.1 If C ⊂ Sn−1 is a closed and s-convex set, then Sext(C) 6= ∅.
Proof Observe first that cone(C) is closed by Proposition 2.1. Now we show that

cone(C) is also line-free: Suppose there is a line l := {x0 + µu | µ ∈ R} ⊂ cone(C) for
some x0 ∈ Rn and u ∈ Sn−1. Then x0 + 1

t
u, x0 − 1

t
u ∈ cone(C) for all t > 0 and in turn

tx0 + u = t(x0 + 1
t
u), tx0 − u = t(x0 − 1

t
u) ∈ cone(C) for all t > 0 since cone(C) is a cone.

Thus, by the closedness of cone(C), we have

u = lim
t→0+

(tx0 + u) ∈ cone(C) and − u = lim
t→0+

(tx0 − u) ∈ cone(C),

which together with ‖u‖ = ‖ − u‖ = 1 leads to (the antipodal points) u,−u ∈ C by
Proposition 2.1, a contradiction.
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Since cone(C) is closed and line-free, it has at least one extreme ray by Theorem 1.4.3
in [12]. Let L be an extreme ray of cone(C) and let x = L ∩ C. Then L = {tx | t > 0}.
Now, if x = 1

2
x1 +s

1
2
x2 = ( 1

2
x1 + 1

2
x2)/‖ 1

2
x1 + 1

2
x2‖ for some x1, x2 ∈ C, then 1

2
x1 + 1

2
x2 =

‖ 1
2
x1 + 1

2
x2‖x ∈ L. So x1, x2 ∈ L since L is an extreme ray and in turn x1, x2 ∈ L∩C which

leads to x1 = x2 = x clearly. Thus, x is an s-extreme point.
The following is a theorem of Minkowski type for closed s-convex sets in Sn−1, which,

again, it is hard to prove in geometric methods.
Theorem 4.1 Let C ⊂ Sn−1 be a closed and s-convex set. Then C = Sco (Sext(C)).
Proof Since cone(C) is closed by Proposition 2.1 and line-free (see the argument for

Proposition 4.1), we have cone(C) = co(extr(cone(C))) by Theorem 1.4.3 in [12] again, where
extr(cone(C)) denotes the union of extreme rays of cone(C). Thus, if x ∈ C ⊂ cone(C),

then x =
m∑

i=1

λixi with non-zero xi ∈ Li for some extreme ray Li and λi > 0,
m∑

i=1

λi = 1.

Hence, by the properties of ϕ,

x = ϕ(x) = ϕ(
m∑

i=1

λixi) = ϕ(
m∑

i=1

λi‖xi‖ xi

‖xi‖)

= ϕ(
m∑

i=1

λi‖xi‖
m∑

j=1
λj‖xj‖

xi

‖xi‖) = (s)(
m∑

i=1

λi‖xi‖
m∑

j=1
λj‖xj‖

xi

‖xi‖) ∈ Sco (Sext(C)) ,

where we used the fact that all xi

‖xi‖ = Li∩C are in Sext(C) (see the argument for Proposition

4.1), and
m∑

i=1

λi‖xi‖
m∑

j=1
λj‖xj‖

= 1.

Final Remark From Theorem 3.1 and Theorem 4.1, one can see that our analytic
approach indeed makes it possible to formulate and demonstrate some conclusions which
can hardly be formulated and proved by pure geometric methods. It is expectable that, with
this analytic approach, more conclusions will be established and more concepts, such as the
meaningful geometric invariants for s-convex sets etc., will be proposed later. We leave these
topics to other papers.
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[5] Hiriart-Urruty J-B, Lemaréchal C. Fundamentals of convex analysis[M]. Berlin, Heidelberg, New

York: Springer-Verlag, 2001.



480 Journal of Mathematics Vol. 38

[6] Horn A. Some generalizations of Helly’s theorem on convex sets[J]. Bull. Amer. Math. Soc., 1949,

55: 923–929.

[7] Lassak M. Width of spherical convex bodies[J]. Aequ. Math., 2015, 89: 555–567.

[8] Lassak M. Reduced spherical polygons[J]. Coll. Math., 2015, 138(2): 205–216.

[9] Robinson C V. Spherical theorems of Helly type and congruence indices of spherical caps[J]. Amer.

J. Math., 1942, 64(1): 260–272.
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单位球面Sn−1上球凸集的分析研究方法

邵煜骋, 国 起

(苏州科技大学数学系, 江苏苏州 215009)

摘要: 本文研究了欧式空间单位球面Sn−1上秋凸集的定义与基本性质. 利用径向函数, 定义了空间中

有限个点的凸组合运算, 并由此给出了Sn−1上球凸集的分析定义和集合球凸包的定义. 讨论了球凸集和球凸

包的基础性质. 最后证明了任一闭球凸集都可以表示为其端点集的球凸包. 这个结论的形成与获证完全得益

于本文采用的分析方法.
关键词: 球面凸集; 球面凸组合; 径向函数; 凸包; 锥包
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