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1 Introduction

For ε = ±1, let En+1
ε be the Euclidean space Rn+1 (when ε = 1) or the Lorentzian space

Rn+1
1 (when ε = −1). The standard inner product on En+1

ε is given by

〈X, Y 〉 = X1Y1 + X2Y2 + · · ·+ εXn+1Yn+1.

Let M be an immersed space-like hypersurface in En+1
ε of which the induced metric g is

positive definite and x : Mn → En+1
ε be the corresponding immersion of M . In this paper,

we also use x to denote the position vector of M . Thus x and the unit normal vector N are
taken as smooth Rn+1-valued functions on Mn. For a suitably chosen function s on Mn, if
the position vector x and the mean curvature H of M satisfy

H + εs〈x,N〉 := λ = const, (1.1)

then M is called a λ-hypersurface with the weight function s.
When s ≡ 0, the corresponding λ-hypersurfaces reduce to hypersurfaces with constant

mean curvature which have been studied extensively. For example, Calabi considered in [1]
the maximal space-like hypersurfaces Mn in the Lorentzian space Rn+1

1 and proposed some
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Bernstein-type problems for a nonlinear equation; for a given complete space-like hypersur-
face Mn in Rn+1

1 with constant mean curvature, it was proved by Xin [24] that if the Gauss
map image of Mn is inside a bounded subdomain of the hyperbolic n-space Hn, then Mn

must be a hyperplane. A similar result was also proved earlier in [22] with extra assump-
tions. In [3], Cao, Shen and Zhu further extended the result by showing that if the image
of the Gauss map lies inside a horoball of Hn, Mn is necessarily a hyperplane. Later, Wu
[23] generalized the above mentioned results and proved a more general Bernstein theorem
for complete space-like hypersurfaces in Lorentzian space with constant mean curvature.

If λ = 0, then Mn is called a self-shrinker with weight s. In particular, if moreover s

is chosen to be a constant, then Mn is nothing but the usual self-shrinker which play an
important role in the study of the mean curvature flow because they describe all possible
blow-ups at a given singularity of the mean curvature flow (see [5] or [8] with λ = 0).
Very recently, there have appeared some interesting results for space-like self-shrinkers. For
example, after the submission of this paper, we were kindly informed the following results:
Chen-Qiu [4] proved a rigidity (uniqueness) theorem that any complete m-dimensional space-
like self-shrinker in a pseudo-Euclidean space Rm+n

n must be an affine plane, which is clearly a
very important Bernstein-type result; Liu-Xin [19] obtained two rigidity theorems for closed
(w.r.t the Euclidean topology) or complete space-like self-shrinkers Mm in Rm+n

n by using
restrictions on the growth of either |H|2 or the log of the w-function; and Ding-Wang [11]
proved a Bernstein-type theorem for space-like graph self-shrinkers of higher codimension by
assuming the sub-exponential decay of the metric determinant det g. As for the geometries
of self-shrinkers in Euclidean space, a lot of interesting results were obtained in recent years,
including some gap theorems and rigidity theorems. Details of this can be found in, for
example, [2, 7, 10, 12–14, 16, 18] etc.

According to [15], λ-hypersurfaces in the Euclidean space Rn+1 were firstly studied by
Mcgonagle and Ross in [20] with s = 1

2
; Guang [15] also studied the λ-hypersurfaces in Rn+1

with s = 1
2

and proved a Bernstein-type theorem showing that smooth λ-hypersuafaces
which are entire graphs and with a polynomial volume growth are necessarily hyperplanes
in Rn+1.

If one takes ε = s = 1 in (1.1), the corresponding λ-hypersurfaces are exactly what
Cheng and Wei defined and studied in [8], where the authors successfully introduced a
weighted volume functional and proved that the λ-hypersuafaces in the Euclidean space
Rn+1 are nothing but the critical points of the above functional. Later, Cheng, Ogaza
and Wei (see [6, 9]) obtained some rigidity and Bernstein-type theorems for these complete
λ-hypersurfaces. In particular, the following result is proved.

Theorem 1.1 [6] Let x : Mn → Rn+1 be an n-dimensional complete λ-hypersurface
with weight s = −1 and a polynomial area growth. Then, either x is isometric to one of the
following embedded hypersurfaces

1. the sphere Sn(r) ⊂ Rn+1 with radius r > 0;

2. the hyperplane Rn ⊂ Rn+1;
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3. the cylinder S1(r)× Rn−1 ⊂ Rn+1;
4. the cylinder Sn−1(r)× R ⊂ Rn+1,

or, there exists some p ∈ Mn such that the squared norm S of the second fundamental form
of x satisfies

(√
S(p)− H2(p)

n
+ |λ| n− 2

2
√

n(n− 1)

)2

+
1
n

(H(p)− λ)2 > 1 +
nλ2

4(n− 1)
.

In this paper, we consider space-like λ-hypersurfaces x : Mn → Rn+1
1 in the Lorentzian

space Rn+1
1 (so that ε = −1). After extending the definitions of λ-hypersurfaces, we gen-

eralize the L-operator that has been effectively used by many authors (see the operators L̃
and L defined, respectively in (2.4) and (2.14)). We shall use these generalized operators to
extend Theorem 1.1 to the complete space-like λ-hypersurfaces in Rn+1

1 .
Let a be a nonzero constant and denote ε = Sgn (a〈x, x〉), where 〈·, ·〉 is the Lorentzian

product. We shall study λ-hypersurfaces in Rn+1
1 either with weight s = εa when 〈x, x〉 6= 0,

or with weight s = 〈x, x〉. Not that, in the first case, we can always choose an a such that
a〈x, x〉 > 0 implying ε = 1.

Now for a given hypersurface Mn, let S denote the squared norm of the second funda-
mental form, and A, I denote the shape operator and the identity map, respectively. Then
the rigidity theorems we prove in this paper are stated as follows.

Theorem 1.2 Let x : Mn → Rn+1
1 be a complete space-like λ-hypersurface with weight

s = εa and 〈x, x〉 6= 0, where a is a constant, such that

∫

Mn

(∣∣∣∣∇
(

S − H2

n

)∣∣∣∣ +
∣∣∣∣L

(
S − H2

n

)∣∣∣∣
)

e−
εa〈x,x〉

2 dVMn < +∞, (1.2)

in which the differential operator L is defined by (2.4). Then, either x is totally umbilical
and thus isometric to one of the following two hypersurfaces:

1. the hyperbolic space Hn(c) ⊂ Rn+1
1 with the sectional curvature c < 0;

2. the Euclidean space Rn ⊂ Rn+1
1 ,

or, there exists some p ∈ Mn such that, at p,

(√
S − H2

n
− |λ| n− 2

2
√

n(n− 1)

)2

+
1
n

(H − λ)2 − nλ2

4(n− 1)
+ εa < 0. (1.3)

Remark 1.1 Theorem 1.2 consists of two conclusions according to the two assumptions
〈x, x〉 > 0 and 〈x, x〉 < 0. In the first case, we have εa > 0. It follows that (1.3) always
fails to true when λ = 0. So we can obtain a Bernstein-type theorem for the usual space-like
self-shrinkers which is unfortunately much weaker compared with that by Chen and Qiu in
[4]. This, on the other hand, motivates us that Theorem 1.2 can be further improved in
general. For example, one may prove with great possibility an improvement of Theorem 1.2
by making applications of the idea and method that are used in [4].
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Theorem 1.3 Let x : Mn → Rn+1
1 be a complete space-like λ-hypersurface with weight

s = 〈x, x〉. Suppose that
∫

Mn

(∣∣∣∣∇
(

S − H2

n

)∣∣∣∣ +
∣∣∣∣L̃

(
S − H2

n

)∣∣∣∣
)

e−
〈x,x〉2

4 dVMn < +∞, (1.4)

4A2 − 4HA

n
+

(
S − H2

n

)
I ≥ 0, (1.5)

where the differential operator L̃ is defined by (2.14). Then, either x is totally umbilical and
thus isometric to one of the following two embedded hypersurfaces:

1. the hyperbolic space Hn(c) ⊂ Rn+1
1 with an arbitrary c < 0;

2. the Euclidean space Rn ⊂ Rn+1
1 ,

or, there exists some p ∈ Mn such that
(√

S(p)− H2(p)
n

− |λ| n− 2

2
√

n(n− 1)

)2

+
1
n

(H(p)− λ)2 − nλ2

4(n− 1)
< 0. (1.6)

Theorems 1.2 and 1.3 will be proved in Section 3; Some necessary lemmas are given in
Section 2.

As a direct corollary of Theorem 1.3, we obtain
Theorem 1.4 Let x : Mn → Rn+1

1 be a complete space-like λ-hypersurface with weight
s = 〈x, x〉. Suppose that (1.4) and (1.5) are satisfied. If

(√
S − 1

n
H2 − |λ| n− 2

2
√

n(n− 1)

)2

+
1
n

(H − λ)2 − nλ2

4(n− 1)
≥ 0, (1.7)

then one of the following two conclusions must hold:
1. λ ≤ (

n
2

) 3
4 , and x is isometric to the hyperbolic space Hn(−r−2) ⊂ Rn+1

1 with r ≥(
n
2

) 1
4 ;
2. λ = 0 and x is isometric to the Euclidean space Rn ⊂ Rn+1

1 .
Proof If condition (1.7) is satisfied for a hypersurface Hn(−r−2) with r > 0, then by

the fact that x = rN , we have λ = H − 〈x, x〉〈x,N〉 = n
r
− r3. If follows that

0 ≤
(√

S − 1
n

H2 − |λ| n− 2

2
√

n(n− 1)

)2

+
1
n

(H − λ)2 − nλ2

4(n− 1)

=
1
n

(H2 − 2λH) =
1
r2

(2r4 − n). (1.8)

Therefore r ≥ (
n
2

) 1
4 which implies directly that λ ≤ (

n
2

) 3
4 . As for the Euclidean space Rn,

λ = 0 is direct by the definition of λ-hypersurfaces.
A similar corollary of Theorem 1.2 can also be derived, which is omitted here.
Corollary 1.5 Let x : Mn → Rn+1

1 be a complete space-like λ-hypersurface with weight
s = 〈x, x〉. Suppose S− H2

n
is constant. If (1.5) and (1.7) are satisfied, then x is isometric to

either the hyperbolic space Hn(−r−2) ⊂ Rn+1
1 with r ≥ (

n
2

) 1
4 or the hyperplane Rn ⊂ Rn+1

1 .
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Proof Since S − H2

n
is constant, condition (1.4) in Theorem 1.3 is trivially satisfied.

Then Corollary 1.5 follows direct from Theorem 1.4.
Remark 1.2 For the special case that λ = 0, that is, for the case of “self-shrinker”

with weight s, the following two conclusions can be easily seen from Theorem 1.4.
Theorem 1.6 Let x : Mn → Rn+1

1 be a complete space-like self-shrinker with weight
s = 〈x, x〉. Suppose that (1.4) and (1.5) are satisfied, then x is isometric to one of the
following two embedded hypersurfaces:

1. the hyperbolic space Hn
(
− 1√

n

)
⊂ Rn+1

1 ;

2. the Euclidean space Rn ⊂ Rn+1
1 .

Proof When λ = 0, it is clear that (1.7) is trivially satisfied. Furthermore, for a
hyperbolic space Hn(−r−2) ⊂ Rn+1

1 , λ = 0 also implies that r2 =
√

n.
Corollary 1.7 Let x : Mn → Rn+1

1 be a complete space-like self-shrinker with weight
s = 〈x, x〉. If S − H2

n
is constant and (1.5) is satisfied, then x is isometric to the either the

hyperbolic space Hn
(
− 1√

n

)
⊂ Rn+1

1 or the hyperplane Rn ⊂ Rn+1
1 .

Proof The assumption that S − H2

n
is constant directly means that (1.4) is trivially

satisfied.

2 Preliminaries and Lemmas

First, we fix the following convention for the ranges of indices

1 ≤ i, j, k, · · · ≤ n, 1 ≤ A,B, C · · · ≤ n + 1.

Let x : Mn → Rn+1
1 be a connected space-like hypersurface of the (n + 1)-dimensional

Lorentzian space Rn+1
1 and {eA}n+1

A=1 be a local orthonormal frame field of Rn+1
1 along x with

dual coframe field {ωA}n+1
A=1 such that, when restricted to x, e1, . . . , en are tangent to x and

thus N := en+1 is the unit normal vector of x. Then with the connection forms ωB
A , we have

dx =
∑

i

ωiei, dei =
∑

j

ωj
i ej + ωn+1

i en+1, den+1 =
∑

i

ωi
n+1ei.

By restricting these forms to Mn and using Cartan’s lemma, we have

ωn+1 = 0, ωn+1
i = ωi

n+1 =
n∑

j=1

hijω
j , hij = hji,

where hij are nothing but the components of the second fundamental form h of x, that is,

h =
∑

hijω
iωj . Then the mean curvature H of x is given by H =

n∑
j=1

hjj . Denote

hijk = (∇h)ijk = (∇kh)ij , hijkl = (∇2h)ijkl = (∇l(∇h))ijk, (2.1)

where ∇ is the Levi-Civita connection of the induced metric and ∇i := ∇ei
. Then the Gauss



258 Journal of Mathematics Vol. 38

equations, Codazzi equations and Ricci identities are given respectively by

Rijkl = hikhjl − hilhjk, hijk = hikj , (2.2)

hijkl − hijlk =
n∑

m=1

himRjmkl +
n∑

m=1

hmjRimkl, (2.3)

where Rijkl are the components of the Riemannian curvature tensor. For a function F

defined on Mn, the covariant derivatives of F are denoted by

F,i = (∇F )i = ∇iF, F,ij = (∇2F )ij = (∇j(∇F ))i, · · · .

Let ∆ be the Laplacian operator of the induced metric on Mn. In case that 〈x, x〉 does not
change its sign, we can define

Lv = 4v − εa〈x,∇v〉, ∀v ∈ C2(Mn), (2.4)

where, for any constant a, ε = Sgn (a〈x, x〉). Then L is an elliptic operator and

Lv = e
εa〈x,x〉

2 div
(
e−

εa〈x,x〉
2 ∇v

)
, ∀v ∈ C2(Mn). (2.5)

In fact, for v ∈ C2(Mn), we find

e
εa〈x,x〉

2 div
(
e−

εa〈x,x〉
2 ∇v

)

=e
εa〈x,x〉

2

(
e−

εa〈x,x〉
2 div (∇v) +

〈
∇e−

εa〈x,x〉
2 ,∇v

〉)

=e
εa〈x,x〉

2

(
e−

εa〈x,x〉
2 4v + e−

εa〈x,x〉
2 (−εa〈x, xi〉)〈ei,∇v〉

)

=4v − εa〈x,∇v〉 = Lv.

Lemma 2.1 [5] Let x : Mn → Rn+1
1 be a complete space-like hypersurface for which

〈x, x〉 does not change its sign. Then, for any C1-function u on Mn with compact support,
it holds that

∫

Mn

u(Lv)e−
εa〈x,x〉

2 dVMn = −
∫

Mn

〈∇v,∇u〉e− εa〈x,x〉
2 dVMn , ∀v ∈ C2(Mn). (2.6)

Proof By (2.5), we find
∫

Mn

u(Lv)e−
εa〈x,x〉

2 dVMn =
∫

Mn

u
(
e

εa〈x,x〉
2 div

(
e−

εa〈x,x〉
2 ∇v

))
e−

εa〈x,x〉
2 dVMn

=
∫

Mn

u div
(
e−

εa〈x,x〉
2 ∇v

)
dVMn

=
∫

Mn

(
div

(
ue−

εa〈x,x〉
2 ∇v

)
−

〈
∇u, e−

εa〈x,x〉
2 ∇v

〉)
dVMn

=
∫

Mn

div
(
ue−

εa〈x,x〉
2 ∇v

)
dVMn −

∫

Mn

〈∇u,∇v〉e− εa〈x,x〉
2 dVMn .
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Hence there are two cases to be considered:
Case (1) Mn is compact without boundary. In this case, we can directly use the

divergence theorem to get
∫

Mn

div
(
ue−

εa〈x,x〉
2 ∇v

)
dVMn = 0.

Case (2) Mn is complete and noncompact. In this case, we can find a geodesic ball
Br(o) big enough such that Suppu ⊂ Br(o). It follows that

∫

Mn

div
(
ue−

εa〈x,x〉
2 ∇v

)
dVMn =

∫

Br(o)

div
(
ue−

εa〈x,x〉
2 ∇v

)
dVBr(o)

=−
∫

∂Br(o)

〈
N, ue−

εa〈x,x〉
2 ∇v

〉
dV∂Br(o) = 0.

It follows that
∫

Mn

u(Lv)e−
εa〈x,x〉

2 dVMn = −
∫

Mn

〈∇v,∇u〉e− εa〈x,x〉
2 dVMn .

Corollary 2.2 Let x : Mn → Rn+1
1 be a complete space-like hypersurface. If u, v are

C2-functions satisfying
∫

Mn

(|u∇v|+ |∇u||∇v|+ |uLv|)e− εa〈x,x〉
2 dVMn < +∞, (2.7)

then we have
∫

Mn

u(Lv)e−
εa〈x,x〉

2 dVMn = −
∫

Mn

〈∇u,∇v〉e− εa〈x,x〉
2 dVMn . (2.8)

Proof We will use square brackets [·] to denote weighted integrals

[f ] =
∫

Mn

fe−
εa〈x,x〉

2 dVMn . (2.9)

Given any φ that is C1-with compact support, we can apply Lemma 2.1 to φu and v to get

[φuLv] = −[φ〈∇v,∇u〉]− [u〈∇v,∇φ〉]. (2.10)

Now we fix one point o ∈ M and, for each j = 1, 2, · · · , let Bj be the intrinsic ball of radius
j in Mn centered at o. Define φj to be one smooth cutting-off function on Mn that cuts
off linearly from one to zero between Bj and Bj+1. Since |φj | and |∇φj | are bounded by
one, φj → 1 and |∇φj | → 0, as j → +∞. Then the dominated convergence theorem (which
applies because of (2.7)) shows that, as j → +∞, we have the following limits

[φjuLv] → [uLv], (2.11)

[φj〈∇v,∇u〉] → [〈∇v,∇u〉], (2.12)

[u〈∇v,∇φ〉] → 0. (2.13)
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Replacing φ in (2.10) with φj , we obtain the corollary.
Next we consider the case that s = 〈x, x〉 and define

L̃v = 4v − 〈x, x〉〈x,∇v〉, ∀v ∈ C2(Mn). (2.14)

Then similar to (2.5), we have for all v ∈ C2(Mn),

e
〈x,x〉2

4 div
(
e−

〈x,x〉2
4 ∇v

)

=e
〈x,x〉2

4

(
e−

〈x,x〉2
4 div (∇v) +

〈
∇e−

〈x,x〉2
4 ,∇v

〉)

=e
〈x,x〉2

4

(
e−

〈x,x〉2
4 4v + e−

〈x,x〉2
4

(
−2〈x, x〉

4
2〈x, xi〉

)
〈ei,∇v〉

)

=4v − 〈x, x〉〈x,∇v〉 = L̃v. (2.15)

Lemma 2.3 If x : Mn → Rn+1
1 is a complete space-like hypersurface, u is a C1-function

with compact support, and v is a C2-function, then
∫

Mn

u(L̃v)e−
〈x,x〉2

4 dVMn = −
∫

Mn

〈∇v,∇u〉e− 〈x,x〉2
4 dVMn . (2.16)

Proof Using (2.15), we have
∫

Mn

u(L̃v)e−
〈x,x〉2

4 dVMn =
∫

Mn

u
(
e
〈x,x〉2

4 div
(
e−

〈x,x〉2
4 ∇v

))
e−

〈x,x〉2
4 dVMn

=
∫

Mn

u div
(
e−

〈x,x〉2
4 ∇v

)
dVMn

=
∫

Mn

(
div

(
ue−

〈x,x〉2
4 ∇v

)
−

〈
∇u, e−

〈x,x〉2
4 ∇v

〉)
dVMn

=
∫

Mn

div
(
ue−

〈x,x〉2
4 ∇v

)
dVMn −

∫

Mn

〈∇u,∇v〉e− 〈x,x〉2
4 dVMn .

(1) If Mn is compact without boundary, then by the divergence theorem,
∫

Mn

div
(
ue−

〈x,x〉2
4 ∇v

)
dVMn = 0.

(2) If Mn is complete and noncompact, then there exists some geodesic ball Br(o) big
enough such that Suppu ⊂ Br(o). It follows that

∫

Mn

div
(
ue−

〈x,x〉2
4 ∇v

)
dVMn =

∫

Br(o)

div
(
ue−

〈x,x〉2
4 ∇v

)
dVBr(o)

=−
∫

∂Br(o)

〈
N, ue−

〈x,x〉2
4 ∇v

〉
dV∂Br(o) = 0.

Therefore ∫

Mn

u(L̃v)e−
〈x,x〉2

4 dVMn = −
∫

Mn

〈∇v,∇u〉e− 〈x,x〉2
4 dVMn .
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Corollary 2.4 Let x : Mn → Rn+1
1 be a complete space-like hypersurface. If u, v are

C2-functions satisfying
∫

Mn

(|u∇v|+ |∇u||∇v|+ |uL̃v|)e− 〈x,x〉2
4 dVMn < +∞, (2.17)

then we have ∫

Mn

u(L̃v)e−
〈x,x〉2

4 dVMn = −
∫

Mn

〈∇u,∇v〉e− 〈x,x〉2
4 dVMn . (2.18)

Proof The proof is the same as that of Corollary 2.2 and is omitted.
The following lemma is also needed in this paper.
Lemma 2.5 [21] Let µ1, · · · , µn be real numbers satisfying

∑
i

µi = 0,
∑

i

µ2
i = β2

with β a nonnegative constant. Then

− n− 2√
n(n− 1)

β3 ≤
∑

i

µ3
i ≤

n− 2√
n(n− 1)

β3

with either equality holds if and only if (n− 1) of µi are equal to each other.

3 Proof of Main Theorems

3.1 Proof of Theorem 1.2

Since H − εa〈x,N〉 = λ, we have

H,i =(λ + εa〈x,N〉),i = εa〈x,N〉,i =
∑

k

εahik〈x, ek〉,

Hij =
∑

k

εahikj〈x, ek〉+
∑

k

εahik〈Xj , ek〉+
∑

k

εahik〈x, ek,j〉

=
∑

k

εahikj〈x, ek〉+ εahij +
∑

k

εahikhkj〈x,N〉

=
∑

k

εahikj〈x, ek〉+ εahij +
∑

k

hikhkj(H − λ).

Using the Codazzi equation in (2.2), we infer

4H =
∑

i

H,ii = εa〈x,∇H〉+ εaH + S(H − λ),

where S =
∑
i,k

h2
ik. It then follows that

LH = 4H − εa〈x,∇H〉 = aεH + S(H − λ),
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implying that

1
2
LH2 =

1
2
(4H2 − εa〈x,∇H2〉) =

1
2

(∑
i

(H2),ii − εa〈x,∇H2〉
)

=
1
2
(2|∇H|2 + 2H4H − 2εaH〈x,∇H〉) = |∇H|2 + H(4H − εa〈x,∇H〉)

=|∇H|2 + εaH2 + SH(H − λ). (3.1)

By making use of the Ricci identities and the Gauss-Codazzi equations, we have

Lhij =4hij − εa〈x,∇hij〉 =
∑

k

hki,jk − εa〈x,∇hij〉

=
∑

k

hki,kj +
∑
m,k

hmiR
m
kjk +

∑
k,m

hkmRm
ijk − εa〈x,∇hij〉

=
∑

k

hkk,j +
∑
m,k

hmiRkmjk +
∑
k,m

hkmRimjk − εa〈x,∇hij〉

=H,ij −H
∑
m

himhmj + Shij − εa〈x,∇hij〉

=(εa + S)hij − λ
∑

k

hikhkj .

Therefore it holds that

1
2
LS =

1
2


4

∑
i,j

(hij)2 −
∑

k

εa〈x, ek〉
(∑

i,j

(hij)2
)

,k




=
∑
i,j,k

h2
ijk + (εa + S)S − λ

∑
i,j,k

hikhkjhij

=
∑
i,j,k

h2
ijk + (εa + S)S − λf3, (3.2)

where f3 =
∑
i,j,k

hijhjkhki. Let λi be the principal curvatures of x and denote

µi = λi − H

n
, 1 ≤ i ≤ n.

For any point p ∈ Mn, suitably choosing {e1, e2, · · · , en} around p such that hij(p) = λi(p)δij .
Then at the given point p,

f3 =
∑

i

λ3
i =

∑
i

(
µi +

H

n

)3

= B3 +
3
n

HB +
1
n2

H3,

where

B =
∑

i

µ2
i = S − H2

n
, B3 =

∑
i

µ3
i .
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By a direct computation with (3.1) and (3.2), we have

1
2
LB =

1
2
LS − 1

n

(
1
2
LH2

)

=
∑
i,j,k

h2
ijk + (εa + S)S − λf3 − 1

n
(|∇H|2 + εaH2 + SH(H − λ))

=
∑
i,j,k

h2
ijk −

1
n
|∇H|2 + (εa + S)S − λf3 − 1

n
εaH2 − S(H − λ)

H

n

=
∑
i,j,k

h2
ijk −

1
n
|∇H|2 + (εa + B)B +

H2B

n
− λB3 − 2

n
λHB.

Since
∑
i

µi = 0,
∑
i

µ2
i = B, we have by Lemma 2.5

|B3| ≤ n− 2√
n(n− 1)

B
3
2 ,

where the equality holds if and only if at least n− 1 of µis are equal. Consequently,

1
2
LB ≥

∑

i,j,k

h2
ijk −

1
n
|∇H|2 + (εa + B)B +

1
n

H2B − |λ| n− 2√
n(n− 1)

B
3
2 − 2

n
λHB

=
∑

i,j,k

h2
ijk −

1
n
|∇H|2 + B

(
(B + εa) +

1
n

H2 − |λ| n− 2√
n(n− 1)

B
1
2 − 2

n
λH

)

=
∑

i,j,k

h2
ijk −

1
n
|∇H|2 + B




(√
B − |λ| n− 2

2
√

n(n− 1)

)2

+
1
n

(H − λ)2 + εa− nλ2

4(n− 1)


 .

Because of (1.2), we can apply Corollary 2.2 to functions 1 and B = S − H2

n
to obtain

0 ≥
∫

Mn


∑

i,j,k

h2
ijk −

1
n
|∇H|2


 e−ε

a〈x,x〉
2 dVMn

+
∫

Mn

B




(√
S − H2

n
− |λ| n− 2

2
√

n(n− 1)

)2

+
1
n

(H − λ)2 − nλ2

4(n− 1)
+ εa


 e−ε

a〈x,x〉
2 dVMn .

(3.3)

On the other hand, by use of the Codazzi equations and the Schwarz inequality, we find

∑
i,j,k

h2
ijk = 3

∑
i 6=k

h2
iik +

∑
i

h2
iii +

∑
i 6=j 6=k 6=i

h2
ijk,

1
n
|∇H|2 ≤

∑
i,k

h2
iik.

So that ∑
i,j,k

h2
ijk −

1
n
|∇H|2 ≥ 2

∑
i 6=k

h2
iik +

∑
i 6=j 6=k 6=i

h2
ijk ≥ 0, (3.4)

in which the equalities hold if and only if hijk = 0 for any i, j, k.
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If B 6≡ 0 and, for all p ∈ Mn, (1.3) does not hold, that is
(√

S − H2

n
− |λ| n− 2

2
√

n(n− 1)

)2

+
1
n

(H − λ)2 − nλ2

4(n− 1)
+ εa ≥ 0

everywhere on Mn, then the right hand side of (3.3) is nonnegative. It then follows that

∑
i,j,k

h2
ijk −

1
n
|∇H|2 ≡ 0 (3.5)

and (√
S − H2

n
− |λ| n− 2

2
√

n(n− 1)

)2

+
1
n

(H − λ)2 − nλ2

4(n− 1)
+ εa ≡ 0 (3.6)

on where B 6= 0. By (3.4) and (3.5), the second fundamental form h of x is parallel. In
particular, x is isoparametric and thus both B and H are constant. Since B 6= 0, the equality
(3.6) shows that x is a complete isoparametric space-like hypersurface in Rn+1

1 of exactly two
distinct principal curvatures one of which is simple. It then follows by [17] and B 6= 0 that
x is isometric to one of the product spaces Hn−1(c)×R1 ⊂ Rn+1

1 and H1(c)×Rn−1 ⊂ Rn+1
1 .

But it is clear that, for both of these two product spaces, the function 〈x, x〉 does change its
sign, contradicting the assumption. This contradiction proves that either B ≡ 0, namely, x

is totally umbilical and isometric to either of the hyperbolic n-space Hn(c) ⊂ Rn+1
1 and the

Euclidean n-space Rn ⊂ Rn+1
1 , or there exists some p ∈ Mn such that (1.3) holds.

The proof of Theorem 1.2 is thus finished.

3.2 Proof of Theorem 1.3

Since the idea and method here are the same as those in the proof of Theorem 1.2, we
omit the computation detail.

First, by H − 〈x, x〉〈x,N〉 = λ, we have

H,i =2〈x, ei〉〈x,N〉+ 〈x, x〉
∑

k

hik〈x, ek〉,

H,ij =2δij〈x,N〉+ 2hij〈x,N〉2 + 2
∑

k

hjk〈x, ei〉〈x, ek〉

+ 2
∑

k

hik〈x, ek〉〈x, ej〉+
∑

k

hikj〈x, x〉〈x, ek〉

+ 〈x, x〉hij +
∑

k

hikhkj(H − λ).

Then by using the Codazzi equation in (2.2), we find

4H =2n〈x,N〉+ 2H〈x,N〉2 + 4
∑
i,k

hik〈x, ei〉〈x, ek〉

+
∑

i

H,i〈x, x〉〈x, ei〉+ H〈x, x〉+ S(H − λ).
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Second, by the definition of L̃, we find

L̃H =4H − 〈x, x〉〈x,∇H〉
=2n〈x,N〉+ 2H〈x,N〉2 + 4

∑
i,k

hik〈 X, ei〉〈x, ek〉+ H〈x, x〉+ S(H − λ),

implying

1
2
L̃H2 =

1
2
(4H2 − 〈x, x〉〈x,∇H2〉)

=|∇H|2 + 2nH〈x,N〉+ 2H2〈x,N〉2

+ 4H
∑
i,k

hik〈x, ei〉〈x, ek〉+ H2〈x, x〉+ SH(H − λ). (3.7)

On the other hand,

L̃hij =4hij − 〈x, x〉〈x,∇hij〉
=H,ij +

∑
k,m

hmiRkmjk +
∑
k,m

hkmRimjk − 〈x, x〉〈x,∇hij〉

=H,ij + Shij −H
∑
m

hmihmj − 〈x, x〉〈x,∇hij〉

=2δij〈x,N〉+ 2hij〈x,N〉2 + 2
∑

k

hjk〈x, ei〉〈x, ek〉

+ 2
∑

k

hik〈x, ek〉〈x, ej〉+
∑

k

hikj〈x, x〉〈x, ek〉+ 〈x, x〉hij

+
∑

k

hikhkj(H − λ) + Shij −H
∑
m

hmihmj − 〈x, x〉〈x,∇hij〉

=2δij〈x,N〉+ 2hij〈x,N〉2 + 2
∑

k

hjk〈x, ei〉〈x, ek〉

+ 2
∑

k

hik〈x, ek〉〈x, ej〉+ 〈x, x〉hij + Shij − λ
∑

k

hikhkj .

It follows that

1
2
L̃S =

1
2

(
4

∑
i,j

(hij)2 − 〈x, x〉
〈

x,∇
(∑

i,j

(hij)2
)〉)

=
∑

k

h2
ijk + 2H〈x,N〉+ 2S〈x,N〉2 + 4

∑
i,j,k

hijhjk〈x, ei〉〈x, ek〉

+ 〈x, x〉S + S2 − λf3, (3.8)

where again f3 =
∑
i,j,k

hijhjkhki.

Denote by x> = 〈x, ei〉ei be the tangential part of the position vector x. Then, as
in the proof of Theorem 1.2, we can choose a suitable frame field {e1, e2, · · · , en} making
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diagonal the second fundamental form hij around each point p ∈ Mn, and perform a direct
computation using (1.5), (3.7) and (3.8) to obtain

1
2
L̃B =

1
2
L̃S − 1

n

(
1
2
L̃H2

)

=
∑
i,j,k

h2
ijk + B〈x,N〉2 − 1

n
|∇H|2 + x>

(
4A2 + BI − 4HA

n

)
(x>)t

+ B2 +
H2B

n
− λB3 − 2λHB

n

≥
∑
i,j,k

h2
ijk −

1
n
|∇H|2 + B2 +

H2B

n
− λB3 − 2λHB

n
,

where assumption (1.5) has been used. Once again we use Lemma 2.5 to get

|B3| ≤ n− 2√
n(n− 1)

B
3
2 ,

where the equality holds if and only if at least n− 1 of µi are equal. It then follows that

1
2
L̃B ≥

∑
i,j,k

h2
ijk −

1
n
|∇H|2 + B2 +

H2B

n
− |λ| n− 2√

n(n− 1)
B

3
2 − 2

n
λHB

=
∑
i,j,k

h2
ijk −

1
n
|∇H|2 + B

(
B +

H2

n
− |λ| n− 2√

n(n− 1)
B

1
2 − 2

n
λH

)

=
∑
i,j,k

h2
ijk −

1
n
|∇H|2 + B




(
√

B − |λ| n− 2

2
√

n(n− 1)

)2

+
1
n

(H − λ)2 − nλ2

4(n− 1)


 .

(3.9)

Because of (1.4), we can apply Corollary 2.4 to functions 1 and B = S − H2

n
to find

0 ≥
∫

Mn

(∑
i,j,k

h2
ijk −

1
n
|∇H|2

)
e−

〈x,x〉2
4 dVMn (3.10)

+
∫

Mn

B




(
√

B − |λ| n− 2

2
√

n(n− 1)

)2

+
1
n

(H − λ)2 − nλ2

4(n− 1)


 e−

〈x,x〉2
4 dVMn . (3.11)

If B 6≡ 0 and, for all p ∈ Mn, (1.6) does not hold, that is
(√

S(p)− H2(p)
n

− |λ| n− 2

2
√

n(n− 1)

)2

+
1
n

(H(p)− λ)2 − nλ2

4(n− 1)
≥ 0

everywhere on Mn, then the right hand side of (3.10) is nonnegative. It then follows that

∑
i,j,k

h2
ijk −

1
n
|∇H|2 ≡ 0, (3.12)
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and at points where B 6= 0,

(√
S(p)− H2(p)

n
− |λ| n− 2

2
√

n(n− 1)

)2

+
1
n

(H(p)− λ)2 − nλ2

4(n− 1)
= 0. (3.13)

By (3.12) and (3.13), the second fundamental form h of x is parallel. In particular, x is
isoparametric and thus both B and H are constant. Since B 6= 0, equality (3.6) shows
that x is a complete isoparametric space-like hypersurface in Rn+1

1 of exactly two distinct
principal curvatures one of which is simple. It then follows by [17] and B 6= 0 that x is
isometric to one of the product spaces Hn−1(c)×R1 ⊂ Rn+1

1 and H1(c)×Rn−1 ⊂ Rn+1
1 . But

it is clear that, for both of these two product spaces, the function 〈x, x〉 is not a constant
so that both Hn−1(c)× R1 ⊂ Rn+1

1 and H1(c)× Rn−1 ⊂ Rn+1
1 could not be λ-hypersurfaces

with s = 〈x, x〉. This contradiction proves that either B ≡ 0, namely, x is totally umbilical
and isometric to either of the hyperbolic n-space Hn(c) ⊂ Rn+1

1 and the Euclidean n-space
Rn ⊂ Rn+1

1 , or there exists some p ∈ Mn such that (1.6) holds.
The proof of Theorem 1.3 is thus finished.
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Lorentz 空间Rn+1
1 中类空λ-超曲面的刚性定理

李兴校,常秀芬

(河南师范大学数学与信息科学学院, 河南新乡 453007)

摘要: 本文研究了Lorentz 空间Rn+1
1 中完备的类空λ-超曲面的刚性问题. 利用推广了的L-算子的性质

和一些积分不等式, 最终得到了关于这类超曲面的若干刚性定理, 其中包括Rn+1
1 中加权的完备类空自收缩子

的刚性, 推广了此前欧氏空间完备λ-超曲面的相关结果.
关键词: Lorentz 空间; 刚性定理; 类空λ-超曲面; 自收缩子
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