SKEW CYCLIC AND LCD CODES OVER $\mathbb{F}_q + u\mathbb{F}_q + v\mathbb{F}_q$

LI Hui, HU Peng, LIU Xiu-sheng

(School of Mathematics and Physics, Hubei Polytechnic University, Huangshi 435003, China)

Abstract: In this paper, we investigate skew cyclic and LCD codes over the ring $R = \mathbb{F}_q + u\mathbb{F}_q + v\mathbb{F}_q$ ($u^2 = u, v^2 = v, uv = vu = 0$), where q is a prime power. Using some decompositions of linear codes and their duals over ring R, we obtain the generator polynomials of skew cyclic and their dual codes over R. Finally, we address the relationship of LCD codes between R and \mathbb{F}_q. By means of the Gray map from R to \mathbb{F}_q^3, we obtain that Gray images of LCD codes over R are LCD codes over \mathbb{F}_q.

Keywords: skew cyclic codes; LCD codes; dual codes

2010 MR Subject Classification: 94B15; 11A15

1 Introduction

Cyclic codes over finite rings are important class from a theoretical and practical viewpoint. It was shown that certain good nonlinear binary codes could be found as images of linear codes over \mathbb{Z}_4 under the Gray map (see [1]). In [2], Zhu et al. studied constacyclic codes over ring $\mathbb{F}_2 + v\mathbb{F}_2$, where $v^2 = v$. We in [3] generated ring $\mathbb{F}_2 + u\mathbb{F}_2 + v\mathbb{F}_2$, where $v^2 = v, u^2 = 0, uv = vu = 0$, and studied the structure of cyclic of an arbitrary length n over this ring.

Boucher et al. in [4] initiated the study of skew cyclic codes over a noncommutative ring $\mathbb{F}_q[x, \Theta]$, called skew polynomial ring, where \mathbb{F}_q is a finite field and Θ is a field automorphism of \mathbb{F}_q. Later, in [5], Abualrub and Seneviratne investigated skew cyclic codes over ring $\mathbb{F}_2 + v\mathbb{F}_2$, where $v^2 = v$. Moreover, Gao [6] and Gursoy et al. [7] presented skew cyclic codes over $\mathbb{F}_p + v\mathbb{F}_p$ and $\mathbb{F}_q + v\mathbb{F}_q$ with different automorphisms, respectively. Recently, Yan, Shi and Solé in [8] investigated skew cyclic codes over $\mathbb{F}_q + u\mathbb{F}_q + v\mathbb{F}_q + v\mathbb{F}_q$.

In this work, let R denote the ring $\mathbb{F}_q + u\mathbb{F}_q + v\mathbb{F}_q$ where $u^2 = u, v^2 = v$ and $uv = vu = 0$. In Section 2, we give some properties of ring R and define the Gray map φ from R to \mathbb{F}_q^3. Moreover, we investigate some results about linear codes over R. In Section 3, we first give a sufficient and necessary condition which a code C is a skew cyclic code over R. We then characterize the generator polynomials of skew cyclic codes and their dual over R. Finally, in Section 4, we address the relationship of LCD codes between R and \mathbb{F}_q. By means of the

* Received date: 2016-11-01 Accepted date: 2017-02-16
Foundation item: Supported by Educational Commission of Hubei Province of China (D20144401); Research Project of Hubei Polytechnic University (17xjz03A).
Biography: Li Hui (1981–), female, born at Huangshi, Hubei, lecturer, major in algebraic coding.
Corresponding author: Hu Peng.
Gray map from R to \mathbb{F}_q^3, we obtain that Gray images of LCD codes over R are LCD codes over \mathbb{F}_q.

2 Linear Codes Over R

The ring R is a finite commutative ring with characteristic p and it contains three maximal ideals which are

$$I_1 = \langle u, v \rangle, \quad I_2 = \langle u - 1, v \rangle, \quad I_3 = \langle u, v - 1 \rangle.$$

It is easy to verify that $\frac{R}{I_1}$, $\frac{R}{I_2}$, and $\frac{R}{I_3}$ are isomorphic to \mathbb{F}_q^3. Therefore $R \cong \mathbb{F}_q^3$. This means that R is a principal ideal ring, i.e., R is a Frobenius ring.

Let $R^n = \{ x = (x_1, \ldots, x_n) \mid x_j \in R \}$ be R-module. A R-submodule C of R^n is called a linear code of length n over R. We assume throughout that all codes are linear.

Let $x, y \in R^n$, the Euclidean inner product of x, y is defined as follows

$$x \cdot y = x_1 y_1 + \cdots + x_n y_n.$$

We call $C^\perp = \{ x \in R^n \mid x \cdot c = 0, \forall c \in C \}$ as the dual code of C. Notice that C^\perp is linear if C is linear or not.

In [8], it was proved that for any linear code C over a finite Frobenius ring,

$$|C| \cdot |C^\perp| = R^n. \quad (2.1)$$

The Gray map $\varphi : R^n \rightarrow \mathbb{F}_q^{3n}$ is defined by $\varphi(x) = (\beta(x_1), \ldots, \beta(x_n))$ for $x = (x_1, \ldots, x_n)$, where $\beta(a + ub + vc) = (a, a + b, a + c)$ for $a + ub + vc \in R$ with $a, b, c \in \mathbb{F}_q$. By using this map, we can define the Lee weight W_L and Lee distance d_L as follows.

Definition 2.1 For any element $x = (x_1, \ldots, x_n) \in R^n$, we define $W_L(x) = W_H(\varphi(x))$, where W_H denotes the ordinary Hamming weight for codes over \mathbb{F}_q. The Lee distance $d_L(x, y)$ between two codewords x and y is the Lee weight of $x - y$.

Lemma 2.2 The Gray map φ is a distance-preserving map from $(R^n, \text{Lee distance})$ to $(\mathbb{F}_q^{3n}, \text{Hamming distance})$ and also \mathbb{F}_q-linear.

Proof From the definition, it is clear that $\varphi(x - y) = \varphi(x) - \varphi(y)$ for x and $y \in R^n$. Thus $d_L(x, y) = d_H(\varphi(x), \varphi(y))$.

For any $x, y \in R^n$, $a, b \in \mathbb{F}_q$, from the definition of the Gray map, we have $\varphi(ax + by) = a \varphi(x) + b \varphi(y)$, which implies that φ is an \mathbb{F}_q-linear map.

The following theorem is obvious.

Theorem 2.3 If C is a linear code of length n over R, size q^k and Lee distance d_L, then $\varphi(C)$ is a linear code over \mathbb{F}_q with parameters $[3n, k, d_L]$.

Theorem 2.4 If C is a linear code of length n over R, then $\varphi(C^\perp) = \varphi(C)^\perp$. Moreover, if C is a self-dual code, so is $\varphi(C)$.

Proof Let $x_1 = a_1 + ub_1 + vc_1, x_2 = a_2 + ub_2 + vc_2 \in C$ be two codewords, where $a_1, b_1, c_1, a_2, b_2, c_2 \in \mathbb{F}_q^n$, and \cdot be the Euclidean inner product on R^n or \mathbb{F}_q^n. Then

$$x_1 \cdot x_2 = a_1 \cdot a_2 + (a_1 b_2 + a_2 b_1 + b_1 b_2)u + (a_1 c_2 + a_2 c_1 + c_1 c_2)v$$
and
\[\varphi(x_1) \cdot \varphi(x_2) = 3a_1 \cdot a_2 + (a_1b_2 + a_2b_1 + b_1b_2) + (a_1c_2 + a_2c_1 + c_1c_2). \]

It is easy to check that \(x_1 \cdot x_2 = 0 \) implies \(\varphi(x_1) \cdot \varphi(x_2) = 0. \) Therefore
\[\varphi(C^\perp) \subset \varphi(C)^\perp. \] (2.2)

But by Theorem 2.3, \(\varphi(C) \) is a linear code of length \(3n \) of size \(|C| \) over \(\mathbb{F}_q. \) So by usual properties of the dual of linear codes over finite fields, we know that \(|\varphi(C)^\perp| = \frac{3^n}{|C|}. \) So (2.1), this implies
\[|\varphi(C^\perp)| = |\varphi(C)^\perp|. \] (2.3)

Combining (2.2) with (2.3), we get the desired equality.

Let \(e_1 = 1 - u - v, e_2 = u, e_3 = v. \) It is easy to check that \(e_ie_j = \delta_{ij}e_i \) and \(\sum_{k=1}^{3} e_k = 1, \)
where \(\delta_{ij} \) stands for Dirichlet function, i.e., \(\delta_{ij} = \begin{cases} 1, & \text{if } i = j, \\ 0, & \text{if } i \neq j. \end{cases} \) According to [9], we have
\[R = e_1R \oplus e_2R \oplus e_3R. \]

Now, we mainly consider some familiar structural properties of a linear code \(C \) over \(R. \) The proof of following results can be found in [10], so we omit them here.

Let \(A_i (i = 1, 2, 3) \) be codes over \(R. \) We denote
\[A_1 \oplus A_2 \oplus A_3 = \{a_1 + a_2 + a_3| a_i \in A_1, a_2 \in A_2, a_3 \in A_3 \}. \]

If \(C \) is a linear code of length \(n \) over \(R, \) we define that
\[C_1 = \{a \in \mathbb{F}_q^n | \text{there are } b, c \in \mathbb{F}_q^n \text{ such that } e_1a + e_2b + e_3c \in C\}, \]
\[C_2 = \{b \in \mathbb{F}_q^n | \text{there are } a, c \in \mathbb{F}_q^n \text{ such that } e_1a + e_2b + e_3c \in C\}, \]
\[C_3 = \{c \in \mathbb{F}_q^n | \text{there are } a, b \in \mathbb{F}_q^n \text{ such that } e_1a + e_2b + e_3c \in C\}. \]

It is easy to verify that \(C_i (i = 1, 2, 3) \) are linear codes of length \(n \) over \(\mathbb{F}_q. \) Furthermore, \(C = e_1C_1 \oplus e_2C_2 \oplus e_3C_3 \) and \(|C| = |C_1| |C_2| |C_3|. \) Throughout this paper, \(C_i (i = 1, 2, 3) \) will be reserved symbols referring to these special subcodes.

According to above definition and [10], we have the following theorem.

Theorem 2.5 If \(C = e_1C_1 \oplus e_2C_2 \oplus e_3C_3 \) is a linear code of length \(n \) over \(R, \) then \(C^\perp = e_1C_1^\perp \oplus e_2C_2^\perp \oplus e_3C_3^\perp. \)

The next theorem gives a computation for minimum Lee distance \(d_L \) of a linear code of length \(n \) over \(R. \)

Theorem 2.6 If \(C = e_1C_1 \oplus e_2C_2 \oplus e_3C_3 \) is a linear code of length \(n \) over \(R, \) then
\[d_L(C) = \min\{d_H(C_1), d_H(C_2), d_H(C_3)\}. \]

Proof By Theorem 2.3, we have \(d_L(C) = d_H(\varphi(C)). \)

For any codeword \(x, \) it can be written as \(x = e_1a + e_2b + e_3c, \) where \(a \in C_1, b \in C_2, c \in C_3. \) Thus
\[\varphi(x) = (a, b, c) = (a, 0, 0) + (0, b, 0) + (0, 0, c). \]
This means that \(d_L(C) = \min\{d_H(C_1), d_H(C_2), d_H(C_3)\} \).

3 Skew Cyclic Codes Over \(R \)

Let \(R = F_q + uF_q + vF_q \), where \(q = p^m \), \(p \) is a prime. For integer \(0 \leq s \leq m \), we consider the automorphisms

\[
\Theta_s : F_q + uF_q + vF_q \rightarrow F_q + uF_q + vF_q, \\
a + ub + vc \rightarrow a^{p^s} + ub^{p^s} + vc^{p^s}.
\]

In this section, we first define skew polynomial rings \(R[x, \Theta_s] \) and skew cyclic codes over \(R \). Next, we investigate skew cyclic codes over \(R \) through a decomposition theorem.

Definition 3.1 We define the skew polynomial ring as \(R[x, \Theta_s] = \{a_0 + a_1x + \cdots + a_nx^n | a_i \in R, i = 0, 1, \cdots, n\} \), where the coefficients are written on the left of the variable \(x \).

The addition is the usual polynomial addition and the multiplication is defined by the rule \(xa = \Theta_s(a)x \) (\(a \in R \)).

It is easy to prove that the ring \(R[x, \Theta_s] \) is not commutative unless \(\Theta_s \) is the identity automorphism on \(R \).

Definition 3.2 A linear code \(C \) of length \(n \) over \(R \) is called skew cyclic code if for any codeword \(c = (c_0, c_1, \cdots, c_{n-1}) \in C \), the vector \(\Theta_s(c) = (\Theta_s(c_{n-1}), \Theta_s(c_0), \cdots, \Theta_s(c_{n-2})) \) is also a codeword in \(C \).

The following theorem characterizes skew cyclic codes of length \(n \) over \(R \).

Theorem 3.3 Let \(C = e_1C_1 \oplus e_2C_2 \oplus e_3C_3 \) be a linear code of length \(n \) over \(R \). Then \(C \) is a skew cyclic code of length \(n \) over \(R \) if and only if \(C_1, C_2 \) and \(C_3 \) are skew cyclic codes of length \(n \) over \(F_q \), respectively.

Proof Suppose that \(x_i = e_1a_i + e_2b_i + e_3c_i \), where \(a_i, b_i, c_i \in F_q, i = 0, 1, \cdots, n - 1 \), and \(x = (x_0, x_1, \cdots, x_{n-1}) \). Then

\[
x = e_1(a_0, a_1, \cdots, a_{n-1}) + e_2(b_0, b_1, \cdots, b_{n-1}) + e_3(c_0, c_1, \cdots, c_{n-1}) \in C.
\]

Set \(a = (a_0, a_1, \cdots, a_{n-1}) \), \(b = (b_0, b_1, \cdots, b_{n-1}) \), \(c = (c_0, c_1, \cdots, c_{n-1}) \), thus \(x = e_1a + e_2b + e_3c \) and \(a \in C_1 \), \(b \in C_2 \), \(c \in C_3 \). If \(C \) is a skew cyclic code of length \(n \) over \(R \), then

\[
\Theta_s(x) = e_1\Theta_s(a) + e_2\Theta_s(b) + e_3\Theta_s(c) \in C.
\]

Therefore \(\Theta_s(a) \in C_1, \Theta_s(b) \in C_2, \Theta_s(c) \in C_3 \). This means that \(C_1, C_2 \) and \(C_3 \) are skew cyclic codes.

Conversely, if \(C_i \) are skew cyclic codes over \(F_q \), then

\[
\Theta_s(x) = e_1\Theta_s(a) + e_2\Theta_s(b) + e_3\Theta_s(c) \in C.
\]

This implies that \(C \) is a skew cyclic code over \(R \).

Theorem 3.4 Let \(C = e_1C_1 \oplus e_2C_2 \oplus e_3C_3 \) be a skew cyclic code of length \(n \) over \(R \). Then
(1) \(C = (e_1 g_1(x), e_2 g_2(x), e_3 g_3(x)) \) and \(|C| = q^{3n - \sum_{i=1}^3 \deg g_i(x)} \), where \(g_i(x) \) is a generator polynomial of skew cyclic codes \(C_i \) of length \(n \) over \(\mathbb{F}_q \) for \(i=1,2,3 \).

(2) There is a unique polynomial \(g(x) \) such that \(C = \langle g(x) \rangle \) and \(g(x) \mid x^n - 1 \), where \(g(x) = e_1 g_1(x) + e_2 g_2(x) + e_3 g_3(x) \). Moreover, every left submodule of \(R[x, \Theta]/\langle x^n - 1 \rangle \) is principally generated.

Proof (1) Since \(C_i = \langle g_i(x) \rangle \subset \mathbb{F}_q[x, \Theta]/\langle x^n - 1 \rangle \) for \(i=1,2,3 \) and \(C = e_1 C_1 \oplus e_2 C_2 \oplus e_3 C_3 \), \(C = \langle c(x) | c(x) = e_1 f_1(x) + e_2 f_2(x) + e_3 f_3(x), f_i(x) \in C_i, i = 1, 2, 3 \rangle \). Thus

\[
C \subset \langle e_1 g_1(x), e_2 g_2(x), e_3 g_3(x) \rangle.
\]

On the other hand, for any \(e_1 r_1(x) g_1(x) + e_2 r_2(x) g_2(x) + e_3 r_3(x) g_3(x) \in \langle e_1 g_1(x), e_2 g_2(x), e_3 g_3(x) \rangle \subset R[x, \Theta]/\langle x^n - 1 \rangle \), where \(r_1(x), r_2(x) \) and \(r_3(x) \in R[x, \Theta]/\langle x^n - 1 \rangle \), there exist \(s_1(x), s_2(x) \) and \(s_3(x) \in \mathbb{F}_q[x, \Theta]/\langle x^n - 1 \rangle \) such that \(e_1 r_1(x) = e_1 s_1(x), e_2 r_2(x) = e_2 s_2(x) \) and \(e_3 r_3(x) = e_3 s_3(x) \). Hence

\[
e_1 r_1(x) g_1(x) + e_2 r_2(x) g_2(x) + e_3 r_3(x) g_3(x) = e_1 s_1(x) g_1(x) + e_2 s_2(x) g_2(x) + e_3 s_3(x) g_3(x),
\]

which implies that \(\langle e_1 g_1(x), e_2 g_2(x), e_3 g_3(x) \rangle \subset C \). Therefore \(C = \langle e_1 g_1(x), e_2 g_2(x), e_3 g_3(x) \rangle \).

In light of \(|C| = |C_1| \cdot |C_2| \cdot |C_3| \), we have \(|C| = q^{3n - \sum_{i=1}^3 \deg g_i(x)} \).

(2) Obviously, \(\langle e_1 g_1(x) + e_2 g_2(x) + e_3 g_3(x) \rangle \subset \langle e_1 g_1(x), e_2 g_2(x), e_3 g_3(x) \rangle \).

Note that \(g(x) = e_1 g_1(x), e_2 g_2(x) = e_2 g_2(x) \) and \(e_3 g_3(x) = e_3 g_3(x) \), we have \(C \subset \langle g(x) \rangle \). Therefore, \(C = \langle g(x) \rangle \).

Since \(g_1(x), g_2(x) \) and \(g_3(x) \) are monic right divisors of \(x^n - 1 \), there exist \(h_1(x), h_2(x) \) and \(h_3(x) \in \mathbb{F}_q[x, \Theta]/\langle x^n - 1 \rangle \) such that \(x^n - 1 = h_1(x) g_1(x) = h_2(x) g_2(x) = h_3(x) g_3(x) \). Therefore \(x^n - 1 = [e_1 h_1(x) + e_2 h_2(x) + e_3 h_3(x)] g(x) \). It follows that \(g(x) \mid x^n - 1 \). The uniqueness of \(g(x) \) can be followed from that of \(g_1(x), g_2(x) \) and \(g_3(x) \).

Let \(g(x) = g_0 + g_1 x + \cdots + g_k x^k \) and \(h(x) = h_0 + h_1 x + \cdots + h_{n-k} x^{n-k} \) be polynomials in \(\mathbb{F}_q[x, \Theta] \) such that \(x^n - 1 = h(x) g(x) \) and \(C \) be the skew cyclic code generated by \(g(x) \) in \(\mathbb{F}_q[x, \Theta] \). Then the dual code of \(C \) is a skew cyclic code generated by the polynomial \(\overline{h}(x) = h_{n-k} + \Theta_s(h_{n-k-1}) x + \cdots + \Theta_s^{n-k}(h_0) x^{n-k} \) (see [11]).

Corollary 3.5 Let \(C_1, C_2, C_3 \) be skew cyclic codes of length \(n \) over \(\mathbb{F}_q \) and \(g_1(x), g_2(x), g_3(x) \) be their generator polynomials such that

\[
x^n - 1 = h_1(x) g_1(x) = h_2(x) g_2(x) = h_3(x) g_3(x)
\]

in \(\mathbb{F}_q[x, \Theta] \). If \(C = e_1 C_1 \oplus e_2 C_2 \oplus e_3 C_3 \), then

(1) \(C^\perp = \langle \overline{h}(x) \rangle \) is also a skew cyclic code of length \(n \) over \(R \), where \(\overline{h}(x) = e_1 \overline{h}_1(x) + e_2 \overline{h}_2(x) + e_3 \overline{h}_3(x) \), and \(|C^\perp| = q^{3n - \sum_{i=1}^3 \deg \overline{h}_i(x)} \).

(2) \(C \) is a self-dual skew cyclic code over \(R \) if and only if \(C_1, C_2 \) and \(C_3 \) are self-dual skew cyclic codes of length \(n \) over \(\mathbb{F}_q \).

Proof (1) In light of Theorem 2.5, we obtain \(C^\perp = e_1 C_1^\perp \oplus e_2 C_2^\perp \oplus e_3 C_3^\perp \).
Since $C_1^\perp = \langle \overline{t}_1(x) \rangle$, $C_2^\perp = \langle \overline{t}_2(x) \rangle$ and $C_3^\perp = \langle \overline{t}_3(x) \rangle$, we have $C^\perp = \langle \overline{t}(x) \rangle$ and $|C^\perp| = q^{\frac{3}{2} \deg_9(x)}$ by Theorem 3.2.

(2) C is a self-dual skew cyclic code over R if and only if $g(x) = \overline{h}(x)$, i.e., $g_1(x) = \overline{h}_1(x)$, $g_2(x) = \overline{h}_2(x)$ and $g_3(x) = \overline{h}_3(x)$. Thus C is a self-dual skew cyclic code over R if and only if C_1, C_2 and C_3 are self-dual skew cyclic codes of length n over \mathbb{F}_q.

Example 1 Let ω a primitive element of \mathbb{F}_9 (where $\omega = 2\omega + 1$) and Θ be the Frobenius automorphism over \mathbb{F}_9, i.e., $\Theta(a) = a^3$ for any $a \in \mathbb{F}_9$. Then

$$x^6 - 1 = (2 + (2 + \omega)x + (1 + 2\omega)x^3 + x^4)(1 + (2 + \omega)x + x^2) = (2 + x + (2 + 2\omega)x^2 + x^3)(1 + x + 2\omega x^2 + x^3) \in \mathbb{F}_9[x; \Theta].$$

Let $g_1(x) = 2 + (2 + \omega)x + (1 + 2\omega)x^3 + x^4$ and $g_2(x) = g_3(x) = 2 + x + (2 + 2\omega)x^2 + x^3$. Then $C_1 = \langle g_1(x) \rangle$ and $C_2 = C_3 = \langle g_2(x) \rangle$ are skew cyclic codes of length 6 over \mathbb{F}_9 with dimensions $k_1 = 2$, $k_2 = k_3 = 3$, respectively. Take $g(x) = e_1 g_1(x) + e_2 g_2(x) + e_3 g_3(x)$, then C is a skew cyclic code of length 6 over R. Thus the Gray image of C is a $[18, 8, 4]$ code over \mathbb{F}_9.

4 LCD Codes over R

Linear complementary dual codes (which is abbreviated to LCD codes) are linear codes that meet their dual trivially. These codes were introduced by Massey in [12] and showed that asymptotically good LCD codes exist, and provide an optimum linear coding solution for the two-user binary adder channel. In [13], Sendrier indicated that linear codes with complementary-duals meet the asymptotic Gilbert-Varshamov bound. They are also used in counter measure to passive and active side channel analyses on embedded crypto-systems (see [14]). In recent, we in [15] investigated LCD codes finite chain ring. Motivated by these works, we will consider the LCD codes over R.

Suppose that $f(x)$ is a monic (i.e., leading coefficient 1) polynomial of degree k with $f(0) = c \neq 0$. Then by monic reciprocal polynomial of $f(x)$ we mean the polynomial $\tilde{f}(x) = c^{-1}f^*(x)$.

We recall a result about LCD codes which can be found in [16].

Proposition 4.1 If $g_1(x)$ is the generator polynomial of a cyclic code C of length n over \mathbb{F}_q, then C is an LCD code if and only if $g_1(x)$ is self-reciprocal (i.e., $\overline{g}_1(x) = g_1(x)$) and all the monic irreducible factors of $g_1(x)$ have the same multiplicity in $g_1(x)$ and in $x^n - 1$.

Theorem 4.2 If $C = e_1 C_1 \oplus e_2 C_2 \oplus e_3 C_3$ is a linear code over R, then C is a LCD code over R if and only if C_1, C_2 and C_3 are LCD codes over \mathbb{F}_q.

Proof C is a LCD code over R if and only if $C \cap C^\perp = \{0\}$. By Theorem 2.5, we know that $C \cap C^\perp = \{0\}$ if and only if $C_1 \cap C_1^\perp = \{0\}$, $C_2 \cap C_2^\perp = \{0\}$, and $C_3 \cap C_3^\perp = \{0\}$, i.e., C_1, C_2 and C_3 are LCD codes over \mathbb{F}_q.

By means of Proposition 4.1 and above theorem, we have the following corollary.
Corollary 4.3 Let $C = e_1C_1 \oplus e_2C_2 \oplus e_3C_3$ is a cyclic code of length n over R, and let $C_1 = \langle g_1(x) \rangle$, $C_2 = \langle g_2(x) \rangle$ and $C_3 = \langle g_3(x) \rangle$ be cyclic codes of length n over \mathbb{F}_q. Then C is a LCD code over R if and only if $g_1(x)$ is self-reciprocal (i.e., $\bar{g}_i(x) = g_i(x)$) and all the monic irreducible factors of $g_i(x)$ have the same multiplicity in $g_i(x)$ and in $x^n - 1$ for $i = 1, 2, 3$.

Theorem 4.4 A linear code $C \subset R^n$ is LCD if and only if the linear code $\varphi(C) \subset \mathbb{F}^{3n}_q$ is LCD.

Proof If $x \in C \cap C^\perp$, then $x \in C$ and $x \in C^\perp$. It follows that $\varphi(x) \in \varphi(C)$ and $\varphi(x) \in \varphi(C^\perp)$. Hence $\varphi(C \cap C^\perp) \subset \varphi(C) \cap \varphi(C^\perp)$.

On the other hand, if $\varphi(x) \in \varphi(C) \cap \varphi(C^\perp)$, then there are $y \in C$ and $z \in C^\perp$ such that $\varphi(x) = \varphi(y) = \varphi(z)$. Since φ is an injection, $x = y = z \in C \cap C^\perp$, which implies that $\varphi(x) \in \varphi(C \cap C^\perp)$, i.e., $\varphi(C) \cap \varphi(C^\perp) \subset \varphi(C \cap C^\perp)$.

Thus $\varphi(C) \cap \varphi(C^\perp) = \varphi(C \cap C^\perp)$.

By Theorem 2.3, we $\varphi(C \cap C^\perp) = \varphi(C) \cap \varphi(C^\perp)$ and $\varphi(C \cap C^\perp)$ follows that $C \subset R^n$ is LCD if and only if the linear code $\varphi(C) \subset \mathbb{F}^{3n}_q$ is LCD.

Example 2 $x^4 - 1 = (x + 1)(x + 2)(x + w^2)(x + w^6)$ in \mathbb{F}_9. Let $g_1(x) = g_2(x) = g_3(x) = x + 1$. Then $C_1 = C_2 = C_3 = \langle g_1(x) \rangle$ are LCD cyclic codes over \mathbb{F}_9 with parameters $[4, 3, 2]$, respectively. Suppose that $C = e_1C_1 \oplus e_2C_2 \oplus e_3C_3$ is a cyclic code of length n over R. By Theorem 2.6 and Theorem 4.5, $\varphi(C)$ is a LCD code with parameters $[12, 9, 2]$, which is an optimal code.

References

环$\mathbb{F}_q + u\mathbb{F}_q + v\mathbb{F}_q$上的斜循环码和LCD码

李 慧, 胡 鹏, 刘修生
(湖北理工学院数学学院, 湖北 黄石 453003)

摘要：本文研究了环$R = \mathbb{F}_q + u\mathbb{F}_q + v\mathbb{F}_q$ $(u^2 = u, v^2 = v, uv = vu = 0)$上的斜循环码和LCD码，其中$q$为素数$2$. 利用线性码与其对偶码在环$R$上的分解，得到了环$R$上斜循环码及其对偶码的生成多项式，最后，讨论了环$R$与有限域$\mathbb{F}_q$上LCD码的关系，通过环$R$到域$\mathbb{F}_q$的Gray映射，得到了环$R$上LCD码的Gray像是$\mathbb{F}_q$上的LCD码。

关键词：斜循环码; LCD码; 对偶码

MR(2010) 主题分类号：94B15 ; 11A15 中图分类号：O236.2