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Abstract: In this paper, we study the iterative construction of the common zero of infinite m-
accretive operators. By using the technique of Banach limit and a new path convergence theorem,
the iterative sequence is newly constructed proved to be strongly convergent to the common zero
of infinite m-accretive operators, which is also the solution of one kind variational inequalities.
The computational experiment is conducted by using codes of Visual Basic six to demonstrate the
feasibility of the iterative scheme. The restrictions on the iterative parameters are weaker and some
new techniques can be found, which extends and complements the corresponding work.
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1 Introduction

In this paper, we assume that F is a real Banach space with E* being its dual space.
“—7” denotes strong convergence and (z, f) denotes the value of f € E* at x € E.

The normalized duality mapping J : E — 27" is defined by
Jr={f € E":(z,f) = |=]* Ifll= =z}, =€k

If F' is uniformly smooth, then J is norm-to-norm uniformly continuous on each bounded
subset in E [1].

For a mapping A : D(A) C E — E, we use Fix(A) and A710 to denote its fixed point
set and the zero point set. That is, Fix(A) := {x € D(A) : Az = z} and A710 := {z €
D(A) : Az = 0}. The mapping A : D(A) C E — E is said to be
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(1) nonexpansive if
Az — Ayl < llx —yll, Vz,y € D(A);
(2) contraction with coefficient k if there exists 0 < k < 1 such that
Az — Ay|| < klle —yl|, Yo,y € D(A);
(3) accretive if for all z,y € D(A), there exists j(z —y) € J(x — y) such that
(Az — Ay, j(z —y)) = 0;

(4) m-accretive if A is accretive and R(I + A\A) = E, YA >0 ;
(5) strongly positive operator with coefficient ¥ > 0 [2] if D(A) = E, where F is a real
smooth Banach space and
(Az, Jx) >7||z||?, Vo € E.

In this case,
llal —bA| = sup |{(al —bA)z, Jx)|,

llz][ <1
where [ is the identity mapping, a € [0,1] and b € [—1,1];

(6) demiclosed at p if whenever {x,} is a sequence in D(A) such that z,, — = € D(A)
and Az, — p then Az = p, here ‘—’ denotes weak convergence in E.

If A is accretive, then we can define, for each r > 0, a single-valued mapping J* :
R(I +rA) — D(A) by JA := (I +rA)~!, which is called the resolvent of A [1]. It is well
known J# is non-expansive and A0 = Fix(J4).

Let C' be a nonempty, closed and convex subset of E and ) be a mapping of F onto C.
Then @ is said to be sunny [3] if Q(Q(z) +t(z — Q(x))) = Q(x) for all x € E and t > 0.

A mapping Q of E into F is said to be a retraction [3] if Q% = Q. If a mapping Q is a
retraction, then Q(z) = z for every z € R(Q), where R(Q) is the range of Q.

A subset C of E is said to be a sunny nonexpansive retract of E [3] if there exists a
sunny nonexpansive retraction of £ onto C' and it is called a nonexpansive retract of F if
there exists a nonexpansive retraction of E onto C.

Finding the solution of the problem 0 € A;z (i € NT) is one of hot topics in applied
mathematics, where A; is accretive, since the solutions correspond to the equilibrium points
of some evolution systems. Based on this reason, we shall first prove a new path conver-
gence theorem and then present a new semi-implicit iterative scheme for approximating the
common zero of infinite m-accretive operators. Some new ideas and proof techniques can be
found based on weaker restrictions than the recent works in [4-7].

Lemma 1.1 [8] Assume F is a strongly positive bounded operator with coefficient 7 > 0
on a real smooth Banach space E and 0 < p < ||[F||~*. Then ||I — pF| <1 — p7.

Lemma 1.2 [1] Let E be a Banach space and C be a nonempty closed and convex
subset of F. Let f: C — C be a contraction. Then f has a unique fixed point u € C.
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Lemma 1.3 [9] Let E be a real uniformly convex Banach space, C be a nonempty closed
and convex subset of F and B : C' — E be a nonexpansive mapping such that Fix(B) # 0,
then I — B is demiclosed at zero.

Lemma 1.4 [10] Let E be a real strictly convex Banach space and C' be its nonempty

closed and convex subset. Let B,, : C' — C be a nonexpansive mapping for each m > 1. Let

{am} be a real number sequence in (0,1) such that > a,, = 1. Suppose that (| Fix(B,,) #

m=1 m=1

o0
(. Then > a,,B,, is nonexpansive with
m=1

Fix(Y  amBn) = (] Fix(Bn).

m=1

Lemma 1.5 [11] In a real Banach space E, the following inequality holds
lz +ylI* < ll2]* +2(y, j(z +y)), Yo,y € B, j(z+y) e J(@+y).

Lemma 1.6 [6] Let r,¢t > 0. If E is uniformly convex, then there exists a continuous

strictly increasing and convex function ¢ : R — Rt with ¢(0) = 0 so that
175 = Tyl < e = yl* = (I = Tz — (I = T2yl

for all z,y € R(I +rA) with max{||z|, ||y||} <t, where A: E — E is m-accretive.
Lemma 1.7 [12] Let {s,} be a real sequence that does not decrease at infinity, in the

sense that there exists a subsequence {s,, } so that s,, < s,,41 for all k& > 0. For every

n > ng, define an integer sequence {7(n)} as
7(n) =max{ng <k <n:s; < Skpi1}
Then 7(n) — 0o as n — oo and for all n > ng, max{s-(n), Sn} < Sr(n)+1-

2 A New Path Theorem and a New Strong Convergence Theorem

Theorem 2.1 Suppose F is a real uniformly smooth and uniformly convex Banach
space, C' is a nonempty, closed and convex sunny nonexpansive retract of F, and Q¢ is the
sunny nonexpansive retraction of E onto C. Let f; : E— E be a contractive mapping with
coefficient k& € (0,1) and F; : E — FE be a strongly positive linear bounded operator with
coefficient 7, where ¢ € NT. Let B : C — C be a nonexpansive mapping. Suppose {a,}
-21 1fill < 400,

1=

and {b,} are real number sequences in (0,1) with > a; =1 and ) b; =1,
i=1 i=1

S bil|Fi|| < 400, 0 < < 3 and Fix(B) # 0. If vt € (0,1), define W, : E — E by
1=1

Wiz .= tﬁzaifi(l") + (I _tzbiFi)Bcha (2.1)

i=1
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o0

then W, has a fixed point x, for each 0 < ¢ < (> b;]|F;||)~!, which is convergent strongly
i=1
to the fixed point of B, as t — 0. That is, liné xy = po € Fix(B). Moreover, py is the unique

solution of the following variational inequality: Vz € Fix(B),

<(Z biF; — Uzaifz')l?oa J(po — 2)) <0. (2.2)

Proof Step 1 ) b,F;: E — E is a strongly positive linear bounded operator with
i=1
coefficient 7.

It is easy to check > b;F; : E — FE is linear bounded, so we are left to show that

=1
o0

> b;F;: E — E is strongly positive with coefficient 7.

i=1

It follows from the property of F; that
O biFa, Jr) =Y bi(Fa, Jr) > Y bAllz]” =7z,
i=1 i=1 i=1

Thus Y b, F; : E — E is a strongly positive operator with coefficient 7.

i=1
0o

Step 2 W, is a contraction for 0 < t < (>_ b;||Fi]|)~!.
i=1

In fact, noticing Lemma 1.1, > a; =1 and ) b; = 1, we have
i=1 i=1

Wi — Wiyl < tnzaillfi(w) — i)l +1I(L - tzbiFi)(BQCﬂU — BQcy)|l

i=1 i=1
< ktnlle =yl + (1 =)z —yll = 1 = tF = kn)lllz =yl

which implies that W; is a contraction since 0 < n < 2% Then Lemma 1.2 implies that

W; has a unique fixed point, denoted by z;, which uniquely solves the fixed point equation

i=1
Step 3 {z:} is bounded for t € (0,(> b;||F;|)~!). For p € Fix(B) C C, we have
=1

p = BQcp, then
lae = pll = (1= ¢ 3 biF) (BQeai — )+t S aifi(a) = 3 biFip)|
i=1 i=1 i=1

<= F)lar —pll +tIn S ailfilw) — FE)+tln S aifi(p) = S biFip

i=1

<[L— (7 = kn)lllze = pll + tIn D aifi(p) = > biFipl-

i=1 i=1
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This ensures that

(> £l + f: IEDIlp

i=1

— <
o —pll < —

Thus {z;} is bounded, and then both {Z a; fi(z;)} and {Z b;F;BQcx,} are bounded.
Step 4 z; — BQcx; — 0, as t — O From Step 3, we have

|zt — BQow:| = t||nzaifi<$t) - ZbiFiBch’tH — 0,

i=1 i=1
ast — 0.
Step 5 If variational inequality (2.2) has solutions, the solution must be unique.
Suppose both ug € Fix(B) and vy € Fix(B) are the solutions of the variational inequal-
ity(2.2). Then we have

(Q_biFs =0 aifiJuo, T (wo — o)) <0 (2.3)
and . o
<(Z biF; — nzaifi)an J(ug —vp)) < 0. (2.4)

Adding up (2.3) and (2.4), we obtain that

(O biFi =0 aifiyuo — O _biFi =1 Y aifi)vo, J(ug — o)) < 0. (2.5)
i=1 i=1 =1 i=1

Since

((Z b F; — Uzaz‘fz‘)uo - (Z b F; — ﬁzaifi)Um J(uo — vo))

= Z bi(Fyug — Fivo, J(ug — o)) — WZ ai(fi(uo) — fi(vo), J(uo — vo))

>lluo — voll* = knlluo — voll* = (7 — kn)lluo — vol*,

then (2.5) implies that ug = vy.
Step 6 x; — py € Fix(B), as t — 0, which satisfies the variational inequality (2.2).
Assume ¢, — 0. Set z,, :== z;, and defined p : F — R by u(z) = LIM||z, —z|?, = € E,
where LIM is the Banach limit on [*°. Let

K={zeFE:ux) = miELIMHa:n —z|?}.
[AS

It is easily seen that K is a nonempty closed convex bounded subset of E. Since z, —
BQc¢z, — 0, then for x € K,

W(BQcx) = LIM ||z, — BQcx|* < LIM ||z, — ||* = p(x),
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it follows that BQo(K) C K; that is, K is invariant under BQ¢. Since a uniformly smooth
Banach space has the fixed point property for nonexpansive mappings, BQ¢ has a fixed
point, say pg, in K. That is, BQcpo = po € C which ensures that py = Bpy from the
definition of B and then py € Fix(B). Since pg is also a minimizer of p over E, it follows
that, for t € (0,1),

w(po +nt i a; fi(po) —t i b; F3po) — 11(po)

0< i= i=

- t

l2n —po —nt 3 aifi(po) +t 3 biFipo||* — [lzn — poll®
:L]M =1 =1

t

(Tn —po—nt > aifi(po) +t Y biFipo, J(xn —po — nt Y aifi(po) +t > biFipo)) — ||lzn — poll?

:LIM =1 =1 =1 =1
t
(xn —po, J(Tn —po — 1t 3 aifi(po) +t 3 biFipo)) — ||zn — pol*
:L]M{ =1 - =1
(X2 biFipo —n 3 aifi(po), J(@n —po — 0t - aifi(po) +t 3 biFipo))
+ =1 =1 - =1 =1 }

Since F is uniformly smooth, then by letting ¢ — 0, we find the two limits above can

be interchanged and obtain

LIM(ﬁZ aifi(po) — Z biFipo, J (%, — po)) < 0. (2.6)
=1 i—1
Since x; —po = t(n > aifi(ze) — D> biFipo) + (I —t > b;F;)(BQcxy — po), then
i=1 i=1 i=1

Iz — pol*

=t(n Z aifi(ws) — Z biFipo, J (x4 — po)) + (I — tz biF;)(BQcxi — po), J(x: — po))
=1 i=1 =1

§t77<z a;fi(w,) — Zaifi(po)v J(xy —po)) + t<772aifi(p0) - Z biFipo, J(xt — po))

=1 1=1 =1 =1

oo
T =t biFy| [z — pol?
=1

<[1—=t(F = nk)]||lze — poll® + t<nzaifi(p0) - ZbiFipOa J(xt — po))-

i=1 i=1

Therefore
1

vy —nk

|2z, — IDOH2 <

<nzaifi<p0) - Zbiﬂpm J(xr — po))-

i=1
Hence by (2.6),
1

LIM |z, = pol* < =
7-n

FLIM(ny " aifi(po) = D biFipo, J (@ — po)) <0,
i=1 i=1
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which implies that LIM ||z, — po|*> = 0, and then there exists a subsequence which is still
denoted by {z,} such that z,, — po.

Next, we shall show that pg solves the variational inequality (2.2).

Since z; = tn > a; fi(xe) + (I —t Y b;F;) BQcxy, then
i=1 i=1

t

o0 oo 1 o0
(Z bil; — WZ a;fi)re =—(1—t Z biFi)(I — BQc):.
i=1 i=1 i=1
Vz € Fix(B), we have

(=Y afiwe o 2)) =~ (L= tYBF) ~ BQo)wi, (i — 2)

i=1

=— %((I — BQc¢)z: — (I — BQc)z, J(x: — 2)) + <Z b F;(I — BQc)xy, J(x: — 2))

i=1

=— %[th —z||> = (BQcx: — BQcz, J(w; — 2))] + <Z b Fi(I — BQc)xy, J(x: — 2))

§<Z biFi(I — BQc)xe, J(xy — 2)).

=1

Taking the limits on both sides of the above inequality,
((Z biFi — 772 aifi)po, J(po — 2)) <0
i=1 i=1

since z,, — po and J is uniformly continuous on each bounded subsets of E.

Thus pg satisfies the variational inequality (2.2).

Now assume there exists another subsequence {z,,} of {z;} satisfying z,, — ¢o. Then
Step 4 implies that BQcx,, — qo. From Lemma 1.3, we know that I — BQ¢ is demiclosed
at zero, then gy = BQcqo which ensures that gy € Fix(B). Repeating the above proof, we
can also know that gy solves variational inequality (2.2). Thus py = ¢o in view of Step 5.

Hence x; — pg, as t — 0, which is the unique solution of the variational inequality (2.2).

This completes the proof.

Theorem 2.2 Let E,C,Q¢, f;, F;, k and 7 be the same as those in Theorem 2.1, and
let A; : C — C be m-accretive operator for i € NT. Let {a,}, {6}, {5n}, {Cn}, {m}

{an}, {b,} and {c,} be real number sequences in (0,1) with > a; = > b; = > ¢; = 1. Let
i=1 i=1 i=1
{rni} C (0,400) for i € N*, {e/ } C E and {e!!} C C. Suppose

Di=(A70£0, > |fill <400, D bil|Fifl < 400
=1 =1 =1

and0<n<21k.
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Let {x,} be generated by the following iterative scheme
( o € E,
Yn = Qcl(1 — ay)(wn + 7)),

A Yn Zn
Zn nYn In & Jrn A ( 2 ) 5n Ens ( )

i=1

Tnir = G Y aifiwn) + (T — anbF Z Az, >0,
=1

1=1

\

Then {z,} converges strongly to the unique element p, € D, which satisfies the following

variational inequality: Vz € D,
(O biFi =0 aifi)po, J(po — 2)) <0 (2.7)
i=1 i=1

under the assumptionb that

Zan<—|—oo 267,<+oo Z||€’H<+oo Z\|£”||<+oo
nO n=0 n=0 n=0

(ii) ch:+ooand(n—>0asn—>oo;
n=0

(iii) 2= —0, 2 — 0,10 -0,
(iv) 6n + Bn+ 7 =1, for n > 0.
Proof We shall split the proof into five steps.
Step 1 {z,} is well-defined.
In fact, it suffices to show that {z,} is well-defined.
For t,s € (0,1), define U, , : C — C by Uy, = tu + sB(*F2) + (1 — t — s)v, where
B : C — C is nonexpansive and z,u,v € C. Then
u+x u+y

1Utsx = Upsyll < sf I < 2l -yl

Thus U, s is a contraction, which ensures from Lemma 1.2 that there exists z,; € C such
that U; ;x4 s = x15. That is, x5 = tu—l— sB("”t""‘) + (1 —t— s)v.
Since J Al_ is nonexpansive and Z ¢; = 1, then Z c;J; Al_ is nonexpansive, which implies

that {z,} is well-defined, and then {xn} is well- deﬁned
Step 2 {z,}, {y.} and {z,} are all bounded.
Vp € D, we see that for n > 0,

lyn —pll < (1 = a)llzn — Pl + (1 — o) llen || + anllpll- (2.8)
Therefore for p € D and n > 0, we have
yn + Zn
lzn = Pl < Bullyn — pll + EcJA =)~ Pl +dallen — 2l

i=1

Tn Tn
< (B + )llyn = 2l + 5 ll2n = 2l + duller, — 2l

IN

Tn Tn
(L= Syn =2l + - llzn =l + dnller, — 2l
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which implies that

20
_ < _ n no_ < _ 2 1" n . 2
e =2l < llyn =2l + 5— %an Pl < Ny —pll + 2llenll + 5= %”PH (2.9)
Using Lemma 1.1, (2.8) and (2.9), we have for n > 0,
[#ni1 —pll
<Gy aill filwa) = LD+ Galln > aifitp) = Y biFi(p)|
=1 =1 =1
+ 1T =G > biFillzn —pl
=1
oo o0 (2.10)
Sgnnk”‘rn _p” + Cn||nzazfz(p) - szFz(P)H + (1 - gnV)HZn _pH
i=1 i=1
<[1 =G = klllen — pll + Calln > aifip) = > biFi(p)]
=1 =1

26,,
Fllenll + 2llenl + el + 5= poadl

By using the inductive method, we can easily get the following result from (2.10)

lIm i aifi(p) — iszz(p)H

(2

Tp+1 — P Smax ZTo — Pl —
[#nt1 = pll {ll | =T }
n

n n n
205,
+ D Nkl +2 Nl + el e + Y 5—-)-
k=0 k=0 k=0 k=0 Tk

Therefore from assumption (i), we know that {x,} is bounded. Set M = sup{||z,||, |, ||
n > 0}. Then M is a positive constant.

Step 3 Fix(}_ ¢;Ji ) = D.
i=1 B
It is obvious that A; '0 = Fix(J ) for i € N*. Lemma 1.4 implies that () Fix(Jz ) =
: I ¥
Fix(}" ¢;Ji% ). Thus Fix(Y ¢;J2 ) = D.
i=1 ' i=1 '

Step 4

241 = poll® < (1 = wi)lan = poll? + wiPw? — wi?, (2.11)
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where pg is the unique solution of variational inequality (2.7), M’ = 4M + 2||po||,

w® = M
" L—Cunk
1
(2 _ ’ / / " 2
Wy, = ———(|lepl|M" + an M ||po]| + el —p
el + 722~ )
2(”7 Z G”Lfl(po) - Z blE(pO), J(.’I}n+1 *p0)>
i=1 i=1
* 5 — 2nk ’
72 oo
@ — (LG 27 Ynt e a yn+zn
o = GOl B St i gty

Since Y ¢;Ji¥ : C — C'is nonexpansive, then using Theorem 2.1, we know that there exists
i=1 '
z; such that

2 = tnz a;ifi(z) + (I — Z biF;) Z cl-J;ifchzt (2.12)
i=1 i=1 i=1
for t € ( E bi||F;|l)~1). Moreover, z; — pg € D, as t — 0, which is the unique solution of

the Varlatlonal inequality (2.7).
For this py € D, using Lemma 1.5, we have

9 = poll> < (1 — @) (@ + L) = ol
<(1 = an)2lzn — poll2 + 2((1 = an)el — anpo, 11— an)(wn +0) —pol)  (2.13)
<(1 = an)llzn — pol* + €14 + o lpo | M1"

And using Lemma 1.6,

o0
Yn + Zn
20 = pol® < Bullyn = poll® + 70 Y all T2 (F =) = poll® + duller, = pol

i=1

<l = poll 30 3l ol = (17 = I )] 4 6,1~ pol?
i=1
<(Ba+ L)l = poll? + 8aller, = pol? —%fjcmn(f AT + 2z = pol,
=1
which implies that
o = ol <2522 g P
+ gl ol - 5 et g (k)

=t (2.14)

20y,
<1 = an)?|lwn = poll* + [le, 1M + cnllpol M + 5— 5 llen = poll®

2Yn yn+zn yn+zn
“5, Z e N G )}
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Now, noticing Step 1 in Theorem 2.1 and using Lemma 1.5 again,

[2n+1 = poll?

=T =G> b)Y eidi (20— po) + Ca(n Y aifilan) = > biFipo)||?
i=1 =1

i=1 =1

<1 = ) l120 = poll® +2¢a(n > aifi(an) = Y biFipo, J (Tn41 — po))
=1 =1
<1 = G)llzn = poll + llenll M + aun[po|| M’

2'Yn Yn + Zn Yn + Zn
- (-G 3 el =I5 (D
=1

20,, "
o 2 H pOH2 + 2(n WZCM fz *Tn fi(po))v J($n+1 _p0)>

i=1

+2¢a(n Z a; fi(po) — Z biFipo, J(ni1 — po))

i=1 =1
<(1 = GaMllwn = poll* + [l M + cvallpol| M’

G Yn + Zn yn+zn
S a1 g ()

n
i=1

— i
- (1 - C’VL’Y)QQ

20,
T, llen = poll” + 2Cankllzn — polllzns1 — pol

+ 2Cn<772aifi(po) - Z biFipo, J (Trnt1 — Po))

=1 i=1

<= GANllzn = poll* + llen 1M + an[pol| 217

_9 27 Yn +zn Yn +zn
_(1_Cn’7)22_,_y Zcz (H _Jrnl( )H)

n

20,
+o—llen = poll* + Gunk(llzn = poll” + l[@ns1 — poll*)
+ 2Ga(n Z ai fi(po) — Z biFipo, J(Tn41 — Po))-
i=1 i=1

Thus

| Zn1 —p0||2

1-— Cn7 + Cnnk: 2 1 / / i 25n " 2
L L R — M’ + o ||po|| M + —L— || —
S e = polP o e (M + oM+ 57 e~ poll)

oo

+ 12277]{/,(; a; fi(po) Zb Fipo, J(®ni1 — po))

=1

L W R AL )
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(1= @)z = ol + WDl — wf?.

()—>O,asn—>+oo.

It follows from assumption(ii) that w
Step 5 z, — pg, as n — 400, where pg is the same as that in Step 4.
Our next discussion will be divided into two cases:

Case 1 {||z, — pol|} is decreasing.

If {||z,, — pol|} is decreasing, we know from the result of Step 4 that

0 <o WP (@ — [z = poll®) + (lzn = poll* = 241 — woll*) —

which ensures that

G Yn + Zn Y+ 2
S (L2 g (22— o
=1

as n — 4o00. Then from the property of ¢, we know that

o0

yn+zn A yn+zn
S el - () -0
=1
as n — —+o00. Since
= yn+zn 1"
[yn = znll < 9m Y Gl T2 (F5) = yall + Onllel — ynll
2
i=1
- Yn + 2n yn+zn Yn + Zn
<y >l 5 )~ I+ 7l = —Ynll + dnllen — ynll,
i=1
then
= Yn + 2 y+z
o = 2all < =l S el 5 (g ) = 220 6, el =il = 0
n

i=1
as n — +o00. Therefore

oo

Hyn - Z CzJ:,l.L ,ynH

=1
o0 y +Z y —|—Z o0
Sllyn = znll + llzn = D e () ||+||Zcz AL = el
i=1 i=1
oo

3 A, (Yn T Zn " yn + Zn
<5 1Yn = znll + Ballyn — Z;CZJTM( )=+ Onllen z; (5= 0.
Next, we shall show that
lim sup nZazfz o) = Y biFi(po), J (ny1 — po)) < 0. (2.15)

n—-+oo
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No. 2

Let z; be the same as that in (2.12). Since ||z;|| < ||zt —pol| +|[pol|, then {2} is bounded,

as t — 0. Using Lemma 1.5, we have

e = gl = 120 — Zcm o +ch A g
<z — ichA Ynll® + 2<§: Cid i Yn = Yny I (20 = Yu))
i=1 i=1
:thiaifi(zt) + (I - tz biF;) icin’éﬁchzt - iCerﬁ, nl?
i=1 i=1 i=1 i=1
+2 <i id 2 Yn = Yn, J (21— yn))
i=1
<|l iCiJéfchZt - iCzJé nll?
i i=1
2 Y o) — SRS T Qo T~ 3 i )
i=1 i=1 i=1 i=1
+2 <ichfm — Yn> J (2t = yn))
i=1
<[zt — ?Jn“2 + 2t<"7§:aifi(zt) - ibiFi(i CiJ:}ZiQCZt>v J(z — iC,J:}L Un))
i=1 i=1 i=1 i=1
+2HZCZJ$1 — Unllllze = wnl,
which implies that
t(i bin'(f: it Qo) — Wi a; fi(ze), J (2 — i cidy Yn))
p ‘ i—1 i=1
<|| ZCszLL = Ynllllzt = Ynl|-
So
llinlirgiliop Zb Fi( Zcizféfchzt) - niaifi(zt)z J(z — iczjﬁiyn)) <0.

Since z; — pg, then
o0

Z ch QC’Zt - Z cz T, LQCpO Po

i=1 =1
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as t — 0. Noticing that

<§; biFi(po) — 1 i ai fi(po), J(po — i ¢id 2 yn))
—<f; biFi<ZchT,L .Qcpo) niam(po), J(po f;cum w) = J(z = f;cchm )
+ <2 biFi(Z.ol it Qepo) — 2 a; fi(po) — il biFi(il ciJt Qczi)
+ ”i aifi(z), J(z — i il yn))
i1 im1
+ <§: biFi(i ¢ Qoz) — 1 i aifi(ze), J(z — i cidit yn)),
o i i1 =1
then we have
lim sup( ;b iFi(po) ngaifi(po), J(po — i_o;cJ yn)) < 0.

o0
Since y, — z, — 0, then x, 41 — > ciJ,fif_yn — 0, which implies that
i=1

lim sup Zb Fi(po) nzaifi(p0)7J<pO —Zny1)) < 0.

n—-4oo i=1

Assumption (ii) and (2.15) ensure that lim sup w? < 0.

n—oo

Employing (2.11) again, we have

2 2
Zn — poll® = |Tnt1 — P
||xn 7p0||2 < H n 0” (|1|) n+1 0” +W£2).
Wn
Assumption (ii) implies that lim inf 122= —poll*~ s —2ol® — (. Then
n— 00 Wn

||lUn —p0||2 - ||$n+1 —P0||2

0”2 )
Wn

+ limsupw® < 0.

n—oo

LR R
Then the result that x,, — po follows.

Case 2 If {||z,, — pol|} is not eventually decreasing, then we can find a subsequence
{l|#n,, — poll} so that ||z, — pol < ||Zn,... — poll for all m > 1. From Lemma 1.7, we can
define a subsequence {||z,) — pol|} so that max{||z;wm) — poll, |zn — poll} < [|Zr(m)+1 — Dol
for all n > ny. This enable us to deduce that (similar to Case 1)

3 1
0 <w) < Wl W2~ l1rimy = pol®) + (12r(my = poll® = 1T+ 1 — poll?) — 0,
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and then copy Case 1, we have lim ||, —pol| = 0. Thus 0 < ||z, —po|| < [|Z+@m)+1—pol — 0,
as n — oo. This completes the proof.
Remark 2.1 In similar studies, e.g. [5], they usually have the following strong restric-

o0
tions on the parameters: » . |rpi1:—7n| < +00, 7, > € > 0,0 < liminf~, <limsup~y, <1
i=1 n—oo n— 00

and Yp4+1 — vn — 0. By us?ng new tools of Lemmas 1.6 and 1.7, these strong restrictions are

deleted in our paper.

Remark 2.2 In scheme (A), let E = C = (—00,+00),a; = ¢; = 5:,b; = &, fi(z) =
: 1

x _ 1 _ 4, =~ _ 4 _ 1 _ _ o _ 1 _
i?k - E$ = 74,7 = 7,11 = 7,0n = /Bn - 5n =&, =&, = (n+1)27Cn - n+1arn,i -

(n+1)2" and A;x = & for i € N and n > 0. Then all of the assumptions in Theorem 2.2
are satisfied and D = {0}. By using Visual Basic six, we get Table 2.1 and Figure 2.1 below,

from which we can see the convergence of {z,}.

S

Figure 2.1: Convergence of {z,}

Table 2.1: Numerical Results of {x,,} with Initial 2o = —8.0

n Un Zn T,

0 0.000000 0.8000000  —8.000000

1 —0.0982143 0.0324675 —0.3809524

2 0.0955130  0.0357167 —0.00365904

3 0.0641200 0.0148211  0.00589470

4 0.0406016  0.0068630  0.00229334
5 0.0279171  0.0036785  0.00093691
6
7
8
9

0.0204279  0.0021893  0.00044536
0.0156147  0.0014041  0.00023759
0.0123295  0.0009523  0.00013792
0.0099845  0.0006747  0.00008538
10 0.0082513  0.0004949  0.00005561
11 0.0069337  0.0003735  0.00003773
12 0.0059085  0.0002887  0.00002649

References

[1] Agarwal R P, O'Regan D, Sahu D R. Fixed point theory for Lipschitz-type mappings with applica-
tions[M]. Germany: Springer-Verlag, 2009.



284 Journal of Mathematics Vol. 38

[2] Cai Gang, Bu Shangquan. Approximation of common fixed points of a countable family of continuous
pesudocontractions in a uniformly smooth Banach space[J]. Appl. Math. Lett., 2001, 24(2): 1998-
2004.

[3] Takahashi W. Proximal point algorithms and four resolvents of nonlinear operators of monotone
type in Banach spaces[J]. Taiwan. J. Math., 2008, 12(8), 1883-1910.

[4] Wei Li, Liu Yuanxing. Strong and weak convergence theorems for zeros of m — d-accretive mappings
in Banach spaces[J]. J. Math., 2016, 36(3): 573-583.

[6] Wei Li, Tan Ruilin. Iterative scheme with errors for common zeros of finite accretive mappings and
nonlinear elliptic systems[J]. Abstr. Appl. Anal., 2014, Article ID 646843, 9 pages.

[6] Cui Huanhuan, Su Menglong. On sufficient conditions ensuring the norm convergence of an iterative
sequence to zeros of accretive operators[J]. Appl. Math. Comput., 2015, 258 : 67-71.

[7] Wei Li, Agarwal R P. Iterative algorithms for infinite accretive mappings and applications to p-
Laplacian-like differential systems[J]. Fixed Point The. Appl., 2016, 5: 1-23.

[8] Cai Gang, Hu Changsong. Strong convergence theorems of a general iterative process for a finite
family of A;-strictly pseudo-contractions in g-uniformly smooth Banach space[J]. Comput. Math.
Appl., 2010, 59: 149-160.

[9] Browder F E. Semicontractive and semiaccretive mappings in Banach spaces[J]. Bill. Am. Math.
Soc., 1968, 74: 660-665.

[10] Bruck R E. Properties of fixed-point sets of nonexpansive mappings in Banach spaces[J]. Trans. Am.
Math. Soc., 1973, 179: 251-262.

[11] Ceng Luchuan, Khan A R, Ansari Q H, Yao J C. Strong convergence of composite iterative schemes
for zeros of m-accretive operators in Banach spaces[J]. Nonlinear Anal., 2009, 70: 1830-1840.

[12] Maing P E. Strong convergence of projected subgradient methods for nonsmooth and nonstrictly
convex minimization [J]. Set-Valued Anal., 2008, 66 : 899-912.

B REEEMIS L EFRE Rt A EiE

AT, AR
(LT Ib 28 SR HF 5 G0t 55 B, Wb 41 % 050061 )
(2 db ek K2 3 24 B, JT b fR%E 071001)

FE: ARSI T T A mIG AT A FEE S rE A W 8. F FH BanachAl BR 152 15 F0 3T B A2 1581
EH AER T TR ISR A BRI SR T S I AR P A IR A4S, FRHER TN AEE ST
B —RKBAERNM. FIH Visual Basic 6 ZmfE, 4T 7 1 FR50 H LIS IEIERAE & B, 35

PR B 25 A BE 55 HR A TR R A H: 15, ) A 78 T DA IEAH CRIF LR A
X ##17): Banach#lfR; B4 H 7 RIZILGRIET; 38 IE5HF; Visual Basic 6

MR/(2010)F 8 4> 2 B:  47H05; 47H09 FESHS: 017791



