Vol. 38 (2018) No. 3

MINIMAL *I*-OPEN SETS

YANG Jiang¹, XIN Xiao-long¹, JUN Young-bae²

(1.School of Mathematics, Northwest University, Xi'an 710127, China) (2.School of Mathematics Education, Gyeongsang National University, Jinju 52828, Korea)

Abstract: In this paper, we investigate the minimal *I*-open sets in ideal topological spaces. By using the theory of general topology, we obtain several characterizations and properties of minimal *I*-open sets. In addition, the relationships between minimal *I*-open sets and other types of open sets are investigated.

Keywords: ideal topological space; *I*-open set; minimal open set; minimal *I*-open set 2010 MR Subject Classification: 54A05; 54C08 Document code: A Article ID: 0255-7797(2018)03-0403-07

1 Introduction

The notions of *I*-open sets in topological spaces were introduced by Janković and Hatmlett [1]. Abd EI-Monsef et al. [2] further investigated *I*-open sets and *I*-continuous functions. In 1999, Abd EI-Monsef et al. [3] introduced and investigated almost-*I*-open sets and almost-*I*-continuous functions. Subsequently, Hatir and Noiri [4] introduced the notion of β -*I*-open sets to obtain certain decompositions of continuity. Nasef [5] introduced the notion of fuzzy pre-*I*-open sets and obtained a decomposition of fuzzy *I*-continuity. The notion of semi-*I*open sets to obtain decompositions of continuity was introduced by Hatir and Noiri [6]. In addition to this, Guler and Aslim [7] introduced the notion of b-*I*-sets and b-*I*-continuous functions. The ideal theory plays an important role in studying logical algebras. For more details of the logical algebras, we refer the reader to [8–11]. In the light of above results, the purpose of this paper is to study minimal *I*-open sets and to obtain several characterizations and properties of these concepts.

2 Preliminaries

An ideal \mathcal{J} on a topological space (X, \mathcal{J}) is a nonempty collection of subsets of X which satisfies:

- (1) (Heredity) If $A \in \mathcal{J}$ and $B \subset A$, then $B \in \mathcal{J}$.
- (2) (Finite additivity) If $A \in \mathcal{J}$ and $B \in \mathcal{J}$, then $A \cup B \in \mathcal{J}$.

* Received date: 2016-09-01 Accepted date: 2016-10-31

Foundation item: Supported by National Natural Science Foundation of China (11571281).

Biography: Yang Jiang (1987–), male, born at Yulin, Shaanxi, doctor, major in general topology and logic algebras.

An ideal topological space is defined to be a topological space (X, \mathcal{J}) with an ideal \mathcal{J} on X and is denoted by (X, τ, \mathcal{J}) . For a subset A of X,

$$A^*(\mathcal{J},\tau) = \{ x \in X \mid U \cap A \notin \mathcal{J} \text{ for every } U \in \tau(x) \},\$$

where $\tau(x) = \{U \in \tau \mid x \in U\}$, is called the local function of A with respect to \mathcal{J} and τ . We simply write $A^*(\mathcal{J})$ or A^* instead of $A^*(\mathcal{J}, \tau)$ when there is no chance for confusion. For every ideal topological space (X, τ, \mathcal{J}) , there exists a topology $\tau^*(\mathcal{J})$, finer than τ , generated by $\beta(\mathcal{J}, \tau) = \{U \setminus I \mid U \in \tau, I \in \mathcal{J}\}$, but in general $\beta(\mathcal{J}, \tau)$ is not always a topology (see [12]). It is well known that $\operatorname{Cl}^*(A) = A \cup A^*$ defines a Kuratowski closure operator for $\tau^*(\mathcal{J})$.

Lemma 2.1 [12] Let (X, τ) be a topological space with ideals \mathcal{J} and \mathcal{K} . For any subsets A and B of X, we have the following assertions:

- (1) $A \subset B \Rightarrow A^* \subset B^*$.
- (2) $\mathcal{J} \subset \mathcal{K} \Rightarrow A^*(\mathcal{K}) \subset A^*(\mathcal{J}).$
- (3) $A^* = \operatorname{Cl}(A^*) \subset \operatorname{Cl}(A)$ (A^* is a closed subset of $\operatorname{Cl}(A)$).
- (4) $(A^*)^* \subset A^*$.
- (5) $(A \cup B)^* = A^* \cup B^*.$
- (6) $A^* \setminus B^* = (A \setminus B)^* \setminus B^* \subset (A \setminus B)^*$.
- (7) $U \in \tau \Rightarrow U \cap A^* = U \cap (U \cap A)^* \subset (U \cap A)^*.$
- (8) $B \in \mathcal{J} \Rightarrow (A \cup B)^* = A^* = (A \setminus B)^*.$

The set of all *I*-open sets in ideal topological space (X, τ, \mathcal{J}) is denoted by $IO(X, \tau, \mathcal{J})$ or written simply as IO(X) when there is no chance for confusion.

Definition 2.2 [2] Let (X, τ, \mathcal{J}) be an ideal topological space. A subset A of X is said to be I-open if $A \subseteq Int(A^*)$.

Definition 2.3 [13] A subset A of a space X is said to be pre-open if $A \subseteq Int(Cl(A))$.

Remark 2.4 [2] One can deduce that *I*-open set \Rightarrow pre-open set, and the converse is not true, in general.

Definition 2.5 [14] Let (X, τ) be a topological space. A nonempty subset U of X is said to be a minimal open set if it is an open set satisfies

$$(\forall A \in \tau) (A \subseteq U \Rightarrow A = \emptyset \text{ or } A = U).$$

Lemma 2.6 [14] Let (X, τ) be a topological space. We have the following assertions:

(1) Let U be a minimal open subset of X and W an open subset of X. Then $U \cap W = \emptyset$ or $U \subseteq W$.

(2) Let U and V be minimal open subsets of X. Then $U \cap V = \emptyset$ or U = V.

3 Minimal *I*-Open Sets

Definition 3.1 Let (X, τ, \mathcal{J}) be an ideal topological space. A nonempty subset U of X is said to be a minimal I-open set if it is an I-open set satisfies

$$(\forall A \in IO(X)) \ (A \subseteq U \Rightarrow A = \emptyset \text{ or } A = U).$$

Consider on ideal topological space $(X \neq T)$ where

Example 3.2 Consider an ideal topological space (X, τ, \mathcal{I}) , where $X = \{a, b, c, d\}$, $\tau = \{\emptyset, X, \{a, b\}, \{c\}, \{a, b, c\}\}$ and $\mathcal{I} = \{\emptyset, \{b\}\}$. We have

$$IO(X) = \{\emptyset, \{a\}, \{c\}, \{a, b\}, \{a, c\}, \{a, b, c\}, \{a, c, d\}, X\}.$$

Thus $\{a\}$ and $\{c\}$ are minimal *I*-open.

It is clear that minimal openness and minimal *I*-openness are independent concepts as shown by the following example.

Example 3.3 Consider an ideal topological space (X, τ, \mathcal{I}) , where $X = \{a, b, c, d\}$, $\tau = \{\emptyset, X, \{a, b\}, \{c\}, \{a, b, c\}\}$ and $\mathcal{I} = \{\emptyset, \{a\}, \{c\}, \{a, c\}\}$. We have

$$IO(X) = \{\emptyset, \{b\}, \{a, b\}\}.$$

Thus $\{b\}$ is not a minimal open set but a minimal *I*-open set. And $\{c\}$ is not a minimal *I*-open set but a minimal open set.

Theorem 3.4 Let (X, τ, \mathcal{J}) be an ideal topological space in which every minimal open set is contained in \mathcal{J} . If U is a minimal open set of X, then $A^* \cap U = \emptyset$ for any $A \subseteq X$.

Proof Let U be a minimal open set of X and let A be a subset of X. Suppose that $A^* \cap U \neq \emptyset$. Then there exists an element $x \in A^* \cap U$. That is, $x \in A^*$ and $x \in U$. Since every minimal open set is contained in $\mathcal{J}, U \in \mathcal{J}$ and so $A \cap U \in \mathcal{J}$. This implies that $x \notin A^*$. This is a contradiction to $x \in A^*$. Therefore $A^* \cap U = \emptyset$.

Lemma 3.5 Let (X, τ, \mathcal{J}) be an ideal topological space in which every minimal open set is contained in \mathcal{J} . Then $\text{Int}(A^*) = \emptyset$ for any $A \subseteq X$.

Proof Let A be a subset of X and let G be a nonempty open subset of X. Then there exists a minimal open set U such that $U \subseteq G$. We have $A^* \cap U = \emptyset$ by Theorem 3.4. Since $U \subseteq G$, $G \subsetneq A^*$. Thus $\operatorname{Int}(A^*) = \emptyset$.

We have a question: does the every ideal topological space have the minimal *I*-open set? The answer to this question is negative as seen in the following theorem.

Theorem 3.6 Let (X, τ, \mathcal{J}) be an ideal topological space. The following conditions are equivalent:

(1) X has at least one minimal I-open set.

(2) There exists a minimal open set which is not contained in \mathcal{J} .

Proof (1) \Rightarrow (2) Suppose that (1) is satisfied. Then $IO(X) \neq \{\emptyset\}$. Assume that $M \in \mathcal{J}$ for all minimal open set M. Then $Int(A^*) = \emptyset$ for any $A \subseteq X$ by Lemma 3.5. And so \emptyset is the only *I*-open set in (X, τ, \mathcal{J}) . This is a contradiction. Therefore, there exists a minimal open set which is not contained in \mathcal{J} .

 $(2) \Rightarrow (1)$ Suppose that (2) is satisfied. Then there exists a minimal open set M such that $M \notin \mathcal{J}$. Let x be an element of M and let G be a neighborhood of x. Then since M is minimal open, $M \subset G$. And so $G \cap M = M$. Since $M \notin \mathcal{J}, G \cap M = M \notin \mathcal{J}$. This implies that $x \in M^*$. Thus $M \subset M^*$. Since M is minimal open, $M = \operatorname{Int}(M) \subset \operatorname{Int}(M^*)$. That is, $M \in IO(X)$. Meanwhile, since M is minimal open, $M \neq \emptyset$. Therefore M is a nonempty I-open set and so X has at least one minimal I-open set.

Definition 3.7 Let (X, τ, \mathcal{J}) be an ideal topological space. Then (X, τ, \mathcal{J}) is called ideal topological space with minimal *I*-open sets (simply, ITSMI), if there exists minimal *I*-open set in (X, τ, \mathcal{J}) .

Example 3.8 Consider the example as presented in Example 3.2. Then (X, τ, \mathcal{J}) is a minimal ideal topological space. Consider an ideal topological space (Y, κ, \mathcal{J}) where $Y = \{a, b, c, d\}, \kappa = \{\emptyset, X, \{b\}, \{b, c\}, \{b, c, d\}\}$ and $\mathcal{J} = \{\emptyset, \{b\}\}$. We have $IO(X) = \{\emptyset\}$. Thus (Y, κ, \mathcal{J}) is an ideal topological space with minimal *I*-open sets (simply, ITSMI).

Theorem 3.9 Let U be a minimal open set in an ITSMI (X, τ, \mathcal{J}) . If $\{x\} \notin \mathcal{J}$, then $\{x\}$ is a minimal I-open set for any $x \in U$.

Proof Let x be an element of U such that $\{x\} \notin \mathcal{J}$. Now we will show that $U \subseteq \{x\}^*$. Let a be an element of U and let H be a neighborhood of a. Then since U is minimal open and $U \cap H \neq \emptyset$, $U \subseteq H$ by Lemma 2.5. And so $\{x\} = U \cap \{x\} = H \cap \{x\}$. Since $\{x\} \notin \mathcal{J}, H \cap \{x\} \notin \mathcal{J}$. This implies that $a \in \{x\}^*$. And so $U \subseteq \{x\}^*$. It follows that $\{x\} \subseteq U = \operatorname{Int}(U) \subseteq \operatorname{Int}(\{x\}^*)$. That is, $\{x\}$ is an *I*-open set. Therefore $\{x\}$ is a minimal *I*-open set.

Lemma 3.10 (see [2]) Let (X, τ, \mathcal{J}) be an ITSMI. If $A \in IO(X)$ and $B \in \tau$, then $A \cap B \in IO(X)$.

Theorem 3.11 Let (X, τ, \mathcal{J}) be an ITSMI. Then we have the following results.

(1) Let U be a minimal I-open subset of X and W be a subset of X. If $U \cap W$ is I-open, then $U \cap W = \emptyset$ or $U \subseteq W$.

(2) Let U and W be minimal I-open subsets of X. If $U \cap W$ is I-open, then $U \cap W = \emptyset$ or U = W.

Proof (1) Let U be a minimal I-open subset of X and W be a subset of X such that $U \cap W$ is I-open. Since U is minimal I-open and $U \cap W \subseteq U$, we have $U \cap W = U$ or $U \cap W = \emptyset$. Hence $U \subseteq W$ or $U \cap W = \emptyset$.

(2) Let U and W be minimal I-open subsets of X such that $U \cap W$ is I-open. If $U \cap W \neq \emptyset$, then $U \subseteq W$ and $W \subseteq U$ by (1). Therefore U = W.

Corollary 3.12 Let (X, τ, \mathcal{J}) be an ITSMI. Then we have the following results.

(1) Let U be a minimal I-open subset of X and W be an open subset of X. Then $U \cap W = \emptyset$ or $U \subseteq W$.

(2) Let U and W be a minimal I-open subsets of X. If W is open, then $U \cap W = \emptyset$ or U = W.

Proof By Lemma 3.10, $U \cap W$ is *I*-open. Thus we have the results by Theorem 3.11.

Proposition 3.13 Let U be a minimal I-open set in an ITSMI (X, τ, \mathcal{J}) . If x is an element of U, then $U \subseteq W$ for all $W \in \tau(x)$.

Proof Let U be a minimal I-open set in an ITSMI (X, τ, \mathcal{J}) . Let $x \in U$ and $W \in \tau(x)$. Then $U \cap W$ is I-open by Lemma 3.10 and $U \cap W \neq \emptyset$. Thus $U \subseteq W$ by Theorem 3.11 (1).

Proposition 3.14 Let U be a minimal I-open set in an ITSMI (X, τ, \mathcal{J}) . Then

$$U \subseteq \cap \{W \mid W \in \tau(x)\}$$

No. 3

for any $x \in U$.

Proof The proof is straightforward.

The reverse inclusion of Proposition 3.14 is not valid as seen in the following example. **Example 3.15** Consider the example as presented in Example 3.2. Putting $U := \{a\}$.

Then $U \not\supseteq \cap \{W \mid W \in \tau(a)\} = \{a, b\}.$

Theorem 3.16 Let U be a minimal I-open set in an ITSMI (X, τ, \mathcal{J}) . Then the following are valid.

(1) $U \subseteq Cl(A)$ for any nonempty subset A of U.

(2) $\operatorname{Cl}(U) = \operatorname{Cl}(A)$ for any nonempty subset A of U.

Proof (1) Let A be an nonempty subset of U. By Proposition 3.13, for any element x of U and any open neighborhood W of x, we have $A = U \cap A \subseteq W \cap A$. Then $W \cap A \neq \emptyset$. Hence x is an element of Cl(A). It follows that $U \subseteq Cl(A)$.

(2) For any nonempty subset A of U, we have $Cl(A) \subseteq Cl(U)$.

On the other hand, by (1), $Cl(U) \subseteq Cl(Cl(A)) = Cl(A)$. Therefore Cl(U) = Cl(A).

The converses of Theorem 3.16 are not valid as seen in the following example.

Example 3.17 Consider an ideal topological space (X, τ, \mathcal{I}) where $X = \{a, b, c, d\}$, $\tau = \{\emptyset, X, \{a, b\}, \{a, b, c\}\}$ and $\mathcal{I} = \{\emptyset\}$. Putting $U := \{a, b\}$. Then $\{a\}, \{b\}, U$ are nonempty subsets of U. We know that $\operatorname{Cl}(\{a\}) = \operatorname{Cl}(\{b\}) = \operatorname{Cl}(U) = X$. Since $\{a\} \subseteq \operatorname{Int}(\{a\}^*), \{a\}$ is a I-open set. Hence U is not a minimal I-open set.

Theorem 3.18 Let U be a minimal I-open set in an ITSMI (X, τ, \mathcal{J}) and let M be a nonempty subset of X. If there exists an open neighborhood W of M such that $W \subseteq \operatorname{Cl}(M \cup U)$, then $M \cup S$ is a pre-open set for any nonempty subset S of U.

Proof $\operatorname{Cl}(M \cup S) = \operatorname{Cl}(M) \cup \operatorname{Cl}(S) = \operatorname{Cl}(M) \cup \operatorname{Cl}(U) = \operatorname{Cl}(M \cup U)$ by Theorem 3.16. Since $W \subseteq \operatorname{Cl}(M \cup U)$ by assumption, we have $\operatorname{Int}(W) \subseteq \operatorname{Int}(\operatorname{Cl}(M \cup U)) = \operatorname{Int}(\operatorname{Cl}(M \cup S))$. Since W is an open neighborhood of M, namely W is an open set such that $M \subseteq W$, we have $M \subseteq W = \operatorname{Int}(W) \subseteq \operatorname{Int}(\operatorname{Cl}(M \cup S))$. Moreover, since U is I-open, $S \subseteq U \subseteq \operatorname{Int}(U^*) \subset \operatorname{Int}(\operatorname{Cl}(U)) \subseteq \operatorname{Int}(\operatorname{Cl}(M \cup U)) = \operatorname{Int}(\operatorname{Cl}(M \cup S))$. It follows that $M \cup S \subseteq \operatorname{Int}(\operatorname{Cl}(M \cup S))$. Therefore $M \cup S$ is pre-open.

Corollary 3.19 Let U be a minimal I-open set in an ITSMI (X, τ, \mathcal{J}) and let M be a nonempty subset of X. If there exists an open neighborhood W of M such that $W \subseteq Cl(U)$, then $M \cup S$ is a pre-open set for any nonempty subset S of U.

Proof By assumption, we have $W \subseteq Cl(U) \subseteq Cl(M) \cup Cl(U) = Cl(M \cup U)$. So by Theorem 3.18, we see that $M \cup S$ is pre-open.

The condition of Theorem 3.19, namely, $W \subseteq \operatorname{Cl}(M \cup U)$, does not necessarily imply the condition of Corollary 3.19, namely, $W \subseteq \operatorname{Cl}(U)$. We have the following example.

Example 3.20 Consider the example as presented in Example 3.2. Then (X, τ, \mathcal{I}) is a minimal ideal topological space. Let $U = \{a\}$ and $M = W = \{c\}$. Then U is a minimal *I*-open. And $W = \{c\} \subseteq \operatorname{Cl}(\{c\} \cup \{a\}) \subseteq \operatorname{Cl}(M \cup U)$ and $W = \{c\} \not\subseteq \operatorname{Cl}(\{a\}) = \operatorname{Cl}(U)$.

Theorem 3.21 Let U be a minimal I-open set in an ITSMI (X, τ, \mathcal{J}) and x an element of $X \setminus U$. Then $W \cap U = \emptyset$ or $U \subseteq W$ for any open neighborhood W of x.

Proof Let U be a minimal I-open set in an ITSMI (X, τ, \mathcal{J}) and x an element of $X \setminus U$. Then since W is an open set, $W \cap U$ is an I-open set by Lemma 3.10. We have the result by Theorem 3.11.

Corollary 3.22 Let U be a minimal I-open set in an ITSMI (X, τ, \mathcal{J}) and x an element of $X \setminus U$. Define $U_x =: \cap \{W : W \text{ is an open neighborhood of } x\}$. Then $U_x \cap U = \emptyset$ or $U \subseteq U_x$.

Proof Let U be a minimal I-open set in an ITSMI (X, τ, \mathcal{J}) and x an element of $X \setminus U$. Then $W \cap U = \emptyset$ or $U \subseteq W$ for any open neighborhood W of x by Theorem 3.21. If $U \subseteq W$ for any open neighborhood W of x, then $U \subseteq \cap \{W : W \text{ is an open neighborhood of } x\} \equiv U_x$. Therefore $U \subseteq U_x$. Otherwise there exists an open neighborhood W of x such that $W \cap U = \emptyset$, then we have $U \cap U_x = \emptyset$.

Theorem 3.23 Let U be a minimal I-open set in an ITSMI (X, τ, \mathcal{J}) . Then any nonempty subset A of U is a pre-open set.

Proof Let A be an nonempty subset of U. Then since U is a minimal I-open set, $U \subseteq \text{Int}(U^*)$. It follows that $A \subseteq U \subseteq \text{Int}(U^*) \subseteq \text{Int}(\text{Cl}(U)) = \text{Int}(\text{Cl}(A))$ by Theorem 3.16 (2). Hence A is a pre-open set.

Theorem 3.24 Let (X, τ, \mathcal{J}) be an ITSMI. Let V be a nonempty finite *I*-open set. Then there exists at least one (finite) minimal *I*-open set U such that $U \subseteq V$.

Proof If V is a minimal *I*-open set, we may set U = V. If V is not a minimal *I*-open set, then there exists an (finite) *I*-open set V_1 such that $\emptyset \neq V_1 \subsetneq V$. If V_1 is a minimal *I*-open set, we may set $U = V_1$. If V_1 is not a minimal *I*-open set, then there exists an (finite) *I*-open set V_2 such that $\emptyset \neq V_2 \subsetneqq V_1 \subsetneq V$. Continuing this process, we have a sequence of *I*-open sets

$$V \supseteq V_1 \supseteq V_2 \cdots \supseteq V_k \supseteq \cdots$$

Since V is a finite set, this process repeats only finitely. Then, finally we get a minimal open set $U = V_n$ for some positive integer n.

Definition 3.25 A topological ideal space is said to be a locally finite ideal topological space if each of its elements is contained in a finite *I*-open set.

Example 3.26 Consider the example as presented in Example 3.2. It is easy to check that (X, τ, \mathcal{J}) is a locally finite ideal topological space.

Corollary 3.27 Let (X, τ, \mathcal{J}) be an ITSMI. Let X be a locally finite ideal topological space and V a nonempty open set. Then there exists at least one (finite) minimal *I*-open set U such that $U \subseteq V$.

Proof Let (X, τ, \mathcal{J}) be an ITSMI. Let X be a locally finite ideal topological space and V a nonempty open set. Then since V is a nonempty set, there exists an element x of V. Since X is a locally finite ideal topological space, we have a finite I-open set V_x such that $x \in V_x$. It follows that $V \cap V_x$ is a finite I-open set by Lemma 3.10. So we get a minimal I-open set U such that $U \subseteq V \cap V_x \subseteq V$ by Theorem 3.24.

Minimal *I*-open sets

References

- Janković D, Hamlett T R. Compatible extensions of ideals[J]. Boll. Un. Mat. Ital., 1992, 6(3): 453–465.
- [2] Abd El-Monsef M E, Lashien E F, Nasef A A. On *I*-open sets and *I*-continuous functions[J]. Kyung-pook Math. J., 1992, 32(1): 21–30.
- [3] Abd El-Monsef M E, Mahmoud R A, Nasef A A. Almost *I*-openness and almost *I*-continuity[J]. J. Egyptian Math. Soc., 1999, 7(2): 191–200.
- [4] Hatir E, Noiri T. On decompositions of continuity via idealization[J]. Acta Math. Hungar., 2002, 96(4): 341–349.
- [5] Nasef A A, Hatir E. On fuzzy pre-*I*-open sets and a decomposition of fuzzy *I*-continuity[J]. Chaos, Sol. Fract., 2009, 40: 1185–1189.
- [6] Hatir E, Noiri T. On semi-I-open sets and semi-I-continuous functions[J]. Acta Math. Hungar., 2005, 107(4): 345–353.
- [7] Guler A C, Aslim G. B-I-open sets and decomposition of continuity via idealization [J]. Acta Math. Hungar., 2005, 22: 53–64.
- [8] Xin X L, Feng M, Yang Y W. On ⊙-derivations of BL-algebras[J]. J. Math., 2016, 36(3): 552–558.
- [9] Liu L Z, Li K T. Boolean filters and positive implicative filters of residuated lattices[J]. Inform Sci., 2007, 177: 5725–5738.
- [10] Zhu Y Q, Xu Y. On filter theory of residuated lattices[J]. Inform Sci., 2010, 180: 3614–3632.
- [11] Zhang X H, Zhou H J, Mao X Y. IMTL(MV)-filters and fuzzy IMTL(MV)-filters of residuated lattices[J]. J. Intell. Fuzzy Sys., 2014, 26: 589–596.
- [12] Janković D, Hamlett T R. New topologies from old via ideals[J]. Amer. Math. Monthly, 1990, 97(4): 295–310.
- [13] Mashhour A S, Hasanein I A, EI-Deeb S N. A note on semi-continuity and precontinuity[J]. Indian J. Pure Appl. Math., 1982, 13(10): 1119–1123.
- [14] Nakaoka F, Oda N. Some applications of minimal open sets[J]. Internat. J. Math. Math. Sci., 2001, 27(8): 471–476.

极小*I*-开集

杨 将1,辛小龙1,田莹培2

(1.西北大学数学学院,陕西西安 710127)

(2.韩国国立庆尚大学数学教育学院,庆尚晋州 52828)

摘要:本文在理想拓扑空间中研究了极小I-开集.利用一般拓扑学的理论,获得了极小I-开集的一些 刻画和性质,同时研究了极小I-开集和其他类型开集之间的关系. 关键词:理想拓扑空间;I-开集;极小开集;极小I-开集 MR(2010)主题分类号: 54A05;54C08 中图分类号: O189.1