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Abstract: In this paper, we consider the Julia sets of NCP maps as Jordan curves. By the

way of net and conformal iterated function system, we obtain the general result of the Julia set in

which case as the Jordan curves, which generalizes the results of the complex analytic dynamical

systems of Julia sets of rational functions as Jordan curves.
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1 Introduction and Main Results

Let f(z) be a rational map of degree d = deg f ≥ 2 on the complex sphere C. The Julia
set J(f) of a rational function f is defined to be the closure of all repelling periodic points of
f , and its complement set is called Fatou set F (f). It is known that J(f) is a perfect set (so
J(f) is uncountable, and no point of J(f) is isolated), and also that if J(f) is disconnected,
then it has infinitely many components.

Let f : C → C be a rational function. We call a compact forward invariant subset
X ⊂ J(f) (i.e. satisfying property f(X) ⊂ X) hyperbolic if there exists n ≥ 1 such that

|(fn)
′
(x)| > 1

for every x ∈ X and fn is topologically conjugate to a subshift of finite type. If only condition
|(fn)

′
(x)| > 1 is satisfied, we call the map f |X expanding.

We call a rational function f : J(f) 7→ J(f) hyperbolic if there exists n ≥ 1 such that

inf{(fn)
′
(z)| : z ∈ J(f)} > 1.

Denote CV (f) the critical values of a rational function f . Let

PCV (f) =
⋃
n≥1

fn(CV (f)).

It follows from [1, Theorem 2.2] that a rational function f : J(f) 7→ J(f) is hyperbolic if
and only if

PCV (f)
⋂

J(f) = ∅.
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Denote by J(f) the Julia set of a rational function. A rational map f is expansive if
the Julia set J(f) contains no critical points of f . It follows from [1] that each hyperbolic
rational function is expansive and that a rational function is expansive but not hyperbolic
if and only if the Julia set contains no critical points of f but intersect the ω-limit set of
critical points.

We call expansive but not hyperbolic rational functions parabolic. It follows from [1]
that a rational function f : J(f) 7→ J(f) is expansive but not hyperbolic if and only if the
Julia set J(f) contains no critical points of f but contains at least one parabolic point.

We recall that if T : X → X is a continuous map of a topological space X, then for
every point x ∈ X, the ω-limit set of x denoted by ω(x) is defined to be the set of all limit
points of the sequence {T n(x)}n≥0. We call a point x recurrent if x ∈ ω(x); otherwise x is
called non-recurrent.

A rational function f : C → C is called an NCP map if all critical points contained in
the Julia set J(f) are non-recurrent.

The class of NCP maps obviously contains all expanding and parabolic maps. It also
comprises the important class of so called subexpanding maps which are defined by the
requirement that f |ω(Crit(f))∩J(f) is expanding and the class of geometrically finite maps
defined by the property that the forward trajectory of each critical point contained in the
Julia set is finite and disjoint from ω-limit set.

Let f(z) be a map of degree ≥ 2. A component D of the Fatou set F (f) is said to be
completely invariant, if

f−1(D) = D = f(D).

A Jordan arc γ in C is defined to be the image of the real interval [0, 1] under a homeomor-
phism ϕ. If the interval [0, 1] is replaced by the unit circle in the above definition then γ is
said to be a Jordan curve.

In this paper, we establish the following main theorem.
Main Theorem Let f(z) be an NCP map of degree ≥ 2, and suppose that F (f)

is the union of exactly two completely invariant components. Then J(f) is their common
boundary and is a Jordan curve.

2 Preliminaries and the Construction of a Net

Let f be an NCP map. Denote by Λ(f) the set of all parabolic periodic points of f

(these points belong to the Julia set and have an essential influence on its fractal structure),
and Crit(f) of all critical points of f . We put

Crit(J(f)) = Crit(f) ∩ J(f).

Set

Sing(f) =
⋃
n≥0

f−n(Λ(f) ∪ Crit(J(f))).
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Definition 2.1 We define the conical set Jc(f) of f as follow. First, say x belongs to
Jc(f, r) if for any ε > 0, there is a neighborhood U of x and n > 0 such that diam(U) < ε

and fn : U → B(fn(x), r) is a homeomorphism. Then set Jc(f) =
⋃

r>0

Jc(f, r). We have

x ∈ Jc(f) if and only if arbitrary small neighborhood of x can be blow up univalently by the
dynamics to balls of definite size centered at fn(x).

Lemma 2.1 (see [2]) If f : J(f) → J(f) is an NCP map, then

Jc(f) = J(f) \ Sing(f).

Note that Curtis T. McMullen used the term radial Julia set Jrad(f) instead of conical
set Jc(f) in analogy with Kleinian groups, see ref. [3]. By paper [3], we have the set Sing(f)
is countable.

Let 0 < λ < 1. Then there exist an integer m ≥ 1, C > 0, an open topological disk U

containing no critical values of f up to order m and analytic inverse branches f−mn
i : U → C

of fmn(i = 1, · · · , kn ≤ dnm, n ≥ 0), satisfying
(1) ∀n ≥ 0,∀1 ≤ i ≤ kn+1,∃1 ≤ j ≤ kn, fm ◦ f

−m(n+1)
i = f−mn

j ,
(2) diam(f−mn

i (U)) ≤ cλn for n = 0, 1, · · · and i = 1, · · · , kn,
(3) for each fixed n ≥ 1, for all i = 1, · · · , kn the sets f−mn

i (U) are pairwise disjoint and
f−mn

i (U) ⊂ U .
Now we state as a lemma the following consequence of (1)–(3).
Lemma 2.2 For each n, let Nn =

⋃{f−n
j (U) : j = 1, · · · , kn} and let N =

⋃Nn. Then
N is a net of Jc(f), i.e., any two sets in N are either disjoint or one is a subset of the other.

3 Conformal Iterated Function System

In paper [4], Urbanski and Zdunik provided the framework to study infinite conformal
iterated function systems. Now we recall this notion and some of its basic properties. Let I

be a countable index set with at least two elements and let S = {φi : X → X : i ∈ I} be a
collection of injective contractions from a compact metric space X (equipped with a metric
ρ) into X for which there exists 0 < s < 1 such that ρ(φi(x), φi(y)) ≤ sρ(x, y) for every
i ∈ I and for every pair of points x, y ∈ X. Thus system S is uniformly contractive. Any
such collection S of contractions is called an iterated function system. We are particularly
interested in the properties of the limit set defined by such a system. We can define this set
as the image of the coding space under a coding map as follows. Let I∗ =

⋃
n≥1

In, the space

of finite words, and for τ ∈ I∗, n ≥ 1, let φτ = φτ1 ◦ φτ2 ◦ · · · ◦ φτn
. Let I∞ = {{τn}∞n=1} be

the set of all infinite sequences of elements of I. If τ ∈ I∗ ∪ I∞ and n ≥ 1 does not exceed
the length of τ , we denote by τ |n the word τ1τ2 · · · τn. Since given τ ∈ I∞, the diameters of
the compact sets φτ |n(X), n ≥ 1, converge to zero and since they form a descending family,
the set

∞⋂
n=0

φτ |n(X)
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is a singleton therefor, denoting its only element by π(τ), defines the coding map

π : I∞ → X.

The main object in the theory of iterated function systems is the limit set defined as follows.

J = π(I∞) =
⋃

τ∈I∞

∞⋂
n=1

φτ |n(X) =
⋂
n≥1

⋃

|τ |=n

φτ (X).

Observe that J satisfied the natural invariance equality, J =
⋃
i∈I

φi(J).

Notice (1) If I is finite, then J is compact and this property fails for infinite systems
by paper [4].

(2) In Lemma 3.3, we shall build recursively our iterated function system St = {S1
t , S2

t ,

· · · , Sn
t }, and n(= I) is finite.

Let X(∞) be the set of limit points of all sequences xi ∈ φi(X), i ∈ I
′
, where I

′
ranges

over all infinite subsets of I, see ref. [4].
Lemma 3.1 (see [4]) If lim

i∈I
diam(φi(X)) = 0, then J = J ∪ ⋃

ω∈I∗
φω(X(∞)).

An iterated function system S = {φi : X → X : i ∈ I} is said to satisfy the open
set condition if there exists a nonempty open set U ⊂ X (in the topology of X) such that
φi(U) ⊂ U for every i ∈ I and φi(U) ∩ φj(U) = ∅ for every pair i, j ∈ I, i 6= j (we do not
exclude clφi(U) ∩ clφj(U) 6= ∅).

An iterated function system S = {φi : X → X : i ∈ I} is said to be conformal if X ⊂ Rd

for some d ≥ 1 and the following conditions are satisfied.
(a) Open set condition (OSC). φi(IntX) ∩ φj(IntX) = ∅ for every pair i, j ∈ I, i 6= j.
(b)

⋃
i∈I

φi(X) ⊂ IntX.

(c) There exists an open connected set V such that X ⊂ V ⊂ Rd such that all maps
φi, i ∈ I, extend to C1 conformal diffeomorphisms of V into V (note that for d = 1 this
just means that all the maps φi, i ∈ I, are monotone diffeomorphism, for d = 2 the words
conformal mean holomorphic and antiholomorphic, and for d = 3, the maps φi, i ∈ I are
Möbius transformations).

(d) (Cone condition) There exist α, l > 0 such that for every x ∈ ∂X and there exists an
open cone Con(x, u, α) ⊂ Int(V ) with vertex x, the symmetry axis determined by vector u of
length l and a central angle of Lebesgue measure α, here Con(x, u, α) = {y : 0 < (y−x, u) ≤
cos α||y − x|| ≤ l}.

(e) Bounded distortion property (BDP). There exists K ≥ 1 such that

|φ′ω(y)| ≤ K|φ′ω(x)|

for every ω ∈ I∗ and every pair of points x, y ∈ V , where |φ′ω(x)| means the norm of the
derivative, see ref. [9, 10].

Definition 3.1 A bounded subset X of a Euclidean space (or Reimann sphere) is said
to be porous if there exists a positive constant c > 0 such that each open ball B centered at
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a point of X and of an arbitrary radius 0 < r ≤ 1 contains an open ball of radius cr disjoint
from X. If only balls B centered at a fixed point x ∈ X are discussed above, X is called
porous at x, see ref. [5].

Lemma 3.2 (see [5]) The Julia set of each NCP map, if different from C, is porous.
Lemma 3.3 If f is an NCP map, then Jc(f) admits a conformal iterated function

system satisfying conditions (a)–(e).
Proof Let f be an NCP map. By Lemma 2.2, Jc(f) admits a net such that Bi∩Bj = ∅,

i 6= j. Moreover, we may require the existence of an integer q ≥ 1 and σ > 0 such that the
following holds:

If x ∈ Jc(f), say x ∈ Bi, and f qn(x) ∈ Bt, then there exists a unique holomorphic
inverse branch f−qn

x : U(Bt, 2σ) → C of f qn sending f qn(x) to x. Moreover f−qn
x (Bt) ⊂ Bi

and taking q sufficiently large, we have

f−qn
x (U(Bt, σ/2)) ⊂ Int(Bi)

for sufficiently small σ, then

f−qn
x (Bt) ⊂ Bi = Int(Bi). (3.1)

Let n > 1 be finite. For every t = 1, 2, · · · , n, we now build recursively our iterated
function system St as a disjoint union of the families Sj

t , j ≥ 1, as follows. S1
t consists of

all the maps f−q
x , where x, f q(x) ∈ Jc(f) ∩ Bt. S2

t consists of all the maps f−2q
x , where

x, f2q(x) ∈ Jc(f) ∩ Bt and f q(x) /∈ Bt. Suppose that the families S1
t , S2

t , · · · , Sn−1
t have

been already constructed. Then Sn
t is composed of all the maps f−qn

y such that y, f qn(y) ∈
Jc(f) ∩Bt and f qj(y) /∈ Bt for every 1 ≤ j ≤ n− 1.

Let V ⊃ Jc(f) be an open set constructed by the net such that it disjoints from the
parabolic and critical points and their inverse orbits of f . For any x ∈ V and finite n < ∞,
we have

0 < |(f−n(x))
′ | ≤ M < ∞,

then
|(f−n(y))

′ | ≤ K|(f−n(x))
′ |,

where x, y ∈ V and 1 ≤ K < ∞ is a constant. So condition (e) bounded distortion property
(BDP) holds. It is evident that fn is holomorphic and antiholomorphic of V into V for
all n ≥ 1, then condition (c) holds. Since J(f) is porous, and condition (d) is satisfied.
Condition (b) follows immediately from (3.1). In order to prove condition (a), take two
distinct maps f−qm

x and f−qn
y belong to St. Without loss of generality we may assume that

m ≤ n. Suppose on the contrary that

f−qm
x (Bt) ∩ f−qn

y (Bt) 6= ∅.

Then

∅ 6= f qm(f−qm
x (Bt) ∩ f−qn

y (Bt)) ⊂ Bt ∩ f qm(f−qn
y (Bt)) = Bt ∩ f

−q(n−m)

fqm(y) (Bt).
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Hence f
−q(n−m)

fqm(y) (Bt) ⊂ Bt, and therefor f qm(y) ∈ Bt. Due to our construction of the system
St, we have f qn(y) ∈ Bt, and this implies that m = n. But then f−qn

x (Bt) ∩ f−qn
y (Bt) = ∅

since f−qn
x and f−qn

y are distinct inverse branches of the same map f qn. This contradiction
finishes the proof of Lemma 3.3.

4 Proof of Main Result

Given x ∈ C, θ, r > 0, we put

Con(x, θ, r) = Con(x, η, r) ∪ Con(x,−η, r),

where η is a representative of θ. We recall that a set Y has a tangent in the direction θ at a
point x ∈ Y if for every r > 0,

lim
r→0

H1(Y ∩ (B(x, r) \ Con(x, θ, r)))
r

= 0,

where H1 denotes the 1-dimensional Hausdorff measure (see refs. [6, 7]). Following [6], we
say that a set Y has a strong tangent in the direction θ at a point x provided for each
0 < β ≤ 1, there is a some r > 0 such that Y ∩B(x, r) ⊂ Con(x, θ, β).

Lemma 4.1 (see [7]) If Y is locally arcwise connected at a point x and Y has a tangent
θ at x, then Y has strong tangent θ at x.

We call a point τ ∈ I∞ transitive if ω(τ) = I∞, where ω(τ) is the ω-limit set of τ under
the shift transformation σ : I∞ → I∞. We denote the set of these points by I∞t and put
Γt = π(I∞t ). We call the Γt the set of transitive points of ΓSt

and notice that for every
τ ∈ I∞t , the set {π(σnτ) : n ≥ 0} is dense in ΓSt

or ΓSt
.

Lemma 4.2 (see [7]) If ΓSt
has a strong tangent at a point x = π(τ), τ ∈ I∞, then ΓSt

has a strong tangent at every point π(ω(τ)).
Remark 4.1 If f is an NCP map, by Lemma 3.3, Jc(f) admits a conformal iterated

function system St. It is obvious that the Julia set J(f) coincides with the limit set ΓSt
by

Lemma 3.1. By Lemma 3.1, 3.3 and 4.2 we have
Lemma 4.3 If f is an NCP map, then J(f) has a strong tangent at every point of

J(f).
Proof of Main Theorem Let f be an NCP map and denoted by F∞ the unbounded

component of the Fatou set F (f). As F∞ is completely invariant, applying Riemann-Hurwitz
formula (see §5.4 in [8]) to f : F∞ → F∞, we find that F∞ has exactly d− 1 critical points
of f , and all of these lie at ∞. Now take any disk D centered at ∞, which is such that

f(D) ⊂ D ⊂ F∞.

For each n, let Dn = f−n(D): then Dn is open and connected,

D = D0 ⊂ D1 ⊂ D2 ⊂ · · · ,
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and as
χ(Dn+1) + (d− 1) = dχ(Dn),

where χ(Dn+1) and χ(Dn) denote the Euler characteristics of domains Dn+1 and Dn as
above, we see that each Dn is simply connected. Let γn be the boundary of Dn; then γn is
a Jordan curve and fn is a dn-fold map of γn onto γ0. Set lim

n→∞
γn = Γ. Roughly speaking,

we shall show that γn converges to ∂F∞(= J(f)), i.e. Γ = J(f).
If ξ ∈ Γ then there are points ξn on γn which converge to ξ, so, in particular, ξ is in the

closure of F∞. However, ξ cannot lie in F∞ else it has a compact neighbourhood K lying
in some Dn (for the Dj are an open cover of K), and hence not meeting γn, γn+1, · · · for
sufficiently large n. We deduce that Γ ⊂ J(f).

J(f) is porous, then Jc(f) admits a conformal iterated function system St = {f−i
t : t ∈

s} for finite s satisfying conditions (a)–(e) by Lemma 3.3.
To prove that J(f) ⊂ Γ, let w ∈ J(f) be a repelling fixed point (or an image of a

repelling fixed point) and l be the straight line determined by the strongly tangent direction
of J(f) at w as in Lemma 4.3. Then w is an attracting fixed point of f−1. Moreover,

f−1 : U(w) → U(w)

is a conformal map, where U(w) is a disk centered at w. Now suppose that J(f) is not
contained in Γ. Consider x ∈ J(f) \ Γ such that x ∈ U(w), then lim

n→∞
f−n(x) = w and for

every n ≥ 0, we have f−n(x) ∈ J(f). Since the map f−1 : U(w) → U(w) is conformal, we
get

∠(w − f−n(x), l) = ∠(f−n(w)− f−n(x), l) = ∠(f−n(w − x), f−n(l)) = ∠(x− w, l).

It follows that w and f−n(x)(n ≥ 0) are contained in the same line l̃ 6= l and this implies
that l̃ is the strongly tangent straight line of J(f) at w. Therefore, we conclude that l is not
a strongly tangent straight line of J(f) at w. This contradiction proves that J(f) ⊂ Γ.

Remark If Main Theorem only with the hypothesis: the Fatou set F (f) has a com-
pletely invariant component, J(f) need not be a Jordan curve; for example, the map
z 7→ z2 − 1 is expanding on its Julia set (certainly NCP map), see Theorem 9.7.5 and
Figure 1.5.1 in [8].
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Julia集为Jordan曲线

庄 伟

(北京石油化工学院数理系, 北京 102617)

摘要: 本文研究了NCP映射的Julia集为Jordan曲线的问题. 利用网格和共形迭代函数系统的方法, 获

得了Julia集在那种情况下为Jordan曲线的一般结果, 推广了有理函数的Julia集为Jordan曲线的复解析动力

系统方面的结果.
关键词: Julia集; 网格; 共形迭代函数系统; Jordan曲线
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