SKEW CYCLIC AND LCD CODES OVER $\mathbb{F}_{q}+u \mathbb{F}_{q}+v \mathbb{F}_{q}$

LI Hui，HU Peng，LIU Xiu－sheng
（School of Mathematics and Physics，Hubei Polytechnic University，Huangshi 435003，China）

Abstract

In this paper，we investigate skew cyclic and LCD codes over the ring $R=$ $\mathbb{F}_{q}+u \mathbb{F}_{q}+v \mathbb{F}_{q}\left(u^{2}=u, v^{2}=v, u v=v u=0\right)$ ，where q is a prime power．Using some decompositions of linear codes and their duals over ring R ，we obtain the generator polynomials of skew cyclic and their dual codes over R ．Finally，we address the relationship of LCD codes between R and \mathbb{F}_{q} ．By means of the Gray map from R to \mathbb{F}_{q}^{3} ，we obtain that Gray images of LCD codes over R are LCD codes over \mathbb{F}_{q} ．

Keywords：skew cyclic codes；LCD codes；dual codes
2010 MR Subject Classification：94B15；11A15
Document code：A Article ID：0255－7797（2018）03－0459－08

1 Introduction

Cyclic codes over finite rings are important class from a theoretical and practical view－ point．It was shown that certain good nonlinear binary codes could be found as images of linear codes over \mathbb{Z}_{4} under the Gray map（see［1］）．In［2］，Zhu et al．studied consta－ cyclic codes over ring $\mathbb{F}_{2}+v \mathbb{F}_{2}$ ，where $v^{2}=v$ ．We in［3］generated ring $\mathbb{F}_{2}+v \mathbb{F}_{2}$ to ring $\mathbb{F}_{2}+u \mathbb{F}_{2}+v \mathbb{F}_{2}$ ，where $v^{2}=v, u^{2}=0, u v=v u=0$ ，and studied the structure of cyclic of an arbitrary length n over this ring．

Boucher et al．in［4］initiated the study of skew cyclic codes over a noncommutative ring $\mathbb{F}_{q}[x, \Theta]$ ，called skew polynomial ring，where \mathbb{F}_{q} is a finite field and Θ is a field automorphism of \mathbb{F}_{q} ．Later，in［5］，Abualrub and Seneviratne investigated skew cyclic codes over ring $\mathbb{F}_{2}+v \mathbb{F}_{2}$ with $v^{2}=v$ ．Moreover，Gao［6］and Gursoy et al．［7］presented skew cyclic codes over $\mathbb{F}_{p}+v \mathbb{F}_{p}$ and $\mathbb{F}_{q}+v \mathbb{F}_{q}$ with different automorphisms，respectively．Recently，Yan，Shi and Solè in［8］investigated skew cyclic codes over $\mathbb{F}_{q}+u \mathbb{F}_{a}+v \mathbb{F}_{q}+v \mathbb{F}_{q}$ ．

In this work，let R denote the ring $\mathbb{F}_{q}+u \mathbb{F}_{q}+v \mathbb{F}_{q}$ where $u^{2}=u, v^{2}=v$ and $u v=v u=0$ ． In Section 2，we give some properties of ring R and define the Gray map φ from R to \mathbb{F}_{q}^{3} ． Moreover，we investigate some results about linear codes over R ．In Section 3，we first give a sufficient and necessary condition which a code C is a skew cyclic code over R ．We then characterize the generator polynomials of skew cyclic codes and their dual over R ．Finally， in Section 4，we address the relationship of LCD codes between R and \mathbb{F}_{q} ．By means of the

[^0]Gray map from R to \mathbb{F}_{q}^{3}, we obtain that Gray images of LCD codes over R are LCD codes over \mathbb{F}_{q}.

2 Linear Codes Over R

The ring R is a finite commutative ring with characteristic p and it contains three maximal ideals which are

$$
I_{1}=\langle u, v\rangle, I_{2}=\langle u-1, v\rangle, I_{3}=\langle u, v-1\rangle
$$

It is easy to verify that $\frac{R}{I_{1}}, \frac{R}{I_{2}}$, and $\frac{R}{I_{3}}$ are isomorphic to \mathbb{F}_{q}. Therefore $R \cong \mathbb{F}_{q}^{3}$. This means that R is a princpal ideal ring, i.e., R is a Frobenius ring.

Let $R^{n}=\left\{\mathbf{x}=\left(x_{1}, \cdots, x_{n}\right) \mid x_{j} \in R\right\}$ be R-module. A R-submodule C of R^{n} is called a linear code of length n over R. We assume throughout that all codes are linear.

Let $\mathbf{x}, \mathbf{y} \in R^{n}$, the Euclidean inner product of \mathbf{x}, \mathbf{y} is defined as follows

$$
\mathbf{x} \cdot \mathbf{y}=x_{1} y_{1}+\cdots+x_{n} y_{n}
$$

We call $C^{\perp}=\left\{\mathbf{x} \in R^{n} \mid \mathbf{x} \cdot \mathbf{c}=0, \forall \mathbf{c} \in C\right\}$ as the dual code of C. Notice that C^{\perp} is linear if C is linear or not.

In [8], it was proved that for any linear code C over a finite Frobenius ring,

$$
\begin{equation*}
|C| \cdot\left|C^{\perp}\right|=R^{n} \tag{2.1}
\end{equation*}
$$

The Gray map $\varphi: R^{n} \rightarrow \mathbb{F}_{q}^{3 n}$ is defined by $\varphi(\mathbf{x})=\left(\beta\left(x_{1}\right), \cdots, \beta\left(x_{n}\right)\right)$ for $\mathbf{x}=$ $\left(x_{1}, \cdots, x_{n}\right)$, where $\beta(a+u b+v c)=(a, a+b, a+c)$ for $a+u b+v c \in R$ with $a, b, c \in \mathbb{F}_{q}$. By using this map, we can define the Lee weight W_{L} and Lee distance d_{L} as follows.

Definition 2.1 For any element $\mathbf{x}=\left(x_{1}, \cdots, x_{n}\right) \in R^{n}$, we define $W_{L}(\mathbf{x})=W_{H}(\varphi(\mathbf{x}))$, where W_{H} denotes the ordinary Hamming weight for codes over \mathbb{F}_{q}. The Lee distance $d_{L}(\mathbf{x}, \mathbf{y})$ between two codewords \mathbf{x} and \mathbf{y} is the Lee weight of $\mathbf{x}-\mathbf{y}$.

Lemma 2.2 The Gray map φ is a distance-preserving map from (R^{n}, Lee distance) to $\left(\mathbb{F}^{3 n}\right.$, Hamming distance) and also \mathbb{F}_{q}-linear.

Proof From the definition, it is clear that $\varphi(\mathbf{x}-\mathbf{y})=\varphi(\mathbf{x})-\varphi(\mathbf{y})$ for \mathbf{x} and $\mathbf{y} \in R^{n}$. Thus $d_{L}(\mathbf{x}, \mathbf{y})=d_{H}(\varphi(\mathbf{x}), \varphi(\mathbf{y}))$.

For any $\mathbf{x}, \mathbf{y} \in R^{n}, a, b \in \mathbb{F}_{q}$, from the definition of the Gray map, we have $\varphi(a \mathbf{x}+b \mathbf{y})=$ $a \varphi(\mathbf{x})+b \varphi(\mathbf{y})$, which implies that φ is an \mathbb{F}_{q}-linear map.

The following theorem is obvious.
Theorem 2.3 If C is a linear code of length n over R, size q^{k} and Lee distance d_{L}, then $\varphi(C)$ is a linear code over \mathbb{F}_{q} with parameters $\left[3 n, k, d_{L}\right]$.

Theorem 2.4 If C is a linear code of length n over R, then $\varphi\left(C^{\perp}\right)=\varphi(C)^{\perp}$. Moreover, if C is a self-dual code, so is $\varphi(C)$.

Proof Let $\mathbf{x}_{1}=\mathbf{a}_{1}+u \mathbf{b}_{1}+v \mathbf{c}_{1}, \mathbf{x}_{2}=\mathbf{a}_{2}+u \mathbf{b}_{2}+v \mathbf{c}_{2} \in C$ be two codewords, where $\mathbf{a}_{1}, \mathbf{b}_{1}, \mathbf{c}_{1}, \mathbf{a}_{2}, \mathbf{b}_{2}, \mathbf{c}_{2} \in \mathbb{F}_{q}^{n}$, and \cdot be the Euclidean inner product on R^{n} or \mathbb{F}_{q}^{n}. Then

$$
\mathbf{x}_{1} \cdot \mathbf{x}_{2}=\mathbf{a}_{1} \cdot \mathbf{a}_{2}+\left(\mathbf{a}_{1} \mathbf{b}_{2}+\mathbf{a}_{2} \mathbf{b}_{1}+\mathbf{b}_{1} \mathbf{b}_{2}\right) u+\left(\mathbf{a}_{1} \mathbf{c}_{2}+\mathbf{a}_{2} \mathbf{c}_{1}+\mathbf{c}_{1} \mathbf{c}_{2}\right) v
$$

and

$$
\varphi\left(\mathbf{x}_{1}\right) \cdot \varphi\left(\mathbf{x}_{2}\right)=3 \mathbf{a}_{1} \cdot \mathbf{a}_{2}+\left(\mathbf{a}_{1} \mathbf{b}_{2}+\mathbf{a}_{2} \mathbf{b}_{1}+\mathbf{b}_{1} \mathbf{b}_{2}\right)+\left(\mathbf{a}_{1} \mathbf{c}_{2}+\mathbf{a}_{2} \mathbf{c}_{1}+\mathbf{c}_{1} \mathbf{c}_{2}\right)
$$

It is easy to check that $\mathbf{x}_{1} \cdot \mathbf{x}_{2}=0$ implies $\varphi\left(\mathbf{x}_{1}\right) \cdot \varphi\left(\mathbf{x}_{2}\right)=0$. Therefore

$$
\begin{equation*}
\varphi\left(C^{\perp}\right) \subset \varphi(C)^{\perp} \tag{2.2}
\end{equation*}
$$

But by Theorem 2.3, $\varphi(C)$ is a linear code of length $3 n$ of size $|C|$ over \mathbb{F}_{q}. So by usual properties of the dual of linear codes over finite fields, we know that $\left|\varphi(C)^{\perp}\right|=\frac{q^{3 n}}{|C|}$. So (2.1), this implies

$$
\begin{equation*}
\left|\varphi\left(C^{\perp}\right)\right|=\left|\varphi(C)^{\perp}\right| \tag{2.3}
\end{equation*}
$$

Combining (2.2) with (2.3), we get the desired equality.
Let $e_{1}=1-u-v, e_{2}=u, e_{3}=v$. It is easy to check that $e_{i} e_{j}=\delta_{i j} e_{i}$ and $\sum_{k=1}^{3} e_{k}=1$, where $\delta_{i j}$ stands for Dirichlet function, i.e., $\delta_{i j}=\left\{\begin{array}{l}1, \text { if } i=j, \\ 0, \text { if } i \neq j .\end{array}\right.$ According to [9], we have $R=e_{1} R \oplus e_{2} R \oplus e_{3} R$.

Now, we mainly consider some familiar structural properties of a linear code C over R. The proof of following results can be found in [10], so we omit them here.

Let $A_{i}(i=1,2,3)$ be codes over R. We denote

$$
A_{1} \oplus A_{2} \oplus A_{3}=\left\{a_{1}+a_{2}+a_{3} \mid a_{1} \in A_{1}, a_{2} \in A_{2}, a_{3} \in A_{3}\right\}
$$

If C is a linear code of length n over R, we define that

$$
\begin{aligned}
& C_{1}=\left\{\mathbf{a} \in \mathbb{F}_{q}^{n} \mid \text { there are } \mathbf{b}, \mathbf{c} \in \mathbb{F}_{q}^{n} \text { such that } e_{1} \mathbf{a}+e_{2} \mathbf{b}+e_{3} \mathbf{c} \in C\right\}, \\
& C_{2}=\left\{\mathbf{b} \in \mathbb{F}_{q}^{n} \mid \text { there are } \mathbf{a}, \mathbf{c} \in \mathbb{F}_{q}^{n} \text { such that } e_{1} \mathbf{a}+e_{2} \mathbf{b}+e_{3} \mathbf{c} \in C\right\}, \\
& C_{3}=\left\{\mathbf{c} \in \mathbb{F}_{q}^{n} \mid \text { there are } \mathbf{a}, \mathbf{b} \in \mathbb{F}_{q}^{n} \text { such that } e_{1} \mathbf{a}+e_{2} \mathbf{b}+e_{3} \mathbf{c} \in C\right\} .
\end{aligned}
$$

It is easy to verity that $C_{i}(i=1,2,3)$ are linear codes of length n over \mathbb{F}_{q}. Furthermore, $C=e_{1} C_{1} \oplus e_{2} C_{2} \oplus e_{3} C_{3}$ and $|C|=\left|C_{1}\left\|C_{2}\right\| C_{3}\right|$. Throughout this paper, $C_{i}(i=1,2,3)$ will be reserved symbols referring to these special subcodes.

According to above definition and [10], we have the following theorem.
Theorem 2.5 If $C=e_{1} C_{1} \oplus e_{2} C_{2} \oplus e_{3} C_{3}$ is a linear code of length n over R, then $C^{\perp}=e_{1} C_{1}^{\perp} \oplus e_{2} C_{2}^{\perp} \oplus e_{3} C_{3}^{\perp}$.

The next theorem gives a computation for minimum Lee distance d_{L} of a linear code of length n over R.

Theorem 2.6 If $C=e_{1} C_{1} \oplus e_{2} C_{2} \oplus e_{3} C_{3}$ is a linear code of length n over R, then $d_{L}(C)=\min \left\{d_{H}\left(C_{1}\right), d_{H}\left(C_{2}\right), d_{H}\left(C_{3}\right)\right\}$.

Proof By Theorem 2.3, we have $d_{L}(C)=d_{H}(\varphi(C))$.
For any codeword \mathbf{x}, it can be written as $\mathbf{x}=e_{1} \mathbf{a}+e_{2} \mathbf{b}+e_{3} \mathbf{c}$, where $\mathbf{a} \in C_{1}, \mathbf{b} \in C_{2}, \mathbf{c} \in$ C_{3}. Thus

$$
\varphi(\mathbf{x})=(\mathbf{a}, \mathbf{b}, \mathbf{c})=(\mathbf{a}, \mathbf{0}, \mathbf{0})+(\mathbf{0}, \mathbf{b}, \mathbf{0})+(\mathbf{0}, \mathbf{0}, \mathbf{c})
$$

This means that $d_{L}(C)=\min \left\{d_{H}\left(C_{1}\right), d_{H}\left(C_{2}\right), d_{H}\left(C_{3}\right)\right\}$.

3 Skew Cyclic Codes Over R

Let $R=\mathbb{F}_{q}+u \mathbb{F}_{q}+v \mathbb{F}_{q}$, where $q=p^{m}, p$ is a prime. For integer $0 \leq s \leq m$, we consider the automorphisms

$$
\begin{aligned}
\Theta_{s}: & \mathbb{F}_{q}+u \mathbb{F}_{q}+v \mathbb{F}_{q} \rightarrow \mathbb{F}_{q}+u \mathbb{F}_{q}+v \mathbb{F}_{q} \\
& a+u b+v c \rightarrow a^{p^{s}}+u b^{p^{s}}+v c^{p^{s}}
\end{aligned}
$$

In this section, we first define skew polynomial rings $R\left[x, \Theta_{s}\right]$ and skew cyclic codes over R. Next, we investigate skew cyclic codes over R through a decomposition theorem.

Definition 3.1 We define the skew polynomial ring as $R\left[x, \Theta_{s}\right]=\left\{a_{0}+a_{1} x+\cdots+\right.$ $\left.a_{n} x^{n} \mid a_{i} \in R, i=0,1, \cdots, n\right\}$, where the coefficients are written on the left of the variable x. The addition is the usual polynomial addition and the multiplication is defined by the rule $x a=\Theta_{s}(a) x(a \in R)$.

It is easy to prove that the ring $R\left[x, \Theta_{s}\right]$ is not commutative unless Θ_{s} is the identity automorphism on R.

Definition 3.2 A linear code C of length n over R is called skew cyclic code if for any codeword $\mathbf{c}=\left(c_{0}, c_{1}, \cdots, c_{n-1}\right) \in C$, the vector $\Theta_{s}(\mathbf{c})=\left(\Theta_{s}\left(c_{n-1}\right), \Theta_{s}\left(c_{0}\right), \cdots, \Theta_{s}\left(c_{n-2}\right)\right)$ is also a codeword in C.

The following theorem characterizes skew cyclic codes of length n over R.
Theorem 3.3 Let $C=e_{1} C_{1} \oplus e_{2} C_{2} \oplus e_{3} C_{3}$ be a linear code of length n over R. Then C is a skew cyclic code of length n over R if and only if C_{1}, C_{2} and C_{3} are skew cyclic codes of length n over \mathbb{F}_{q}, respectively.

Proof Suppose that $x_{i}=e_{1} a_{i}+e_{2} b_{i}+e_{3} c_{i}$, where $a_{i}, b_{i}, c_{i} \in \mathbb{F}_{q}, i=0,1, \cdots, n-1$, and $\mathbf{x}=\left(x_{0}, x_{1}, \cdots, x_{n-1}\right)$. Then

$$
\mathbf{x}=e_{1}\left(a_{0}, a_{1}, \cdots, a_{n-1}\right)+e_{2}\left(b_{0}, b_{1}, \cdots, b_{n-1}\right)+e_{3}\left(c_{0}, c_{1}, \cdots, c_{n-1}\right) \in C
$$

Set $\mathbf{a}=\left(a_{0}, a_{1}, \cdots, a_{n-1}\right), \mathbf{b}=\left(b_{0}, b_{1}, \cdots, b_{n-1}\right), \mathbf{c}=\left(c_{0}, c_{1}, \cdots, c_{n-1}\right)$, thus $\mathbf{x}=e_{1} \mathbf{a}+e_{2} \mathbf{b}+$ $e_{3} \mathbf{c}$ and $\mathbf{a} \in C_{1}, \mathbf{b} \in C_{2}, \mathbf{c} \in C_{3}$. If C is a skew cyclic code of length n over R, then

$$
\Theta_{s}(\mathbf{x})=e_{1} \Theta_{s}(\mathbf{a})+e_{2} \Theta_{s}(\mathbf{b})+e_{3} \Theta_{s}(\mathbf{c}) \in C .
$$

Therefore $\Theta_{s}(\mathbf{a}) \in C_{1}, \Theta_{s}(\mathbf{b}) \in C_{2}, \Theta_{s}(\mathbf{c}) \in C_{3}$. This means that C_{1}, C_{2} and C_{3} are skew cyclic codes.

Conversely, if C_{i} are skew cyclic codes over \mathbb{F}_{q}, then

$$
\Theta_{s}(\mathbf{x})=e_{1} \Theta_{s}(\mathbf{a})+e_{2} \Theta_{s}(\mathbf{b})+e_{3} \Theta_{s}(\mathbf{c}) \in C
$$

This implies that C is a skew cyclic code over R.
Theorem 3.4 Let $C=e_{1} C_{1} \oplus e_{2} C_{2} \oplus e_{3} C_{3}$ be a skew cyclic code of length n over R. Then
(1) $C=\left\langle e_{1} g_{1}(x), e_{2} g_{2}(x), e_{3} g_{3}(x)\right\rangle$ and $|C|=q^{3 n-\sum_{i=1}^{3} \operatorname{deg} g_{i}(x)}$, where $g_{i}(x)$ is a generator polynomial of skew cyclic codes C_{i} of length n over \mathbb{F}_{q} for $\mathrm{i}=1,2,3$.
(2) There is a unique polynomial $g(x)$ such that $C=\langle g(x)\rangle$ and $g(x) \mid x^{n}-1$, where $g(x)=e_{1} g_{1}(x)+e_{2} g_{2}(x)+e_{3} g_{3}(x)$. Moreover, every left submodule of $R\left[x, \Theta_{s}\right] /\left\langle x^{n}-1\right\rangle$ is principally generated.

Proof (1) Since $C_{i}=\left\langle g_{i}(x)\right\rangle \subset \mathbb{F}_{q}\left[x, \Theta_{s}\right] /\left\langle x^{n}-1\right\rangle$ for $i=1,2,3$ and $C=e_{1} C_{1} \oplus e_{2} C_{2} \oplus$ $e_{3} C_{3}, C=\left\langle c(x) \mid c(x)=e_{1} f_{1}(x)+e_{2} f_{2}(x)+e_{3} f_{3}(x), f_{i}(x) \in C_{i}, i=1,2,3\right\rangle$. Thus

$$
C \subset\left\langle e_{1} g_{1}(x), e_{2} g_{2}(x), e_{3} g_{3}(x)\right\rangle
$$

On the other hand, for any $e_{1} r_{1}(x) g_{1}(x)+e_{2} r_{2}(x) g_{2}(x)+e_{3} r_{3}(x) g_{3}(x) \in\left\langle e_{1} g_{1}(x), e_{2} g_{2}(x)\right.$, $\left.e_{3} g_{3}(x)\right\rangle \subset R\left[x, \Theta_{s}\right] /\left\langle x^{n}-1\right\rangle$, where $r_{1}(x), r_{2}(x)$ and $r_{3}(x) \in R\left[x, \Theta_{s}\right] /\left\langle x^{n}-1\right\rangle$, there exist $s_{1}(x), s_{2}(x)$ and $s_{3}(x) \in \mathbb{F}_{q}\left[x, \Theta_{s}\right] /\left\langle x^{n}-1\right\rangle$ such that $e_{1} r_{1}(x)=e_{1} s_{1}(x), e_{2} r_{2}(x)=e_{2} s_{2}(x)$ and $e_{3} r_{3}(x)=e_{3} s_{3}(x)$. Hence

$$
e_{1} r_{1}(x) g_{1}(x)+e_{2} r_{2}(x) g_{2}(x)+e_{3} r_{3}(x) g_{3}(x)=e_{1} s_{1}(x) g_{1}(x)+e_{2} s_{2}(x) g_{2}(x)+e_{3} s_{3}(x) g_{3}(x)
$$

which implies that $\left\langle e_{1} g_{1}(x), e_{2} g_{2}(x), e_{3} g_{3}(x)\right\rangle \subset C$. Therefore $C=\left\langle e_{1} g_{1}(x), e_{2} g_{2}(x), e_{3} g_{3}(x)\right\rangle$.
In light of $|C|=\left|C_{1}\right|\left|C_{2}\right|\left|C_{3}\right|$, we have $|C|=q^{3 n-\sum_{i=1}^{3} \operatorname{deg} g_{i}(x)}$.
(2) Obviously, $\left\langle e_{1} g_{1}(x)+e_{2} g_{2}(x)+e_{3} g_{3}(x)\right\rangle \subset\left\langle e_{1} g_{1}(x), e_{2} g_{2}(x), e_{3} g_{3}(x)\right\rangle$.

Note that $e_{1} g(x)=e_{1} g_{1}(x), e_{2} g(x)=e_{2} g_{2}(x)$ and $e_{3} g(x)=e_{3} g_{3}(x)$, we have $C \subset\langle g(x)\rangle$. Therefore, $C=\langle g(x)\rangle$.

Since $g_{1}(x), g_{2}(x)$ and $g_{3}(x)$ are monic right divisors of $x^{n}-1$, there exist $h_{1}(x), h_{2}(x)$ and $h_{3}(x) \in \mathbb{F}_{q}\left[x, \Theta_{s}\right] /\left\langle x^{n}-1\right\rangle$ such that $x^{n}-1=h_{1}(x) g_{1}(x)=h_{2}(x) g_{2}(x)=h_{3}(x) g_{3}(x)$. Therefore $x^{n}-1=\left[e_{1} h_{1}(x)+e_{2} h_{2}(x)+e_{3} h_{3}(x)\right] g(x)$. It follows that $g(x) \mid x^{n}-1$. The uniqueness of $g(x)$ can be followed from that of $g_{1}(x), g_{2}(x)$ and $g_{3}(x)$.

Let $g(x)=g_{0}+g_{1} x+\cdots+g_{k} x^{k}$ and $h(x)=h_{0}+h_{1} x+\cdots+h_{n-k} x^{n-k}$ be polynomials in $\mathbb{F}_{q}\left[x, \Theta_{s}\right]$ such that $x^{n}-1=h(x) g(x)$ and C be the skew cyclic code generated by $g(x)$ in $\mathbb{F}_{q}\left[x, \Theta_{s}\right]$. Then the dual code of C is a skew cyclic code generated by the polynomial $\bar{h}(x)=h_{n-k}+\Theta_{s}\left(h_{n-k-1}\right) x+\cdots+\Theta_{s}^{n-k}\left(h_{0}\right) x^{n-k}$ (see [11]).

Corollary 3.5 Let C_{1}, C_{2}, C_{3} be skew cyclic codes of length n over \mathbb{F}_{q} and $g_{1}(x), g_{2}(x)$, $g_{3}(x)$ be their generator polynomials such that

$$
x^{n}-1=h_{1}(x) g_{1}(x)=h_{2}(x) g_{2}(x)=h_{3}(x) g_{3}(x)
$$

in $\mathbb{F}_{q}\left[x, \Theta_{s}\right]$. If $C=e_{1} C_{1} \oplus e_{2} C_{2} \oplus e_{3} C_{3}$, then
(1) $C^{\perp}=\langle\bar{h}(x)\rangle$ is also a skew cyclic code of length n over R, where $\bar{h}(x)=e_{1} \bar{h}_{1}(x)+$ $e_{2} \bar{h}_{2}(x)+e_{3} \bar{h}_{3}(x)$, and $\left|C^{\perp}\right|=q^{\sum_{i=1}^{3} \operatorname{deg} g_{i}(x)} ;$
(2) C is a self-dual skew cyclic code over R if and only if C_{1}, C_{2} and C_{3} are self-dual skew cyclic codes of length n over \mathbb{F}_{q}.

Proof (1) In light of Theorem 2.5, we obtain $C^{\perp}=e_{1} C_{1}^{\perp} \oplus e_{2} C_{2}^{\perp} \oplus e_{3} C_{3}^{\perp}$.

Since $C_{1}^{\perp}=\left\langle\overline{h_{1}}(x)\right\rangle, C_{2}^{\perp}=\left\langle\overline{h_{2}}(x)\right\rangle$ and $C_{3}^{\perp}=\left\langle\overline{h_{3}}(x)\right\rangle$, we have $C^{\perp}=\langle\bar{h}(x)\rangle$ and $\left|C^{\perp}\right|=q^{\sum_{i=1}^{3} \operatorname{deg} g_{i}(x)}$ by Theorem 3.2.
(2) C is a self-dual skew cyclic code over R if and only if $g(x)=\bar{h}(x)$, i.e., $g_{1}(x)=\overline{h_{1}}(x)$, $g_{2}(x)=\overline{h_{2}}(x)$ and $g_{3}(x)=\overline{h_{3}}(x)$. Thus C is a self-dual skew cyclic code over R if and only if C_{1}, C_{2} and C_{3} are self-dual skew cyclic codes of length n over \mathbb{F}_{q}.

Example 1 Let ω a primitive element of \mathbb{F}_{9} (where $\omega=2 \omega+1$) and Θ be the Frobenius automorphism over \mathbb{F}_{9}, i.e., $\Theta(a)=a^{3}$ for any $a \in \mathbb{F}_{9}$. Then

$$
\begin{aligned}
x^{6}-1 & =\left(2+(2+\omega) x+(1+2 \omega) x^{3}+x^{4}\right)\left(1+(2+\omega) x+x^{2}\right) \\
& =\left(2+x+(2+2 \omega) x^{2}+x^{3}\right)\left(1+x+2 \omega x^{2}+x^{3}\right) \in \mathbb{F}_{9}[x ; \Theta] .
\end{aligned}
$$

Let $g_{1}(x)=2+(2+\omega) x+(1+2 \omega) x^{3}+x^{4}$ and $g_{2}(x)=g_{3}(x)=2+x+(2+2 \omega) x^{2}+x^{3}$. Then $C_{1}=\left\langle g_{1}(x)\right\rangle$ and $C_{2}=C_{3}=\left\langle g_{2}(x)\right\rangle$ are skew cyclic codes of length 6 over \mathbb{F}_{9} with dimensions $k_{1}=2, k_{2}=k_{3}=3$, respectively. Take $g(x)=e_{1} g_{1}(x)+e_{2} g_{2}(x)+e_{3} g_{3}(x)$, then C is a skew cyclic code of length 6 over R. Thus the Gray image of C is a $[18,8,4]$ code over \mathbb{F}_{9}.

4 LCD Codes over R

Linear complementary dual codes (which is abbreviated to LCD codes) are linear codes that meet their dual trivially. These codes were introduced by Massey in [12] and showed that asymptotically good LCD codes exist, and provide an optimum linear coding solution for the two-user binary adder channel. In [13], Sendrier indicated that linear codes with complementary-duals meet the asymptotic Gilbert-Varshamov bound. They are also used in counter measure to passive and active side channel analyses on embedded cryto-systems (see [14]). In recent, we in [15] investigated LCD codes finite chain ring. Motivated by these works, we will consider the LCD codes over R.

Suppose that $f(x)$ is a monic (i.e., leading coefficient 1) polynomial of degree k with $f(0)=c \neq 0$. Then by monic reciprocal polynomial of $f(x)$ we mean the polynomial $\widetilde{f}(x)=$ $c^{-1} f^{*}(x)$.

We recall a result about LCD codes which can be found in [16].
Proposition 4.1 If $g_{1}(x)$ is the generator polynomial of a cyclic code C of length n over \mathbb{F}_{q}, then C is an LCD code if and only if $g_{1}(x)$ is self-reciprocal (i.e., $\widetilde{g}_{1}(x)=g_{1}(x)$) and all the monic irreducible factors of $g_{1}(x)$ have the same multiplicity in $g_{1}(x)$ and in $x^{n}-1$.

Theorem 4.2 If $C=e_{1} C_{1} \oplus e_{2} C_{2} \oplus e_{3} C_{3}$ is a linear code over R, then C is a LCD code over R if and only if C_{1}, C_{2} and C_{3} are LCD codes over \mathbb{F}_{q}.

Proof C is a LCD code over R if and only if $C \cap C^{\perp}=\{\mathbf{0}\}$. By Theorem 2.5, we know that $C \cap C^{\perp}=\{\mathbf{0}\}$ if and only if $C_{1} \cap C_{1}^{\perp}=\{\mathbf{0}\}, C_{2} \cap C_{2}^{\perp}=\{\mathbf{0}\}$, and $C_{3} \cap C_{3}^{\perp}=\{\mathbf{0}\}$, i.e., C_{1}, C_{2} and C_{3} are LCD codes over \mathbb{F}_{q}.

By means of Proposition 4.1 and above theorem, we have the following corollary.

Corollary 4.3 Let $C=e_{1} C_{1} \oplus e_{2} C_{2} \oplus e_{3} C_{3}$ is a cyclic code of length n over R, and let $C_{1}=\left\langle g_{1}(x)\right\rangle, C_{2}=\left\langle g_{2}(x)\right\rangle$ and $C_{3}=\left\langle g_{3}(x)\right\rangle$ be cyclic codes of length n over \mathbb{F}_{q}. Then C is a LCD code over R if and only if $g_{i}(x)$ is self-reciprocal (i.e., $\left.\widetilde{g}_{i}(x)=g_{i}(x)\right)$ and all the monic irreducible factors of $g_{i}(x)$ have the same multiplicity in $g_{i}(x)$ and in $x^{n}-1$ for $i=1,2,3$.

Theorem 4.4 A linear code $C \subset R^{n}$ is LCD if and only if the linear code $\varphi(C) \subset \mathbb{F}_{q}^{3 n}$ is LCD.

Proof If $\mathbf{x} \in C \cap C^{\perp}$, then $\mathbf{x} \in C$ and $\mathbf{x} \in C^{\perp}$. It follows that $\varphi(\mathbf{x}) \in \varphi(C)$ and $\varphi(\mathbf{x}) \in \varphi\left(C^{\perp}\right)$. Hence $\varphi\left(C \cap C^{\perp}\right) \subset \varphi(C) \cap \varphi\left(C^{\perp}\right)$.

On the other hand, if $\varphi(\mathbf{x}) \in \varphi(C) \cap \varphi\left(C^{\perp}\right)$, then there are $\mathbf{y} \in C$ and $\mathbf{z} \in C^{\perp}$ such that $\varphi(\mathbf{x})=\varphi(\mathbf{y})=\varphi(\mathbf{z})$. Since φ is an injection, $\mathbf{x}=\mathbf{y}=\mathbf{z} \in C \cap C^{\perp}$, which implies that

$$
\varphi(\mathbf{x}) \in \varphi\left(C \cap C^{\perp}\right) \text {, i.e., } \varphi(C) \cap \varphi\left(C^{\perp}\right) \subset \varphi\left(C \cap C^{\perp}\right) \text {. }
$$

Thus $\varphi(C) \cap \varphi\left(C^{\perp}\right)=\varphi\left(C \cap C^{\perp}\right)$.
By Theorem 2.3, we $\varphi\left(C \cap C^{\perp}\right)=\varphi(C) \cap \varphi(C)^{\perp}$. It follows that $C \subset R^{n}$ is LCD if and only if the linear code $\varphi(C) \subset \mathbb{F}_{q}^{3 n}$ is LCD.

Example $2 x^{4}-1=(x+1)(x+2)\left(x+w^{2}\right)\left(x+w^{6}\right)$ in \mathbb{F}_{9}. Let $g_{1}(x)=g_{2}(x)=g_{2}(x)=$ $x+1$. Then $C_{1}=C_{2}=C_{3}=\left\langle g_{1}(x)\right\rangle$ are LCD cyclic codes over \mathbb{F}_{9} with parameters $[4,3,2]$, respectively. Suppose that $C=e_{1} C_{1} \oplus e_{2} C_{2} \oplus e_{3} C_{3}$ is a cyclic code of length n over R. By Theorem 2.6 and Theorem $4.5, \varphi(C)$ is a LCD code with parameters [12, 9, 2], which is an optimal code.

References

[1] Hammous A R, Kumar Jr P V, Calderbark A R, Sloame J A, Solé P. The \mathbb{Z}_{4}-linearity of Kordock, Preparata, Goethals, and releted codes[J]. IEEE Trans. Inform. The., 1994, 40: 301-319.
[2] Zhu S X, Wang Y, Shi M J. Some results on cyclic codes over $\mathbb{F}_{2}+v \mathbb{F}_{2}[J]$. IEEE Trans. Inform. The., 2010, 56(4): 1680-1684.
[3] Liu X S, Liu H L. Cyclic codes over $\mathbb{F}_{2}+u \mathbb{F}_{2}+v \mathbb{F}_{2}[J]$. Qhin. Quart. J. Math. 2014, 29(2): 113-126.
[4] Boucher D, Geiselmann W, Ulmer F. Skew cyclic codes [J]. Appl. Alg. Eng. Comm., 2007, 18(4): 379-389.
[5] Abualrub T, Seneviratne P. Skew codes over rings[J]. Hong Kong: IMECS, 2012, 2: 846-847.
[6] Gao J. Skew cyclic codes over $\mathbb{F}_{p}+v \mathbb{F}_{p}$ [J]. J. Appl. Math. Inform., 2013, 31: 337-342.
[7] Gursoy F. Siap I, Yildiz B. Construction of skew cyclic codes over $\mathbb{F}_{q}+v \mathbb{F}_{q}[J]$. Adv. Math. Commun., 2014, 8: 313-322.
[8] Wood J. Duality for modules over finite rings and applications to coding theory [J]. Amer. J. Math., 1999, 121: 555-575.
[9] Anderson F W, Fuller K R. Rings and categories [M]. New York: Springer, 1992.
[10] Zhan Y T. Reseasch on constacyclic ocdes over some clsses of finite non-chian ring [D]. Hefei: Hefei University of Technology, 2013.
[11] Boucher D, Ulmer F. Coding with skew polynomial ring [J]. J. Symb. Comput., 2009, 44(12): 16441656.
［12］Massey J L．Linear codes with complementary duals［J］．Discrete Math．，1992：106／107：337－342．
［13］Sendrier N．Linear codes with complementary duals meet the Gilbert－Varshamov bound［J］．Disc． Math．，2004，304：345－347．
［14］Carlet C，Guilley S．Complementary dual codes for counter－measures to side－channel attacks［J］． Adv．Math．Commun．，2016，10（1）：131－150．
［15］Liu X S，Liu H L．LCD codes over finite chain rings［J］．Finite Field Appl．，2015，15：1－19．
［16］Yang X，Massey J L．The condition for a cyclic code to have a complementary dual［J］．Disc．Math．， 1994，126：391－393．

环 $\mathbb{F}_{q}+u \mathbb{F}_{q}+v \mathbb{F}_{q}$ 上的斜循环码和LCD码

李 慧，胡 鹏，刘修生
（湖北理工学院数理学院，湖北 黄石 453003）

摘要：本文研究了环 $R=\mathbb{F}_{q}+u \mathbb{F}_{q}+v \mathbb{F}_{q}\left(u^{2}=u, v^{2}=v, u v=v u=0\right)$ 上的斜循环码和LCD码，其中 q 为素数幂。利用线性码与其对偶码在环 R 上的分解，得到了环 R 上斜循环码及其对偶码的生成多项式。最后，讨论了环 R 与有限域 \mathbb{F}_{q} 上LCD码的关系，通过环 R 到域 \mathbb{F}_{q}^{3} 的Gray映射，得到了环 R 上LCD码的Gray像是 \mathbb{F}_{q} 上的LCD码。

关键词：斜循环码；LCD码；对偶码
$\operatorname{MR}(2010)$ 主题分类号：94B15；11A15 中图分类号：O236．2

[^0]: ＊Received date：2016－11－01 Accepted date：2017－02－16
 Foundation item：Supported by Educational Commission of Hubei Province of China （D20144401）；Research Project of Hubei Polytechnic University（17xjz03A）．

 Biography：Li Hui（1981－），female，born at Huangshi，Hubei，lecturer，major in algebraic coding． Corresponding author：Hu Peng．

