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Abstract: This article concerns with the definition and elementary properties of spherically
convex sets in the Euclidean unit sphere S™*. First, we define the spherically convex combination
of finitely many elements in the Euclidean spaces, in terms of which the spherically convex set and
the spherically convex hull of sets in S"~! are defined, then study the properties of the spherically
convex sets and hulls. Finally, we prove that each closed spherically convex set can be expressed
as the spherically convex hull of its extreme point set, the formulation and proof of which benifit
from the analytic approach adopted in this paper.
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1 Introduction

In light of the significance and the successful applications of the convexity of sets (in
linear spaces) in many different mathematics branches, it is not unexpected for mathemati-
cians to try to find its counterpart for sets in manifolds. Such an attempt started from the
early 1940’s with sets in S"!, the unit sphere in the Euclidean space R", since it is a typical
manifold (see [2, 6, 9-11, 13] and the references therein).

Several different definitions of convex sets in S®~! were proposed since 1940’s. For
instance, a set in S~ is called strongly convex if it contains no antipodal points (z;,xs €
S™~! are called (a pair of) antipodal points if z; = —z;) and it contains, with each pair of
its points, the shorter arc of the great circle determined by them (see [2]); weakly convex
if it contains, with each pair of its points, the shorter arc or a semicircular arc of a great
circle determined by them (see [10]); Robinson-convex if it contains, with each pair of its
non-antipodal points, the shorter arc of the great circle determined by them (see [6]); Horn-
convex if it contains, with each pair of its non-antipodal points, at least one of the great

circle arcs determined by them (see [6]).
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Clearly, every strongly convex set is weakly convex and the weak convexity implies the
Robinson-convexity, and the Robinson-convexity implies the Horn-convexity (see [2]). Also,
simple examples show that all the inclusion relations here are proper.

Although various convexities for sets in S*~! were proposed for different purposes and a
great progress in the research was made in the early stage (see [2, 6, 9, 10, 13]) and recently
this topic regains the attentions of mathematicians (see [1, 3, 4, 7, 8] and the references
therein), the progress in this area (in particular in the aspect of geometric invariants) seems
not as fast as expected. One of the main obstacles of progressing is that all these definitions
of convexity for sets in S"~! are in geometric forms, which made it complicated and even
impossible to formulate or demonstrate some conclusions in the high dimension cases. This
situation can be seen from several recent important work: Lassak in 2015 defined the width of
a strongly (or spherically) convex body (see below for definition) and studied its elementary
properties (see [7]), and further investigated the properties of (spherically) reduced bodies
on spheres (see [8]), but the arguments he presented were somehow complicated due to his
pure geometric methods. Similarly, Vigodsky’s early work on demonstrating an analogue of
Carathéodory’s theorem for strongly convex sets in S? (see [13]) was also done by a geometric
approach and thus hard to extend to the high dimension cases. Also, some authors have to
deal with sets in S"~! in the frame of Euclidean spaces (see [14]).

In this paper, taking strong convexity as an example, we present a pure analytic ap-
proach to defining the convexity for sets in S®~! and studying the basic properties of strongly
convex sets in S, As an illustration, at the end we prove a structure theorem of Minkowski

type for strongly convex sets in S*1,

2 Notation and Definitions

We work in the n-dimensional Euclidean space R™ with the classical inner product
(-,-) and the induced norm || - ||. For any non-zero v € R"™, H, denotes the hyperplane
{z € R" | (u,z) =0}, H, (or H~ simply) denotes the open half space {z € R" | (u,x) < 0},
and H (or H~ simply) denotes the closed half space {x € R™ | (u,z) < 0}.

For non-empty C' C R"™, co(C) and cone(C') denote the convex hull, the convex conical
hull of C, respectively. For other notation and terms refer to [5].

A subset of the form H~ N'S"~! (resp. H~ N S" ') is call an open (resp. a closed)
semi-sphere and a set of the form H N S"~! is called a hypercircle. Generally, if H, C R”
is a k-dimensional subspace (1 < k < n — 1), then Hy N S"! is called a k-circle. Thus a
hypercircle is an (n — 1)-circle and a 2-circle is a great circle named by other authors.

The main tool we used in our analytic approach is the radial function
¢ :R" — S" 1 U {0},

where o stands for the origin of R", defined by

o(z) :—{ E

o Tr = 0.
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Observe that the radial function has the following properties
(1) pop =g
(2) o(Ax) = p(z) for all x € R™ and all A > 0;
3)p(z)=zif €S 1 orx=o.

In terms of the radial function, we have the following definition.
Definition 2.1 For 2,y € S* ! and 0 < A < 1, we define

AT+ (1 — )\)y = (p()\.% + (1 - )\)y)

called a spherically convex combination of z,y (s-convex combination for brevity).

k
Generally, given 1, T, -+ ,2x € S"1, A, Ao, -+, A € [0,1] with > \; = 1, we define
i=1
their s-convex combination

(S)Z)\ixi = gp(ZAle)

Natrually, when k& = 2, we write Az +, (1 — A\)y instead of (s)(Az + (1 — \)y).

Remark 2.1 i) z,y € S"! are non-antipodal points iff A\xz+,(1—\)y # o or equivalently
A+ (1 =Ny #oforany 0 <A <1,

ii) In terms of Definition 2.1, the short arc of the great circle determined by non-
antipodal points z,y € S" 1 is {Az +, (1 - Ny |0 < A < 1},

Now, we give the definition of strongly convex sets in S*~! in an analytic form, and we
adopt “spherically convex” instead of “strongly convex” .

Definition 2.2 A set C' C S"7! is called spherically convex (s-convex for brevity) if
A+, (1=NyeC forany z,y € C and 0 < A < 1.

Remark 2.2 i) By Remark 2.1, an s-convex set contains no antipodal points for sure,
and C C S" ! is s-convex iff it contains, with each pair of its points, the short arc of the
great circle determined by them.

ii) Tt is easy to check that an open semi-sphere is s-convex while a closed semi-sphere,
a k-circle and S™~! are not since they all contain antipodal points.

The following simple property of s-convex sets will be needed later.

Proposition 2.1 Let C' C S"~! be an s-convex set. Then we have

cone(C) = UtC’ ={tz |z e C,t>0}.

t>0

Moreover, cone(C') is closed iff C' is closed (so compact).

Proof For the first conclusion, since | J tC is clearly a cone, we need only to show that
>0
it is convex. More precisely, we need only to show x1 +x2 € |J tC whenever xq1,29 € |J tC.
t>0 >0
Without loss of generality, we may assume that both x; and x5 are non-zero. Let x; = t12

and xy = taxh for some zf, x5 € C and t;,t3 > 0. Thus by the s-convexity of C,

L Tit® tll‘ll + t2x/2 _ tlt"itQ xll + tlt‘it2 5(?’2 — ty z + 7262 zh e C
s lm |l Ml et || g g |ttt Rty
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where we used the fact that

Vol. 38
i s =1L and 5oy + 1 = o1 + 2l € tyotC.
The argument for the second conclusion is standard and straightforward.
3 Properties of s-Convex Sets and s-Convex Hull of Sets

In this section, we study basic properties of s-convex sets and in turn define the spher-
ically convex hull (s-convex hull for brevity) of a set in S"~!. We start with the following
simple property.

Proposition 3.1 i) If {C,};ca is a family of s-convex sets in S"~! with C' := () C; # 0,
then C' is s-convex.

ieA
ii) If C' is s-convex and Sy, := H, NS" ! is a k-circle (2 < k < n —1), then C NS, is
s-convex provided that the intersection is not empty.

Proof i) For any z,y € C, we have z,y € C; for each i € A. So z +y € C; for each
i € A by the s-convexity of C; and in turn x +,y € C.

ii) For any =,y € CNSy, we have x4,y € C by the s-convexity of C, x4,y =
and z +,y € S"! by the definition. So z +,y € CNS.

T4y
Next is an analogue of the conclusion for convex sets in R™, which is not easy to formulate
and prove in a geometric approach.

ool € He
Theorem 3.1 If C C S" ! is s-convex, then for any z,, 24,

, T € Cand/\l,)\g,--~ a/\k
=1 =1
Proof It is trivial for K = 1,2 by Definition 2.2. Suppose the conclusion holds
L1, Lo, -

k k
€ [0,1] with > A\, =1,k =1,2,---, we have (s) > \jz; € C. In particular, o ¢ co(C).
for all 1 < j < k — 1 (which implies, in particular, that o ¢ co{x1,zs,

yXj € C and pu1, po,

',/Lj>0Wich
k
N0, S A =1 (
i=1

,x;} for any
i
w; = 1). Now for z1,25, - ,2r € C and
i=1
we may clearly assume \; > 0 for all i), we denote z = )
Clearly, z # o and ¢(z) = T € C by the induction hypothesis.

k=1
Thus we have, by Definition 2.1 and the properties of ¢,

As

m1 Li-

=1 Y N
=1

(s) z Ny = so(é M) = o

As

Ak
—1 i + k—1 xk)
i=1 Z )\j

k—1

=z + 2

k—1

j=1 j=1 g
wg) = o757
N

[EPSpY
k—1 N k=1
- ¢((Zl M)+ k) =

=

IS A2
ERS
= (p( J=1

z Ak
= T
ll=Il _Zl AjFAk
=

k=1 xk?)
Izl 32 Aj+Ax
- j=1
k-1
Izl 3= Ay
_ i=1

z

A
= I :
12 'S A

i=1

s h—1 T € Ca
Izl 32 Aj+Ax
J

=1
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where we used the fact that z, € C' and

_z_
ll=11"

k-1
z by
I % N
+ ) =1.
[E ||Z>\ + Ak ||Z||ZlAj+Ak
j=

j=1

Now, o ¢ co(C) is trivial.

Next, we consider the spherically convex hull of a set in S*71, i.e., the smallest s-convex
set containing a set. Since if C' C S"! is s-convex, then o ¢ co(C) by the definition and
in turn o ¢ co(S) if S C C, so we see that a set S C S"~! has a spherically convex hull iff
o ¢ co(S).

Definition 3.1 Given S C S"™! with o ¢ co(S), we define its spherically convex hull
Sco(S) (s-convex hull for brevity) by

Sco(S) = p(co(S)) = {(S)Z)\imi |z, € S, \; >

I M =
||
\.[\3
—

Theorem3.2 Let S C S"~! with o ¢ co(S). Then

i) Sco(S) is s-convex.

ii) Sco(S) = N{C c S"' | C D S and C is s-convex}, i.e., Sco(S) is the smallest
s-convex set containing .S.

iii) Sco(S) = cone(S) NS~
k !

Proof 1) Let x := (s)> Nz, y := (8)>_ piy; € Sco(S) and 0 < A < 1. Then by the
i=1 j=1

k !
properties of ¢ (write a :=|| > Niz; ||, b:=| > py; |]),
j=1

i=1
L (1 <
M4, (1-Ny=pPz+(1-ANy)=¢ ( Z)\ixﬁr— Z,uiyj)
k !
<)\bzl/\-a:i +(1-Na Z uiyj> = (Z TR + Z ;;Hi"‘f;ay])

AbA; (1-X)a
(Z Nor(—naFi T Z o+ (1— f\L ) € Sco(S),

where we used the definition of Sco(S) and the fact that

AbA; > (1= Nap;
M+ (1—=Na” 7 X+ (1—Na

and
alh
Z Ab + (1 - + Z )\b

ii) Denote D := N{C C S"' | C D S and C is s-convex} (D is well-defined since
Sco(S) D S and Sco(S) is s-convex by i)). Then D C Sco(S) clearly since Sco(S) D S and it
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is s-convex by i) above. Conversely, since for each s-convex C O S, Sco(S) C C by Theorem
3.1, we have Sco(S) C D. Therefore Sco(S) = D.
iii) Since cone(S) = J tco(S), Sco(S) C cone(S) N S"~! clearly by the definition of

>0

k
Sco(S). Conversely, if z € cone(S)NS™ !, then z = Y Njz; with ; € S, \; = 0 and [jz]| =1
i=1

k
(so > Ai #0). Thus
=1

k
2N D IPY
j=1 j=1

by the definition of Sco(S) again. Hence cone(S)NS"~* C Sco(.5) and so Sco(S) = cone(S)N
Snt.

4 A Structure Theorem of Minkowski’s Type for Closed s-Convex Sets

In this section, we establish a theorem of Minkowski type for s-convex sets, which states
that a closed s-convex set can be expressed as the s-convex hull of its s-extreme points (see
below for definition). We start with some necessary notation and terms.

For an s-convex C' C S"~!, we denote dimC' = dim(cone(C)) — 1 (notice that cone(C)
is convex), called the dimension of C, rbd(C) := rbd(cone(C)) N clC, where “rbd” in
the right-handed side denotes the relative boundary, called the relative boundary of C' and
ri(C) := ri(cone(C))NC = ri(coneC)NS™ ! (the latter equality can be checked by Proposition
2.1), where “ri” in the right-handed side denotes the relative interior, called the relative
interior of C. It is easy to show that if C' C S"~! is s-convex, then so is ri(C') and that if C
is closed and s-convex, then C' = rbd(C) Uri(C).

Definition 4.1 Let C C S" ! be a closed s-convex set. A point = € C is called an
s-extreme point of C' if x = 1zy +, Lz, for some z1,z, € C, then z; = z,. The set of
s-extreme points of C' is denoted by Sext(C).

Remark 4.1 It is easy to check that if = is an s-extreme point of C, then = € rbd(C).

Proposition 4.1 If C C S"! is a closed and s-convex set, then Sext(C) # 0.

Proof Observe first that cone(C) is closed by Proposition 2.1. Now we show that
cone(C') is also line-free: Suppose there is a line | := {xy + pu | p € R} C cone(C) for
some o € R” and u € S*'. Then z + %u,xo - %u € cone(C) for all t > 0 and in turn
two +u = t(xo + tu), two — u = t(xo — tu) € cone(C) for all ¢ > 0 since cone(C) is a cone.
Thus, by the closedness of cone(C'), we have

u= tlir& (tzo +u) € cone(C) and —u = tli%(mo —u) € cone(C),
which together with |lul| = || — u|| = 1 leads to (the antipodal points) u,—u € C by
Proposition 2.1, a contradiction.
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Since cone(C) is closed and line-free, it has at least one extreme ray by Theorem 1.4.3
in [12]. Let L be an extreme ray of cone(C) and let x = LN C. Then L = {tx | t > 0}.
Now, if & = $21 +, s22 = (321 + 322) /| 321 + 22| for some z1, 25 € C, then fa1 + j20 =
||%x1 + %LL‘QHJJ € L. So x1,x9 € L since L is an extreme ray and in turn z1, 2, € LN C which
leads to 21 = x5 = x clearly. Thus, x is an s-extreme point.

The following is a theorem of Minkowski type for closed s-convex sets in S"~!, which,
again, it is hard to prove in geometric methods.

Theorem 4.1 Let C C S" ! be a closed and s-convex set. Then C' = Sco (Sext(C)).

Proof Since cone(C) is closed by Proposition 2.1 and line-free (see the argument for
Proposition 4.1), we have cone(C) = co(extr(cone(C))) by Theorem 1.4.3 in [12] again, where

extr(cone(C)) denotes the union of extreme rays of cone(C). Thus, if x € C' C cone(C),
then x = > A\;x; with non-zero x; € L; for some extreme ray L; and \; > 0, Y \; = 1.

i=1 i=1
Hence, by the properties of ¢,

v =) = (3 A = o (3 Ml )

= 3 Al _xp y S Aillzill
= w ) = (8) (2 - —ahr) € Sco (Sext(C))
izzl X 2l il 1221 2 Allesl lll

=1 =1

where we used the fact that all = L;NC are in Sext(C') (see the argument for Proposition
4.1), and 32 el g,
i=1 '21 Ajlle; |l

T
[EA

Final Remark From Theorem 3.1 and Theorem 4.1, one can see that our analytic
approach indeed makes it possible to formulate and demonstrate some conclusions which
can hardly be formulated and proved by pure geometric methods. It is expectable that, with
this analytic approach, more conclusions will be established and more concepts, such as the
meaningful geometric invariants for s-convex sets etc., will be proposed later. We leave these

topics to other papers.
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