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1 Introduction and Main Results

We may recall here that the Landau equation reads as the evolution equation of the

density of particles

{atf+y~vw=QL<f,f>,
f|to = f07

where 1, is the so-called Landau collision operator

Qurn) = [

R

Laly - y) ((F) Ve )W) = FW) (V4 ) (ye)) dy.,

here, a(y) is a symmetric nonnegative matrix depending on a parameter y € R,

YilY; ..

R
D
0 i

The original Landau collision operator describing collisions among charged particles

and

interacting with Coulombic force. As in the Boltzmann equation, it is well-known that
2 2
Maxwellians are steady states to the Landau equation u(y) = e~ and we linearize the

Landau equation around g by posing f = i+ pZu the perturbation u satisfies the equation

Ay + ypu + 2 Qp(pFu, ) + p 2 Qu(y piu) = —p"EQp(p, ptu).
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We consider the Landau-type operator with external potential

L=y 0,—0,V(x) 0y +p 2Qr?u, 1) + n ?Qr(u, p2u). (L.1)

In the linear homogeneous case, Fokker-Planck equations, Landau equations and Boltz-
mann equations equations have then a parabolic behavior, and the study of the local smooth-
ing properties in the velocity variable is rather direct. In the non-homogeneous case, the
regularization in space variable is not so easy, but occurs anyway thanks to the so-called
hypoelliptic structure of the equation. In this article, we are interested in global estimates

of the following Landau operator

L =i(y-D, —90,V(x)-D,)+ply)+ (yAD,y)-aly)(y AD,)+ D, -M(y)D,
+(Dy Ab)- (y A Dy) + aly) + p2mly),
where D, = —id,, D, = —id,, and x € R? is the space variable and y € R? is the velocity
variable, and X - Y stands for the standard dot-product on R3. The real-valued function
V(x) of space variable x stands for the macroscopic force, M (y) is a metric and the functions
a(y), b(y) and p(y) of the variable y in the diffusion are smooth and real-valued with the
properties subsequently listed below.
(1) There exists a constant ¢ > 0 such that

VyeR® a(y) >c)”, bly)>c)”, ) <lgy) <ecly)™*,
and  p(y) > ey, e@) T < |m(y)| < ely)? (1.2)

with 7 € [0,1] and (y) = (1 + [y*)""*

(2) For any o € Z3, there exists a constant C, such that
Yy ER?,[0%(y)] +10°b()] < Ca(y)”™, and [07p(y)] < Co (p)” (13)

(3) M(y) is a positive definite matrix with

M) = [ |y — el O y:)* = viy;. )y, (1.4)
R3

here we can substitute D, - F(y)D, for D, - M(y)D, with F(y) > (y)”. It is sometimes

convenient to rewrite the operator as the form

L=i(y-Do=0,V(x)-Dy) + (B(y)Dy)" - B(y) Dy +p(y) +a(y) + (Dy Ab)- (y ADy) +p2m(y),
(1.5)
where the matrix B(y) is given by

F(y)  —ysv/by)  y2/b(y)
B(y) = (Bjk(y))lgj’kgg = —y3+/b(y) V() —y14/0(y) ) (1.6)
~yo/b(y)  yi/bly)  VF(y)




No. 3 Global hypoelliptic estimate for Landau operator with external potential 429

and (B(y)Dy)* = D,B(y)" with BT the transpose of B, is the formal adjoint of B(y)D,.
By (1.2) and (1.3), one has, for any y,n € R® and any o € Z3,

10°Bji.(y)| < Ca (y)' 7144172

1B(y)nl* = aly) Inl* + F(y) [y Anl* = cly[ (In* + ly Anl*).
Denoting by (£, 1) the dual variables of (x,y), we notice that the diffusion only occurs in

(1.7)

the variables (y,7n), but not in the other directions; and that the cross product term y A D,
improves this diffusion in specific directions of the phase space. In [3], the authors gave a
estimate of the main term to the operator L. In this work, we aim at dealing with the low
order terms to linear Landau-type operators and giving a similar results. Our main results

can be stated as follows.

Theorem 1.1 Let V € C?(R?; R) satisfy that
Vlal=2, 3 C, >0 such that Vo € R®, |92V (2)| < C, (8, V (2))*/? (1.8)
then there exists a constant C such that for any u € C5°(R®), one has
|6 0V @) ullpa+ 60"l + 1D ulla + | 61D, ]

, ) ! ) (1.9)
w2 a D Pl < o fleuly + s }-

Estimates of the type given in Theorem 1.1 can be analyzed through different point of
views. At first they give at least local regularity estimates in the velocity direction, according
to the term |D,|? appearing in (1.9). Now one of the goal of this article was to give global
estimates in order to identify the good functional spaces associated to the problems.

The second main feature of this result is to reflect the regularizing effect in space variable
x, thanks to the hypoelliptic structure, which leads to terms involving e.g. |D,|*?. Recall
that the exponent 2/3 here is optimal .

Now similarly to the case of elliptic directions, it may be interesting to get global
weighted estimates in space direction. In [7, 9], the authors studied the Fokker-Planck case,
in particular with a potential. In this direction, the work [4] also gave a first subelliptic
global (optimal) estimate, concerning the Landau operator in the case when there is no
potential; the main feature of that work was to show that subellipticity in space direction
occured with anisotropic weights of type (y)”y A D,. In the present article, we first give
complete form of operator and recover the same type of behavior, with additional terms also
involving wedges linked with the potential V.

The present work is a natural continuation of [1, 3, 4], and as there we will make a

strong use of pseudodifferential calculus.

2 Notations and Some Basic Facts

We first list some notations used throughout the paper. Denote respectively by (-, -);.

and H : H the inner product and the norm in L?*(R"). For a vector-valued functions U =
(ul, e ,un) the norm HUHL2 stands for (Z HuszLz)l/Q.
J
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To simplify the notation, by A < B we mean there exists a positive constant C, such
that A < CB, and similarly for A 2 B. While the notation A &~ B means both A < B and
B < A hold.

Now, we introduce some notations of phase space analysis and recall some basic prop-
erties of symbolic calculus, and refer to [8] and [11] for detailed discussions. Throughout the
paper let g be the admissible metric |dz|* + |d¢]* and m be an admissible weight for g (see

[8] and [11] for instance the definitions of admissible metric and weight). Given a symbol

p(z,(), we say p € S(m, g) if

Va, BEZL, V(2() € R™,

agaéjp(zvg)} < Caﬂ m(z, g)

with C, s a constant depending only on «, 5. For such a symbol p we may define its Weyl

quantization p* by

zZ+v

Vu € S(R™), p u(z) = /ezi”(z_”)‘cp ( ,C) u(v)dvd(.
The L? continuity theorem in the class S (1, g), which will be used frequently, says that if
p € S(1, g) then
2 w
Vae L’ |pul| . S full .-

We shall denote by Op(S(m, g)) the set of operators whose symbols are in the class S(m, g).
Finally, let’s recall some basic properties of the Wick quantization, and refer the reader to
the works of Lerner [11] for thorough and extensive presentations of this quantization and
some of its applications. Using the notation Z = (z,() € R?", the wave-packets transform
of a function u € S (]R”) is defined by

WU(Z) = (u’ QOZ)L2(]R71) — 2”/4/ u(v)e—ﬂ\v—z|2ein(U—z/2)~<dv
R"L

with ¢z (v) = 2n/4e mlv—2Fe2im(v=2/2n 4 ¢ R™ then one can verify that W is an isometric
mapping from L?(R") to L?(R?*"),

1wl

pan = ||l 2 (2.1)

Moreover the operator myy, = WW*, with W* the adjoint of W, is an orthogonal projection
on a closed space in L? whose kernel is given by

K(2,2) = e 3 (==P4-t) g (-=2)(40) | 72 (2.¢), 2= (2.0). (2.2)

We define the Wick quantization of any L symbol p as pVick = W*pW. The main property

of the Wick quantization is its positivity, i.e.,

p(Z) >0 for all Z € R*" implies p"Vick > 0. (2.3)
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According to Proposition 2.4.3 in [11], the Wick and Weyl quantizations of a symbol p are
linked by the following identities

pWick — pw + s (2_4)

with
/ / (1= 0)p"(Z +6Y)Y?e Y 2m gy dp.

We also recall the following composition formula obtained in the proof of Proposition 3.4 in
[10]

Wick Wick __

1 Wick
pWVikq [pq—ﬂp q + {pv T

with T' a bounded operator in L?(R?*"), when p € L“(RQ") and ¢ is a smooth symbol whose

derivatives of order > 2 are bounded on R?". The notation {p, ¢} denotes the Poisson bracket
defined by

dp dq Op Oq

{p7 Q} o 9 0: oc (2.5)

3 The Proof of Theorem 1.1: Weighted Estimates

In this section, we are mainly concerned with the estimate in weighted L? norms, that
is
Proposition 3.1 Let V(z) € C?*(R?; R) satisfy condition (1.8), then

Vue GP®), || W) 0V @) ull + | )% wl <l + [l 3)

In order to prove the proposition, we begin with

Lemma 3.2 Considerate the operator £ in (1.5), in the elliptic direction we have an
estimate. For all u € C§°(R?),

H (Z/)WQ DYJUH2L2 + H <y)7/2 (y A Dy)u < HB(y)DyuHi2 S Re (Lu,u) ;o (3.2)

2
(P =

and

H <y)1ﬂ/2uHQL2 + H <y>w2 DyuHi2 + H (y)w2 (y/\ Dy)u S Re(Lu,u);.,

2
[P

HL2 standing for the inner product and norm in L*(RS ).

Proof Observing i(y - D, — 9,V (x) - D,) is skew-adjoint, then

where (-, -);. and H :

Re(Lu,u),. = (B)D,)" - B)Dyu,u) -+ (p(y)u,u),
+ (g u) iz + (mlu) |+ (Dy AB) - (0AD,)u ),
2 (BW)Dyu, B(y) Dyu)
(b(y), ) + ((y A Dy) - aly)y A Dy, w) + (D, - M{y)Dyu,w)
+((Dy AB) - (y A DY) + () ) + (udmlyu ).
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The inequality hold due to

() 0) g2 + (el w) e + (dmpuu) 2 [ @),
and
((B@)D)" - B)Dyuu) > (DA (vAD,)uu), .

By (1.2) and (1.3) one has, for any y,n € R® and any o € Z2,

1By)n* = a(y) 0> +b(y) [y Anl* > clyl” (In* + ly Anl?),

then
1) Dyull . + | )% (A Dy)ull;. S || B)Dyu

L2

. (3.3)

So we complete the lemma.

Lemma 3.3 Let G € S(1,|dy|* + |dn|*) and B(y) be the matrix given in (1.6), we
have V u € C§°(R®),

(p(y)u, Gu)| + | (B(y)D,)" - B(y)Dyu, Gu) | + (0, Ab) - (y A 8, )u, Gu)| < || a2, + ||l
(3.4)
Proof We notice that p(y)* € S(p(y)®, |dy|” + |dn|*), then

(G.p(y)*] p(y)"* € S, |dy[* + [dn[*).
For the first term to (3.4),

(p(y)u, Gu)

Nl

(G(pw) *u. (b)) *u) | + | (16 (20) ) (p(w) P 0)|
(G(pw) *u, (b)) )| + [ () .G, (o) )|
1(p@) *ull% + 6. (o) a3 < [ (pw) ][5
where the third holds,since G € S(1, |dy|* + |dn|®). As to the second term,
|((B(y)Dy)" - B(y)Dyu, Gu) | = |(B(y)Dyu, B(y) Dy(Gu)) . |
<[ Bw D, Bo)Dy Gl S [BG)Dyull;. + || () *ull .

N

we get the third inequality from

|Bw)Dy(Gu)|,, = | B)[Dy, Glu+ B(y)GDyul| .,
SIBW)[Dy, Glu+ [B(y), G1Dyu+ GB(y)Dyul . < || Bly)u

Now, we will estimate the last term, similar to the above inequality, we get

L2’

’(ay Ab) - (y A Dy)u, Gu)Lz‘ = ‘((y A Dy)u, (Dy A b)(Gu))Lz‘

<) A DyYu|| LI|(Dy AB)GW)| . S IB@)Dyu|, + || (0(w)) 2w

Together the above estimate and Lemma 3.2 give Lemma 3.3.
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Lemma 3.4 For all u € C§°(R?), we have

6025l 0™ Dyl 0 0 D

) ; (3.5)
S @)l + [ £ull5.

Proof In this proof, we let u € C§°(R?"), the conclusion will follow if one could prove

1

)™ ull o+ )5 B Dyl < ) 0wl 4 1l + [Jull 36)

From (1.7), we have (y)'*%” |B(y)Dyu| > (y)+E |Dyyul + W) |y A D, )u|. As a prelim-
inary step, let’s first show that for any € > 0 there exists a constant C. > 0 such that

‘(5 )5, ) T ),

Se(ll )™ ull,

+@m@%@ﬂ3ﬂy+wﬂmﬂwﬁ)

1+3’YB D uHLz) (3 7)

In fact, the estimate
0.V (@) ()" <e )T+ Ce ()P 0V (2)°

yields

1

() 570,V (@) wyu) o < e]| )5 |2, + Co|| ()57 (0:V (2)) % w2

Consequently, using (1.5), we compute

12, ) Ju| $10.V (@) ) Jul + )57 1BO)Dyul + )5 |y A 0, )ul.
And thus

(12 ) ¥, ()47 )|

<10V (@) ()" ), "IB(y)Dyul , () Jul) o+ () [y A8l Jul)
<10V (@) ()" u,u) B(y)Dyul , ()" [u]) .,
Sell ) . + Ol éaN%Hm+CH@ﬂB () Dyul];.

Se(|| >l + | '

Se(|| > ull, + ]| ('

W) Dyull}.) + Cer | () myDMb
W)Dyully) + Ce(l)* @V s+ [1ul |+l ),

where the second inquality follows from
(" N ad,ullul),, S (W) 1Bw)Dyul, (0)* 7 ul),

the third inquality holds due to interpolation inequality. The forth inquality holds because

¥ B, 58]0 Bl + el ) Bl
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and the last inequality follows from

)™ Bo)D,ul,, < | )2 Dy,
As a result

(e ), | < (e 07w, |+ (2 0 ) ),

2

and notice that v > 0,

e 37, | <ol Pl + el

Then we gain inequality (3.7).

Now we prove (3.6). Let’s first write
) * 7 ull, + || ) F Bly)Dyul[;,
< @@ |+ | Bo)D, o) ), + || BG) Dy, ) [},
< (ew @) |+ 1B, @) Tl

@l

the second inequality using (3.2). For the last term, we have

IBw)[Dys ) Yl e S I )57 |, < el ()87 |2 + Ccul| 2

then the desired estimate (3.5) follows from the above inequalities and (3.7), completing the
proof of Lemma 3.4.
Proof of Proposition 3.1 Let p € C*! (RQ”) be a real-valued function given by

Wi oV y,
PRI TR

- <y>2+2v/3
¢_XQ@V@W“>’

where y € C§°(R; [0, 1]) such that x =1 in [—1, 1] and supp x C [-2,2]. So we have

p=px,y) =

with

<y>2+2’y/3

(0. V (@)

>7/3

)

W, 3.8
@V (@) ™ 35

And it is easy to verify that |p| < 1.
Using the notation Q@ =y - D, — 0,V (z) - Dy,

Re (Lu, pu);. =Re (iQu, pu);. + ((B(y)Dy)* - B(y)Dyu, pu) L + (p(y)u, pu) ;-

+ (ay)u, pu) gz + (u%m(y)w pU) L TPy Ab) - (WA Dy)u, pu) s
ZRG (Zqu pu)L2 - ‘(‘Cuv u)L2| )
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which along with yields Re (1Qu, pu);. S |(Lu, u).|+|(Lu, pu);.|. Next, we want to give

~

a lower bound for the term on the left side. Direct computation shows that

Re (iQu, pu);. = Z (Aju, u);. (3.9)

with A, given by

(y)? 18:V (@)

0,V (x))"*

Ay = 0,V (@) (0. (@) - 9) 2.V (@) -0, [ ()]
As = ()7 y - 0:((0.V (@)™ (0. (2) - yo(x,y))).-

We will proceed to treat the above three terms. First one has

w2

A= " @V @) o) — — sy
1 ’ @)t
/3 N3 _ )3 N3 (1 — bz _ <y>7/3 -
> () 0,V () — (y)*
from which it follows that
(A, w)ga = (W) @V @) uu) [ w) . (3.10)

Here we used (3.8) in last inequality. As for the term A; we make use of the relation
VoeR, 9,V(2)0,((y)7) =0y  20.V(z) y

to compute
N L e S e 0K/ AW W) s
Ay =0,V (z)) |@v<>y|[<m ¢+«%wmfmx<&uawf“>]
— 0,V (2))"* |0,V (@) - yl* (0. V () ()

2
2

the first inequality using the fact that

@+wwwv,<<wH”“

i 12
3 (y)* "o+

<8IV(1')>2/3 <an(l')>2/3> >0, ~e [0, 1]

As a result, we conclude

(-AQU) U)Lz > — <<y>2+7 u, U>L2 = H <y>1+v/2uH12. (3.11>
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For the term Aj, using (1.8) gives

As = )%y 0,((0.V (@) (0.V(2) - yolz,y)))
_ )3 g LBV @) yoey) + 0V (@) - 40 (@ )] 0uV (@)
(02v (x))**
=30,V () - yd(x,y) (0.V(2)) " 02V ()
(02 (x))**

21 0.V (@) lyl o, ) + (0. V (2)) |yl 0@, y) + (8:V (@) yl p(z, y)

(02 (x))**
142 (0.V (@) oz, y) + (0.V (2)) 0u(,y)

(02v (x))**

(3.12)

(A3u7 U)L2 Z - (<y>2+Fy u, U) = _H <y>1+7/2uHizﬂ

L2

this along with (3.9), (3.10) and (3.11) shows that

2
(@ @V @) ) 5]l + 1w w) ]+ 1(Lu, pu)
SICu, w) ] + |(Lu, pu),al.

1/3

Now for any u € C§°(R?"), we use the above estimate to the function (9,V (z)) /" u; this

gives
(W @vapiu) 5 [@VE) L@V @) L @V @) ..
which, together with the fact that v > 0, implies

| )" @V (@) a2, S 1@V (@) L@V (@),
S eulls. + [ @V (@) [£, @V (@) Jul[}..

Moreover in view of (1.8), we have
| @™ (e, @V @) Jul 5 [ ulye S [l + ol
Then the desired inequality (3.1) follows, completing the proof of Proposition 3.1.

4 Hypoelliptic Estimates for the Operator with Parameters

In this section, we always consider X = (z,£) € RS as parameters, and study the

operator acting on the velocity variable y,

Lx =iQx + (By)D,) - By)Dy + p(y) + a(y) + (Dy Ab) - (y A D) + p2m(y), (4.1)
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where Qx =y - & — 0,V (x) - D, and B(y) is the matrix given in (1.6).
Notations Throughout this section, we will use H . H 1 and (-, ) 12 tO denote respectively

Wick and pw to

the norm and inner product in the space L? (Rf}) Given a symbol p, we use p
denote the Wick and Weyl quantization of p in (y, 7).
The main result of this section is the following proposition.
Proposition 4.1 Let A be defined by

1

A= (1 10,V An+y AP+ 10V (@) + €7+ [yl° + Inl° + 0.V (z) A s>6/5) L(42)
then the following estimate

2 2

(@ @)™ + &) lull7a + [ @) 1Dyl + | )y A D

+1O02) “ully < Nl exull. + [luls

(4.3)

holds for all u € S(R?), uniformly with respect to X.

We would make use of the multiplier method introduced in [4], to show the above
proposition through the following subsections.

Before the proof of Proposition 4.1, we list some lemmas.

Lemma 4.2 Let A be defined in (4.2), then

VoeR, X eSO\, |dy]* + |dn|) (4.4)
uniformly with respect to X. Moreover if o < % then
Vol + 16> 1, (9597 (X)] S (0. V(2))” + (&), (4.5)
and thus
()™ = ()" + (@ (@) +(9)7)r (46)

with r € (1, dy|” + \dn|2) uniformly with respect to X.
Proof By direct verification, we see that for all (y,7) € R** and all , 3 € Z'}, one has

V(ym) e R Va,BeZy, |0507(AMy.n)?)| < Ay, n)?,
which implies (4.4). Moreover note that for o < 3,
Vel + 181 > 1, 0502 (My.n)'™7)| < ((8:.V ()7 + (§)7 )My, n)
and thus
Vo eR, [050)(My.n)7)] S X5 ((0:V (@) + (),

then we get (4.5) if o < %, and thus (4.6) in view of (2.4), completing the proof of Lemma
4.2.
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Lemma 4.3 Let \ be given in (4.2), then for all u € S(R?), one has
)™ 1Dyl + 1) o 8 Dy Pl < (el + 022l + [[(022) L, (47)
where @ is defined by
& =d(X) = (L+ |0, V(@)f +e*)". (4.8)

Proof Similar to (3.2), we have, for any u €, S(R?),

H <y>1+7/2 » 2

12+ 1| )" Dyl + || )" (y A D, )u

Re (Lxu,u);s . (4.9)

2
Iz =
L2 n~

Using the above inequality to D, u gives

Z H <y>7/2 Dyk ’ Dy1u||iz 'S Z ’(LXDyJU DUJU) ‘

jk=1

S ‘(ﬁXU’ Dy'DyU)N‘ +Z‘([£X’ Dyj]u, Dyju)m"

j=1
which with the fact that v > 0 implies
Z I (W) D,, 'Dyj“Hiz N HLX“H; +Z |([£x. Dy,]u, Dyj“)Lz‘ : (4.10)

jik=1 j=1

So we only need to handle the last term in the above inequality. Direct verification shows

[‘CX7 Dyj]
=&+ ((Dij(y))Dy)* - B(y)D, + (B(y)Du)* ) (Dij<y))Dy + (Dyjp@)) + (Dij(y))
+ Dy (Dy Ab) - (yAD,)+ (D, Ab)- Dy, (y A D,) + D, (n2m(y)).

This gives
S I([£ Dy,)u, Dyyu),,| < B+ By + Bs + By + Bs + B (4.11)
j=1
with
B = Z ‘ &u, Dy u

B, :Z (|(B(y)Dyu, (Dij)DyDyj“)L2| + ‘((Dij)Dy“’ B(y)DyDyju)L2|) )

Jj=1

Bs = Z‘ yp(yuDu ,84 Z‘ uDu)}

B =3 (1A DyJu. Doy (D, A8)) 2] + (Do 0 A D, (Dy A ).
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By Parseval’s theorem, we may write, denoting by @ the Fourier transform with respect to

Y, ( 3 U Dyju)L2’ = (&, Wjﬁ)Lz(Rg)

, and hence

Br < e|[Dy - Dyully, + Ce]| (€0 u .
due to the inequality |&;n;] < e |n|* + C. (€)** . From (1.7) it follows that
BZ + 85 SE Z H <y>’7/2 DykDyjuHi2 + CEH <y>1+7/2 DyuHiz

jk=1

<> || w)*D,,Dyu

jk=1

[7a + Ce (|| Pxcul s+ [ @V (@) ] .),

the last inequality using Lemma 3.4.
Bs+ Bat B < e ()" F Dyull, + Ce|| Dyl o < Ce(]| Pl + ([ 0:V (@) ] ).

Due to the arbitrariness of the number ¢, the above inequalities along with (4.10) and (4.11)
gives the desired upper bound for the first term on the left side of (4.7).

It remains to treat the second term. In the following discussion, we use the notation
T = (Tlv." 7Tn) :y/\Dy7 A= (A17A27A3) :y/\§+azv(x) /\Dy

From (4.9), it follows that

n

S (1) T Tyull o + | Dy, - Tyull . + - Tyulf7.)
g k=1

)

< Zl(ﬁXTju, Tju)p‘ <|(Lxu, T -Tu),.| + |([£X, T|u, Tu)L2
j=1

which with the fact that v > 0 implies

n

(y)W/QT .Tou 22_|_ D, -T;u 22—|— yr - Tju 22
J;l(H k J HL H Yk J HL H k J HL) (412)

2
Slexulle + [([£x, Tlu, Tu) .-
In order to handle the last term in the above inequality, we write
£, Tj] = = A; + [Dy, Tj] - v(y)Dy + Dy - v(y) [ Dy, Tj] + Dy - (Tiv(y)) Dy

+ [T, Ty - py)T + T - (Tyu(y))T + T - n(y) [T, T;] + (T,p(y))
+ [(Dy Ab), Ty] - T+ (Dy A ) - (T3, T) + (Tya(y)) + T, (2m(y)).

This gives

‘([ﬁx, T]u, TU)LQ‘ SNl +N2 +N3 +N4 +N5 (4.13)
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with

N = |(Au7 TU)L2‘ )

n

Ne :Z ([Dy’ TJ] v(y)Dyu+ Dy - v(y) [Dyv Tj]u+Dy' (le/(y))Dyu, Tju)

j=1

)

LZ

n

No=) ([T, T)] - p(y)Tu+ T (Tyu(y)Tu + T - u(y) [T, T;]u, Tfu)

)

N =30 (([D AL T T 5 (D 1) 1 T, T |
Ne =3 (| (@) Dy ol + (T D) il ,2) +|(Tabm)u D) |

Next we proceed to treat the above four terms. For the term N; one has, with A defined in
(4.2),
(A, Tu <el| (VW) Tl + €| (479) "
<el| (W) Tl + Cfl(2) u
the last inequality holding because (A~1/%)"A(A~%/3)" € Op(S(1, |dy|” + |d7]|2)).
On the other hand,
[ 2) Tl < [((W%) T, Tu) |
SIOF) , T-Tu) [ + [ ([(WF), Tlu, Tu) |
Sel| 7 Tl o+ Ce|(V22) Ml o+ (L) T, Tu) o]

Observing (4.4), symbolic calculus give that
(A", T] = [(A*)", y AD,] = Dydy +ydy + dy

with d;, 1 < j < 3, belonging to S()\Q/S, \dy|* + |dn|2) uniformly with respect to X. This
shows

n

([0, Tla Tu) ] S e > (1D Tl + - Toul 1. ) + C-

J,k=1

(322 a2,

Combining the above inequalities, we have

2
L2’

iQ + HDyk -Tiu iQ + Hyk -Thu ()\2/3)wu

Mige Y (w1 Tu

Jik=1

2
) v

Direct verification shows

[1—}7 Dyk] = Zaﬁ,kDyw [Tlv TQ] = T37 [Tla TS} :T27 [T27 TS] = Tl
14
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with afﬁk € {0,—1,+1}, and thus

Ne+ N e D7 (02 T Tl + || )77 Dy - T + | 002 - T,
j,k=1

+Ce (|| )P Tl + | W) Dyl + || ) ;)

e > (Il B Tyul[3a + | )7 Dy - Tl + | 0 - T,
j,k=1

2 2
+Ce (| £ull s+ [fulf 2,

n

Ne Y o T Tyl S e 30 | )P T T

jk=1 jik=1

the last inequality using (3.2). It remains to treat A, and by (1.2) and (3.2), we have
N S w7 (1) Dyl < (12xullya + 7).
Combining the above estimates, we conclude
Ny +No+ Ny + Ny + N5

se 3 (1@ T Tyully. + 1| )72 Dy Tl + || )7 - Tyl )
j,k=1

+ Ce ([l +11027) "l + ull.)

This along with (4.12) and (4.13) yields the desired upper bound for H W2 |y A D,
letting € small enough. The proof of Lemma 4.3 is thus completed.

Lemma 4.4 Let g € S(1,|dy|*+|dn|*) uniformly with respect to X, and let A be defined
in (4.2). Then for any € > 0, there exists a constant C. such that

L27

(Lx(A9) s g (A) )

4.14
< 0P s+ el + ol + @ ageeul), MY

where @ is given in (4.8).
Proof As a preliminary step we firstly show that for any € > 0, there exists a constant
C. such that

([£xs (V) T, d* (W) ")

) Vs 2 4.15
< (L (V) u, () )+ C 0, + v ne 2,

where d is an arbitrary symbol belonging to S(1, |dy|* + |dn|*) uniformly with respect to X.
Observing (1.3) and (4.5), symbolic calculus (see for instance Theorem 2.3.8 in [11]) give
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that the symbols of the following commutators [v(y), ()\1/3)1”]’ [1(y), ()\1/3)w], belong to
S(Cbl/?’, \dy|2 + |d77|2) uniformly with respect to X. As a result, using the notation

21 =(Dy - [v(y), (N°)"]Dyu, d*(X?) "),

2= (A Dy) - [uls)s (V)" (A D, s 4 (V7))

we have
Zy + 2, <e|| (D) d” (N/?)" uHL2 +e||(y A Dy)dw (AY3)"
+ Ce|[ (Dy) @3]}, + Ce|(y A Dy) 0V},

<e||((Dy) + () ) (N72) "l + el (w A Dy) (A72) |
+ 0923 (D) u|| %, + C.9%3||(y A D )u

[

2
I+

The last inequality holding because

[D,, d*], [y AD,, d]((1+ [y + ) ""*)" € Op(S(1,|dyl + dnf*)),

since d € S(1, |dy|® + |dn)? ) uniformly with respect to X. Moreover using (4.9) gives

2420 e (L (V) u, (W) )+ C{lexal% + o).
Denote
25 =([Dy, (\)] - wly) Dy, ¥ (NV?) )
+(Dy - u(y) [Dyy (N2) T, d (A2) )
Zi=([yA Dy, V)] 1) (y A Dy, d* (X))
+ ((yADy) - ) [y A Dy, X3, a® (AV3) ),
=([bADy, (N)"]- (yADy)u, d*(A?) ),
F((bAD,) - [y Dy (W) Ju, d® (A4 "w)

Observing (4.5), symbolic calculus give that
[Dy, W) =
[(yADy), WP)] = FDy+ fy+ £
[((bADy), W)] = fDy+ fey+ f

with f;, 1 < j < 7, belonging to S(®'/3, \dy|* + |dn|? ) uniformly with respect to ¢ and X.
It then follows that

Zy - Zat 25 <e|[ (D) " (N°) "ull e ()77 a0 (X2) M
el ) Dy (V) ul[ e )7 (A Dy (N)
+ Ce @) () +(Dy) )@ 2ul[y + Cell )7 (v A D) 2 2u
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Using similar arguments as the treatment of Z; and Z,, we conclude
2yt 20+ 25 <2 (Ee (V)" (V)"0) 1+ O [l + 0202, ).
This along with (4.16) gives
([(BIDL) BGID, (7)™, (379 )
L2
o N ( (4.17)
e (Ex (V) s (V) ) o Ce [l + (|97
since ' ‘
([(B(y)Dy)*B(y)Dy, (A/3) V], g (Al/S)W‘Cku) =Y =,
’ 1<5<5
Moreover, we have
% 1/3 Wick w 1/3 Wick )
(Ipw) + alw) + wdm(y), (V)" u, @ (W)™ ) wis)

Se(Lx (V) u, (V) ") - Cfl L + @42l

which can be deduced similarly as above, since by (1.3),

[p(y) + a(y) + p2m(y), (\/?)"] € Op(S((y)'* @3, |dy|* + [dn|*))

uniformly with respect to X. Next we will treat the commutator [ZQ X, ()\1/ S)w], whose

symbol is

A5 2
3

[(&V(x) Ay AE) - (8:V (@) AE) —6lnl*E- 77] :
In view of (4.4) and (4.2), one could verify that the above symbol belongs to

s (@V(m) NEEATYE ()N Jdyl + \anQ)

uniformly with respect to X. As a result, observing A\Y/3 € S(AY3, |dy|* + |dn|*) uniformly

with respect to X, we have

(A3 a[iQx, (AV?)"] € Op(S((8.V(2) AEM® + (&), |dyl* + |dn]*))

uniformly with respect to X, which implies
(liQx, (W) "Ju d"(N72)"u) 1o S [ @V (@) AQ™ w10 ull

This along with (4.17) and (4.18) gives (4.15), since

*

[Lx, (W) =[iQx, (\'*)"] + [(B(y)Dy)
+ [p(y) + a(y) + pEm(y), (A\3)"].

B(y)D, + (D, Ab) - (y AD,), (A*)"]
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Next we prove (4.14). The relation

Re (Lx (M%) u, (M) ), + Re (Lx (A?) ", ¥ (X/?) ),
=Re (Lxu, (A?)"(1d+¢*) (A?)"u) , + Re ([Lx, (A2)"Ju, (Id+g") (A/?) " u)

L2

gives, with € > 0 arbitrary,

Re (EX ()\1/3)wu, (Al/g)wu) ;2 T Re (EX ()\1/3)wu, g” (Al/s)wu) 12
S )"+ Cellexullye + Re ([Ex (N72) Ju, (1 +g%) (A*) ") ..

We could apply (4.15) with d = 1+ g to estimate the last term in the above inequality; this
gives, with ¢ > 0 arbitrary,

Re (Lx (M%) u, (A3) "), + Re (Lx (AY?) u, g (X/?) ),
S e (L (V) "u (V) ") el (0F) "I + Coll Ll + (|92l
[ 0.V (2) A Y%
Let ¢ small enough yields the desired estimate (4.14). The proof is thus completed.
4.1 Proof of Proposition 4.1

In what follows, let hy, with N a large integer, be a symbol defined by

b = () = VY EENE VANV WA pang

N

where

v = (1+10.V (@) An+y AP + 10,V @) + g + N7 @,V (@) A7) (4.20)

and
ly Anl® + 1y + n* )N
Un(y,m) = X ( 573 ) (4.21)
A\
N
with x € C§°(R; [0, 1]) such that x =1 in [—1, 1] and supp x C [—2,2].
Lemma 4.5 Let Ay be given in (4.20). Then
Vo eR, ;eSO ldyl” + |dn|*) (4.22)
uniformly with respect to X. Moreover, if ¢ < 1, then
Vol + 1621, [9y0] (A%)] S 0.V (@) +(€)7. (4.23)

Proof The proof is the same as Lemma 4.2.
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Lemma 4.6 The symbol hy given in (4.19) belongs to S(1, |dy|* +|dn|*) uniformly with
respect to X.
Proof straightforward calculatation to get

0.V () y+&n+ (0.VAn+yAE) - (yAn)]
< (10V @I +10.V An+y A& +16") + (ly anl* + 1yl +1nl"),

combined with the following inequality ( |y A nl® + y> + |77|2) < A2? in suppyy give the
desired lemma.
Lemma 4.7 Let Ay and ¢n be given in (4.20) and (4.21). Then for any o € R, the

following two inequalities
(€280, + 0,V (2) - 9,)A%| S NAGS (4.24)

and
(€ 0y + 0.V (@) - 0,)on| S N (ly Anl* + [yl* + Inl”) (4.25)

hold uniformly with respect to (z,£).
Proof Using the inequality (0,V A¢) < N5/6)\§’\?3 due to (4.20), we can caiculate that

for any o € R one has
\5 0y (%) | Z]10V A+ y A€l 10V (@) A AT S AR

‘3 Vi(z ‘ ‘ 0.V AN+ yANENOLV () NEJAG 2 S )\]%Vw.

And thus (4.24) follows. In order to show (4.25), we write |(§ Oy + 0,V () )1/)1\/‘
(’Cl + ICQ) with

Ki = N2RP(6-0,+0.V(@)-0,) [ly Anl®+ [l + In* ]
((y Anl?+ ol + PN,
2y Anl + 1yl + 1l ) [(€- 0 + 0.V (@) - 9,) A" ]X’

(Cly Anl + Iyl + N2 .

Using (4.24) shows Ky < N3( |y A nl® + y* + nl? ). Moreover direct computation gives

K S N (ly Anl+yl+nD)X (g Al + P )N2A) N (ly A+l ),

S (lyanl + 1yl + o )N? on the

) then the above inequalities yield

the last inequality following from the fact that A%

support of the function x <(|y Al + [y + [n|P)N2A?

the desired inequality (4.25). The proof of Lemma is thus completed.
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The rest of this section is occupied by

Proof of Proposition 4.1 Since the proof is quite long, we divide it into three steps.
Step I Let N be a large integer to be determined later and H = hY'® be the Wick
quantization of the symbol hy given in (4.19). To simplify the notation we will use Cy to
denote different suitable constants which depend only on N. In the following discussion, let
u € S(R?). By (2.4) and Lemma 4.6, we can find a symbol hy such that H = h% with

hy € S(1, |dy|* + |dn|*) uniformly with respect to X. Then using Lemma 3.3, one gives
‘((B(y)Dy)*B(y)Dyu, Hu) o+ (b, Hu) 2| S Re (Lxu, )z

This together with the relation

Re (iQxu, Hu);,
=Re (Lxu, Hu);. — Re <(B(y)Dy)*B(y)Dyu, Hu) L Re (pu, Hu)»

—Re ((b A Dy) - (y A Dy)u, Hu)L2 —Re (qu, Hu);» — Re (;ﬁm(y)u, Hu)
L2

yields

Re (iQxu, Hu)ye S (Lxu, w)e] + |(Cxu, Hu) a]. (4.26)

Next we will give a lower bound for the term on the left side. Observe the symbol of Qx is

a first order polynomial in y,n. Then iQx = z(y & =0, V(x) - n)WiCk, and hence

. 1 Wick
Re (ZQXU) HU)L2 = E ({ha Y- g - 8$V(ZU) 1, } U, U>L2 ) (427>
where {-, -} is the Poisson bracket defined in (2.5). Direct calculus shows

{h, y-¢—0,V(z) n}
10V @) An+y A+ 10V (@) + [ +2(0.V AE) - (yAn)
_ o
+ [0V y+En+ @V An+yne)-(yan)] (€0, +0.V-0,) (A vn)]
14+ N8,V (z) /\y>6/5¢ N 2(0,V AE) - (yAn)
- N

( VYN
4/3 4/3
AN N

F[0.V(@) y+ €+ (BVAn+yne) - (yAn)][(€-0,+ 0.V -8,) (A" vn)]
14+ N=L@0,V A 2|(0.VAE) - (yAn)|
- e - e

—[[0V@) - y+ & n+ @V An+yng) - (yam][(§-0,+ 0.V -0,) (05 vw)]|
L+ N0,V A 2[(0.V AE) - (yAn)|
- \A/3 - IRE N

N N

YN

=Xy

>AY - AP (1 - )

YN

> = N2 (Jy A+ [y + )

[0V v+ @V At e (an)] (-0 + 07 0,) (05 0w)]|.
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the last inequality holding because )\i,/s < N2( ly A 77|2 + |y|2 + |77|2 ) on the support of 1 —y.
Due to the positivity of the Wick quantization, the above inequalities, along with (4.26),
(4.27) and the estimate

Wick
(Cly Al + 1yl + )™ w) S (4.28)

due to (4.9), yield

2/3 chk )
(()\N ) L2R3)

Rchk

Mw

u, ), + On[(Lxu, w)pa| + [(Lxu, Hu)p.|, (4.29)

=1

<.

where R; are given by

1+ N0,V A&)®° 2[(8:V AE) - (yAn)]

Rl - )\AJL\/ZS 7R2: /\;Lv/g q;DN)
Ry = MaxV(m)-erg-nJr(axVAnerAg)-(ym;)][(5-&7+axv-ay)(A;V4/3¢N)]’.

Step II In this step, we will treat the above terms R;, and show that there exists a
symbol ¢, belonging to S(1, |cly|2 + |dn|2) uniformly with respect to X, such that

3
Z (RYVicky, (4.30)

o s ((AzN/S)kau, u) o+ O {I(Cxcu, )l + [ (Exu, au) ] + [Ju. (431

L2
For this purpose, we define ¢ by

(0.V () NE) - (0:V(x) An+y AE)

0.V (2) A Pl

q(y,m) = ax(y,m) =

with

2 2 2
w(%n)—x('azv(x)A”*“ﬂ + 10,V (z)]” + [¢] >

0.V (z) N )

Then one can verify that ¢ € S(1,|dy|* + |dn|?) uniformly with respect to (z,¢). Thus by

(3.4), we conclude
( Qxu, ¢V %u )L2 S (Lxu, w)pa|+ ‘(Exu gWVicky, )LQ‘ ) (4.32)

On the other hand, it is just a direct computation of the Poisson bracke to see that

(iQxu, ¢“'%u) , = i ({q(y,n), y-E—0,V(x)-n} “u, u)

1 :
= (RYY{Cku, u)

L (4.33)

1 .
e (A ),
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with

2|0,V (x) A€

T @V AT

(V (@) ANE) - (8.V(x) An+yAng)
0.V () N EY®

Ris= [(€-0p + 0.V () - 0,) 0y, m)]-

13 < )\?V/?’, and

Moreover, we have R1» < (|8,V () An+y A &P + 10,V (x)]” + |§|2)
Ry = (0.V(x)A §>2/5 -
> (8,V(x) AET —
where the last inequality holds because

0.V (@) AOY < (10.V (@) A+ y A&l +10.V (@) + J¢f*)

on the support of 1 — ¢. These inequalities, combining (4.33) and (4.32), yield

(( 0.V (z) A £>2/5 )Wicku’ u) B
s ()™ u, u) N )l 4 [ (Cx, @) ]+ [Jul .
Consequently, observing that

LNV ALY

Ry < N VB3, V(z) AP +1

AY?
and
0. VANE)-(yA -140,

4/3 1/3
AY A AY

we get the desired upper bound for the terms R; and Ry. It remains to handle Rs. By virtue
of (4.24) and (4.25), we compute

Ry S[0.V(@) - y+&-n+ 0.V An+yne) - (yan)][(€-8,+ 8.V -9,) (A" bn)]
V(@) y+ €+ 0V An+yng) - (yAn)
AN
N 2. V(x)-y+&-n+ (%Y/\n—&-y/\g) (y An)
Ak
SNAY (ly Al + 1yl + €D + N2 (ly Al + [yl* + [nf*)
SN+ Cu (ly Al + 1yl + [nf?).

YN

Oy (ly Anl” +[yl* + In*)



No. 3 Global hypoelliptic estimate for Landau operator with external potential 449

The forth inequlity result from

AN N (ly Anf* + [yl + [n* ) in suppiby or suppyy.

As a result, the positivity of Wick quantization gives
i _ 23 Wick 2 2 2 Wik
(R, ) o SN (O3) s )+ O (lwaal® + b+ o)™ )
_1 2/3\ Wick 2
o (08", O e w4 )

Thus the desired estimate (4.30) follows.
Step III Now, we proceed the proof of Proposition 4.1. From (4.29) and (4.30), it
follows that there exists a symbol p € S(1, |dy|* + |dn|*) uniformly with respect to X, such

that
(()\?v/?))WiCkU, u) B

S NEOF) W) L+ Cn {10, w) el + | (Excu, ™) |+ [l }

L2

which allows us to choose an integer Ny large enough, such that
2/3\ Wick ; 2
(()\]\{0 ) U, U)L2 S CNO {|(£Xu7 u)L2| + {(‘CXUW chku)L2’ + HUHL2} .

Consequently, observing that A\?/3 < )\?\,/03 + |y)* + |n> with X defined in (4.2), we get,
combining (4.28),

((/\2/3)WiCk u, u>L2 S|(Lxu, u)p.| + ‘(Exu, pWiCku)L2| + Hu”iz (4.34)
Since (8,V (z))* + (£)*/® < A¥/3, the above inequality yields
((@V @)+ @) u w) | S 1Lxu, w)gal + | (Lxu, PV ) ] + [Ju[ .

Since p € S(1, |dy|2 + |d17|2) uniformly with respect to X, then applying the above inequality
1/2
to the function (((%V(ﬂ:))z/g + <§>2/3) u implies

2
12 S [[£xul

(4.35)

2
L2’

(@ @)+ ©") e+ [lul

Similarly, since (8,V (z) A €)*/® < A¥/3, then by virtue of (4.34) we have, repeating the above

arguments,
0.V (@) A" [Jull 2 S [ £xull s + [ulle (4:36)
Now, we apply (4.34) to the function (Al/s)wu, to get
2/3 Wick 1/3\w 1/3\W >
()™ ) ", () )
SILx (W) s (W) ) ]+ [ (L (V) P, p™ e (N2) )
Sel| (W72) "l + CLl| 92| + Cel 0.V (@) AP [,

|
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where the last inequality follows from (4.14). Furthermore, using (4.6) implies
Wick w w w 2 2
(R M O R O ) I [0 Rt P i P
Combining the above inequalities, we have

|02 ull s S e (27) "l

<e () ull,

+ O] @23, + C. || (0. (2) A €)*/°
+ Ce||Lxull}, + Celulf;.

ull s

the last inequality following from (4.35) and (4.36). Let the number ¢ small enough yields
H()\Q/‘g)wuHL2 < H‘CXUHL2 + H'LLHL2 This, along with (4.7) and (4.35), gives the desired
estimate (4.3), completing the proof of Proposition 4.1.

5 Proof of Theorem 1.1: Regularity Estimates in All Variables

In this section, we will show the hypoelliptic estimates in spatial and velocity variables
for the original operator L.

Proposition 5.1 Let V(z) be a C?-function satisfying assumption (1.8). Then for any
u € C§°(R?"), one has

11D ull o+ [ 1Dy ull o+ [ 07 ly A Dy ] o S 20| o+ el o B1)

Proof The proof of is quite similar as that of Proposition 4.1 in [2] and [3]. So we only
give a sketch here and refer to [2] and [3] for more detailed discussions. With each fixed

T, € R3, we associate an operator

Ly, = Z(y Dy — 0,V (zy) - Dy) + (B(y)Dy)* - B(y)Dy + p(y)
+(Dy Ab) - (y A Dy) +qly) + p2m(y).

Let Px,, with X, = (x,,&), be the operator defined in (4.1), i.e

Lx, = Z(y £ =0, V() - Dy) + (B(y)Dy)* B(y)Dy + p(y)
+(Dy A D) - (y A Dy) +q(y) + p>m(y).

Observe F,L,, = Lx,, where F, stands for the partial Fourier transform in z variable.
Suppose V satisfies condition (1.8). Then performing the Fourier transform with respect to
x, it follows from (4.3) that V u € C§°(R°),

14D all o+ 1) D o [ @) g A Dyl o S (] o+ el o (5:2)

Lemma 4.2 in [1] shows the metric g defined by g, = (3,V(2))*? |dz|*>, z € R® is slowly
varying, i.e., we can find two constants C,,ry > 0 such that if g,(z — y) < rZ, then

C’ < L <C,.
9y
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The main feature of a slowly varying metric is that it allows us to introduce some partitions
of unity related to the metric (see for instance Lemma 18.4.4 of [8]). Precisely, we could find

a constant r > 0 and a sequence z,, € R™, u > 1, such that the union of the balls
Qur = {x eER™ g, (:c — xu) < 7"2}

coves the whole space R™. Moreover there exists a positive integer N,., depending only on r,
such that the intersection of more than N, balls is always empty. One can choose a family

of nonnegative functions {¢,} -, in S(1, g) such that

p>1
SUPD i C Qs D@l =1 and sup |Dipu(a)] S (0:V (@) (5.3)
=1 >
Repeat the precess in [3], we see
14D ull e < 371400 el + ||l + [l (5:4)

p>1

Using the notation

Ru =Yy 8:090;1(55) — Pu (aTV(ZL‘) - awv<$u)) ) 8?/’

we may write ¢, Lu = L, ¢, u+ R, u, then

Dol wuullie <237 (lowtullye + | Ruull) < 2leullze + 23 1 Ruw] o

u>1 u>1 pu>1

1o S [1eullys + flul] s The

On the other hand, by Lemma 4.9 in [1], we have ) HRHu
u>1

above two inequalities yield

VueCE(R™), Y ||Laeutlra < ||CullLa + [|ull;..

p=>1

Using (5.4) and (5.2), we have

[ uly, s DD gl + [|2ull;. + ClJull
p>1
S S lenpuully. + | Lull;s + [[u]l;
p>1

and
)2 Dy ]2, + || )2 1y A Dy [Pl

Sl Dy ull + 3 | )y A Dy P o)
p>1 pn>1

Do lleaennllz + 3]

p>1 p>1

A

2
12

P U

As a result, combining these inequalities gives (5.1). The proof is then completed.
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