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Abstract: In this paper, we investigate the existence of mild solution for impulsive fractional
neutral function integro-differential evolution equations with infinite delay of order 0 < a < 1
in a Banach space. The main mathematical techniques used here include the fractional calculus,
properties of solution operators, and Ménch’s fixed point theorem via measures of noncompactness.
Without assuming that the solution operators are compact, we prove the existence of mild solution
to such equations.
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1 Introduction

Fractional differential equation, as an excellent tool for describing memory and hered-
itary properties of various materials and processes in natural sciences and engineering, re-
ceived a great deal of attention in the literature [1-5]. In particular, the existence of solutions
to fractional order differential equations attracted researches attention. For example, the ex-
istence of solution for fractional semilinear differential or integro differential equations was
extensively investigated [6-10]. Recently, mixed type integro-differential systems with and
without delay conditions were studied [11-13]. Ravichandran and Baleanu [13] considered
the existence of solution for the following fractional neutral functional integro-differential
evolution equations with infinite delay in Banach spaces

*Difla(t) — g(t, )] = Ax(t) + f(t,xt,/ h(t,s,x5)ds), teJ=10,b],
$0:¢€Bh, tE(—oo,O], ’
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where “Dy* is the Caputo fraction derivative of order 0 < a < 1. By using properties of
solution operators and Monch’s fixed point theorem via measures of noncompactness, the
authors developed the existence theorem for such equations.

Motivated by this work, we use Monch’s fixed point theorem via measure of noncom-
pactness to investigate the existence of mild solution for the following impulsive fractional

neutral function integro-differential evolution equations with infinite delay in a Banach space
X.

D¢ x(t) — g(t, z)] = Ax(t) + f(t,xt,/o h(t,s,xs)ds), teJ=1[0,T], t%#t,

AT =g = Ix(z(t,)), k=1,2,---,m,
xo=¢ € B,, t€ (—0,0],

(1.1)
where T' > 0, D¢ is the Caputo fraction derivative of order 0 < o < 1, A is the infinitesimal
generator of a strongly continuous semigroup 7'(¢),¢ > 0 in a Banach space X, f : Jx B, x X,
g:J xB,and h:J x J x B, are given functions, where B, is the phase space defined in
Section 2. The impulsive functions I, : X — X (k =1,2,--- ,m) is an appropriate functions.
Az |i=,= z(t]) — x(t},), where x(t}) and z(t; ) represent the right and left limits of z(¢)
at t = tj, respectively. The histories z; : (—o0,0] — X, defined by z.(s) = z(t + s),s <0,
belong to some abstract phase space B,,.

The rest of the paper is organized as follows: in Section 2, some basic definitions,
notations and preliminary facts that are used throughout the paper are presented. The
definition of mild solution is given in Section 3. The main results are drown in Section 4,
in which we present the existence results for impulsive fractional neutral function integro

differential evolution equation of order 0 < o < 1 with infinite delay.

2 Preliminaries
2.1 Definitions and Theorems

Let X be a complex Banach space, whose norm is denoted by || - ||. Suppose L(X) is the
Banach space of all bounded linear operators from X into X, whose corresponding norm is
denoted by || - ||L(x). Let C(J,X) denote the space of all continuous functions from .J into
X, whose supremum norm is given by || - [[¢(s,x). We use B,(z, X) to denote the closed ball
in X with center at  and radius r.

In the paper, we assume that A : D(A) € X — X is the infinitesimal generator of
a strongly continuous semigroup 7T'(-). Thus there exists a constant M < 1. Without loss
of generality, we assume that 0 € p(A). Then we can define the fractional power A% for
0 < o <1, as a closed linear operator on its domain D(A®) with inverse A% (see [14]). A*
admits the following properties.

(1) D(A?%) is a Banach space with norm ||z||, = ||A%z|| for 2 € D(A%).

(2) T(t) : X — X, for t > 0.
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(3) A*T(t)x = T(t)A%x for each z € D(A%) and t > 0.
(4) For every t > 0, A*T'(t) is bounded on X and there exists M, > 0 such that

AT ()| < Mat~ e

(5) A= is a bounded linear operator for 0 < a <1 in X.

Before introducing a fractional order functional differential equation with infinite delay,
we define the abstract phase space B,. Let v : (00,0] — (0,00) be a continuous function
that satisfies 0

l= / v(t)dt < +o0.

The Banach space (B,, || - ||5,) induced by v is then given by

B, :={p:(—00,0) = X : for any ¢ > 0, ¢(f) is a bounded and measurable
0
function on [-c, 0], and/ v(s) sup ||¢(0)]ds < +oo}
0

— o s<0<

0

endowed with the norm || ¢l 5, :—/ v(s) sup |l¢(0)|ds.
s<6<0

Define the following space B

B :={p:(~00,T] = X : o € C*(Jy, X),k=0,1,2,--- ,m, and there exist
p(ty;) and () with o(ty) = @(t;; ), 0 = ¢ € B},

where @y, is the restriction of ¢ to Ji, Jo = [0,t1], Jk = (tg, tes1], K =1,2,--- ,m.
We use || - || g, to denote a seminorm in the space B;, defined by

||<P||Bg, = ||¢|

B, +ma'X{H(Pk||Jk7 k= 07 17 ,’I’)’L},

where

¢ = o, |kl 5 = sup{[[ex(s)][}-
se€Jg

Generally, the Mittag-Lefller function is defined by

E (>—i L 1 B3>0, z€C
a’ﬁz_kiof‘(ak:—ﬂ—ﬁ)_%m‘ Hae,u“—z Ho EEE

where H, is a Hankel path, a contour that starts and ends at —oo, and encircles the disc
|| < |z|= counterclockwise.

Now we consider some definitions about fractional differential equations.

Definition 2.1 The fractional integral of order o with the the lower limit zero of a
function f is defined as

ppy_ L[ ) .
If(t)_r(a)/o(t—s)lad’ t>0,a>0,
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provided that the right-hand side is pointwise defined on [0,00), where I'(-) is a gamma
function defined by

F(a):/ t* e tdt.
0

Definition 2.2 The Riemann-Liouville fractional derivative of order a > 0,n — 1 <
a<n,n € N, is defined as

(R—L)l)glJr (t) — F(n]'_a) <jt> /0 (t o S)n—a—lf(s)ds7

where the function f(t) has absolutely continuous derivative up to order (n — 1).

Definition 2.3 The Caputo derivative of order « for a function f : [0,00) — R can be

written as
n—1

°DYf(t) = D* (f(t)ZZﬂ“(O)) , t>0, n—l<a<n.

k=0

Lemma 2.1 (see [15]) Assume 2 € B,, then for t € J, , € B,. Moreover,

He@I < llzells, < lolls, +1 sup, [l (s)Il,
s€(0,t

where

0
l= / v(t)dt < +o0.

—00
Next, we consider some definitions and properties of the measures of noncompactness.
The Hausdorff measure of noncompactness 3(-) defined on each bounded subset % of

Banach space X is given by
B(A) =inf{e > 0;# has a finite - net in X}.

Some basic properties of 3(-) are given in the following lemma.
Lemma 2.2 (see [16-18]) If X is a real Banach space and #,% C X are bounded,
then the following properties are satisfied:
(1) monotone: if for all bounded subsets &, Z of X, # C & implies (A) < 5(Z);
(2) nonsingular: B({z} U B) = [B(HA) for every x € X and every nonempty subset
P CX;
(3) regular: & is precompact if and only if 5(%) = 0;
4) BB+ 2) < B(B)+ (D), where B+ P ={x+y;x € B,ye D};
(5) B(ZU2Z) < max{B(B),3(2)};
(6) B(AB) < |\IB(2);
(7) if W C C(J,X) is bounded and equicontinuous, then t — (W (t)) is continuous on
J, and

BOV) < max BW (1), (2.1)

3 < /O tW(s)ds) < /0 tﬁ(W(s))ds for all te J, (2.2)
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t t
/ Wi(s)ds = {/ u(s)ds : for all uGW,tGJ};
0 0

(8) if {u, }1° is a sequence of Bochner integrable functions from J into X with ||u,(t)| <
m(t) for almost all ¢ € J and every n > 1, where m(t) € L(J,R"), then the function
P(t) = B{un}s,)) belongs to L(J, R™) and satisfies

i({/ (s > i) <2 f ()i (23)

(9) if W is bounded, then for each ¢ > 0, there is a sequence {u,}5°, C W, such that

where

BW) <2B({un}pii) +e. (2.4)

The following lemmas about the Hausdorff measure of noncompactness will be used in
proving our main results.

Lemma 2.3 (see [19]) Let D be a closed convex subset of a Banach space X and 0 € D.
Assume that F': D — X is a continuous map which satisfies the Ménch’s condition, that is,
M C D is countable, M Cco (0U F(M)) = M is compact. Then F has a fixed point in D.

2.2 Properties of Solution Operators

Lemma 2.4 (see [20]) If A is a sectorial operator of type (M, 6, a, u), then

1 L (At)k
Salt) = 5 /e“)\“‘lR(A“,A)dA Eoq(At®) = Z F((l — (2.5)
¢ =0
(1) = = [ MROR, A = 11 By () = ot 30 AT (A" (9
27i J, = T(a+ ak)’

Lemma 2.5 (see [13]) Assuming A is the infinitesimal generator of an analytic semi-
group, given by T'(t),., and 0 € p(A), then we now have

t) = /000 Ga(r)T(tr)dr

and .
T, (t) —a/ Too (r)t* T (t%r)dr,
where 0
Ba(r) = TrF,(rF) > 0,
Ya(r) = ii(—l)"lr"alw sin(nma).
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Lemma 2.6 (see [21])

aM,_s0(1+ f)
I'(1+ ap)ti—os’

AT (0] < (2.7)

where «, 3 € (0,1).
Lemma 2.7 Suppose A is a sectorial operator of type (M, 0, a, p). If 0 < a < 1, then

CD?[Sa@)*TO} = Asa(t>$0

and

Do (/Ot To(t — G)f(e)de) - A/Ot Ta(t — 0)F(0)d0 + f(1).

3 Definition of Mild Solution

Theorem 3.1 If f satisfies a uniform Hoélder condition with exponent 3 € (0,1] and
A is a sectorial operator of type (M, 0, a, i), then the Cauchy problem (1.1) has a solution,

given by
Tg = ¢ € By, t € (—o0,0],
t
Su(01000) ~ g(0.6(0))] + gt + [ AT (¢~ 5)g(s,m.)ds
t s 0
+/ T.(t—s)f <s,x8,/ h(s, T, l‘T)dT) ds, te(0,t],
$<t) = 0 0
Sa()[#(0) — g(0,4(0))] + g(t, ) + / AT, (t — s)g(s, z5)ds
0
t s k
+/ T, (t—s)f <s,x8,/ h(s,, .’ET)dT> ds + ZSa(t —t) i (x(t,)), t€ (tr,trs].
L 0 0 i=
' (3.1)
Proof For all t € (tg,tx1] where k =0,1,--- ;m by Lemma 2.7, we obtain

‘D fa(t) — g(t, x)]

_ pp [sa@) 6(0) = 900,600+ [ (¢~ ) Ag(s. 2.0

—1—/0 T.(t—s)f (3,365,/ h(S,T,J,‘T)dT> ds—i—ZSa(t—ti)Ii(x(t,:))

0

= ASL(B)[6(0) — 9(0,6(0))] + A / To(t — 5)Ag(s,z,)ds + Ag(t, 1)

t s
+A/ T.(t—3s)f (s,xs,/ h(s, T, LL’T)dT> ds
0 0

+f (t,xt,/ot h(t,s,xs)ds> +A§:Sa(t — t) L (z(t]))
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= A <Sa(t)[gb(0) —9(0,0(0))] + g(t, x —l—/o AT, (t — 8)g(s,xs)ds

k
+/ T, (t —s) (s,xs, (s, 7,2, d7'> ds + Z (t — ti)Iz—(a:(tk))>
0 i—1
+f t,xt, h(t, s, xs)ds> .

Thus expression (3.1) satisfies the first equation of problem (1.1).
For k=1,2,--- ,m, it follows from (3.1) that

(7)) = Salt)B(0) — g(0,B(0))] + gt w1y) + / " AT (t — 8)g(s, 2.)ds

k—1

+/O ) To(tr — s)f <5,x5, /OS h(s, T, acT)dT) ds + ZSa(tk — )L (z(t})),

=1

2t = Sultn)[6(0) — g(0, (0))] + glters,) + / AT (s — $)g(s, 2)ds

+ /Otk To(ty —s)f <s,x8, /OS h(s, T, a:T)dT> ds + zk:Sa(tk —ti) Li(x(t;,)).

i=1

Therefore we have
Ax(ty) = 2(t)) — 2(ty) = Salts — te) I(2(ty)) = In(x(ty)).

Consequently, all the conditions of problem (1.1) are satisfied. Hence (3.1) is a solution of
problem (1.1).

Thus the mild solution of equation (1.1) can be defined as follows.

Definition 3.1 (see [22]) A continuous function z : (—oo,T] — X is said to be mild
solution of system (1.1) if z = ¢ € B, on (—00,0], the impulsive condition Ax(t;) =
Ii(z(t;)),k=1,2,--- ,m is satisfied, the restriction of x(-) to the interval Jj is continuous,

and x(t) satisfies the following integral equation

=¢ € B,, t € (—o00,0],
¢

Su(B)[6(0) — 9(0, B(0))] + gt 22) + / ATt — 8)g(s, 2.)ds

z(t) = +/Ot T.(t—s)f <s,$s,/os h(s, T, xT)dT> ds, te(0,t],

t

Sa(DIB(0) — 9(0, 6(0))] + g(t z2) + / AT, (t - )g(s, z.)ds

0

+/0 T,(t—3s)f <s,x5, /OS h(s,, xT)d7'> ds + ZSa(t —t)Li(x(t;)), te€ (ty,tis].

\ i=1
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4 Existence Results

In this section, we present the main results of this article. We first consider the following
hypotheses.

If A is a sectorial operator of type (M, 6, a, ), then ||S, ()] < Me** and || T,(t)] <
Ce“'(1+t*1). Let

Mg :=sup ||So(t)|lr(x) and Mg :=supCe” (1 + ¢t 1),
teJ teJ

where L(X) is the Banach space of bounded linear operator from X into X equipped with

its natural topology. Thus we have
ISa®)]l < Ms, |Ta(®)| <t~ M.

We assume the following conditions hold
(H1) The function f: J x B, x X — X satisfies the following conditions:
(i) f(-,¢,x) is measurable for all (¢,z) € B, x X and f(¢,-,-) is continuous for a.e.
teJ.
(ii) There exist a constant a; € (0, ), m € Lar (J, R™) and a positive integrable function
Q: Rt — RT such that
1f(t, &, )| < m(®)Q(l|ll5, + [l])

for all (¢,¢,x) € J x B, x X, where ) satisfies

lim inf 2(n)

n—o00 n

=0.

(iii) There exist a constant ay € (0, «) and a function 7 € L% (J, R™) such that, for any
bounded subset D, C X, F; C B,,
B(f(t, F1, D1)) <) sup B(F1(0)) + B(D1)]

0€(—00,0]

for a.e. t € J, where F(0) = {v(f) : v € F1} and 3 is the Hausdorff MNC.
(H2) The function h: J x J x B, — X satisfies the following conditions:
(i) h(-,t,x) is measurable for all (t,z) € J x B, and h(t, -, -) is continuous for a.e. t € J.
(ii) There exist a constant Hy > 0 such that

1h(t; s, 0)| < Ho(1 + 9] 5,)

forallt,s € J,¢ € B,.
(iii) There exists & € L'(J?, R") such that for any bounded subset F» C B,,

B(h(t, s, F2)) <&(t,s)[ sup  B(F(0))]

0€(—00,0]

for a.e. t € J, with £&* = sup/ &(t, T)dr < +00.
teJ Jo
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(H3) The function g : J x B, — X satisfies the following conditions:
(i) g is continuous and there exist a constant H; > 0 and 0 < 5 < 1 such that g is X
valued and

1A%g(t,2) — A%(t,y)|| < Hillz — ylls,. 2,y € By, t € J =[0,1],
[A%g(t, 2)|| < Hi(1+ ||z]l5,)-

(ii) There exist a constant ag € (0,«) and g* € LTIS(J, R™) such that, for any bounded
subset F3 C B,,

B(APg(t, F3)) < g*(t) sup B(F3(0)), G =supg*(t).

0€(—00,0] teJ

(H4) I; : X — X be continuous operators and there exist positive numbers ¢;, K; such
that

I1:(z)|x < cillz)p forall € B,, i=12"-m,
BIi(Fy)) < K; sup  [(Fy(0)), i=1,2,---,m
E(*OO, ]

for every bounded subset Fj of B,.
(H5)

aM,_gT(1+4 B)T?
I'(1+aB)ap

)“rMsiCi <1,

i=1
aM,_sT(1+ B)Ts
'+ af)ap

Hi(| A7) +

M*:Mszm:Ki-f—G-f—Q

=1

* * Ta
|+ 2Mr (1 +267) ] < 1.

Theorem 4.1 Suppose conditions (H1)—(H5) are satisfied. Then system(1.1) has at
least one solution on J.

Proof We define the operator I' : B, — B, by
(2o =¢ € B,, t € (—o0,0],

t

Sa(B)[6(0) — 9(0, B(0))] + gt 1) + / AT, (t - s)g(s, 2.)ds
—|—/ T.(t—s)f (s,xs,/s h(S,T,l’T)dT> ds, te(0,t],

Sa(DIB(0) — 9(0, 6(0)] + g(t,z2) + / AT, (t — 5)g(s, z.)ds

+/Ot T.(t—s)f <s,x3,/8 h(s, T, fﬂr)d7> ds + isa(t — i) Li(2(ty)); t € (b, byl

0 i=1

The operator I' has a fixed point if and only if system (1.1) has a solution. For ¢ € B,,

denote

) oo(t), te(—o0,0]
o) = { S.(t)p(0), teJ
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Then ¢(t) € B

Let x(t) = y(t) + ¢(t), —oo < ¢t < T. Tt is easy to see that y satisfies yo = 0,t € (—00, 0]
and
Sa ()[ 9(0,¢(0))] + g(t yt+¢’t> /OtATa(t—S)g(s,strés)ds
+ Wt —s)f <s Ys + s, (S,T,y,,.+<]§7-)d7'> ds, te(0,t],
. (0800 e+ ¢>t> AT (¢~ $)g(s,s + 6)ds
T (=01 (st [ o+ d130r ) as
+ZS t)Li(y(t7) + 0(t7)), t € (th, ts]
if and only if 2(t) satisfies 2(t) = ¢(1),t € (—o0,0] and

/

Sa(t)[#(0) — 9(0,(0))] + g(t

—i—/OtTa(t—s)f (S$

Sa(t)[¢(0) — g(0,¢(0))] + (¢,

+/OtTa(t_3)f <Saxs7

Define the Banach space (B, ,|| - |
norm

5 i
ly()]

Let B, = {y € B,
For any y € B,, it follows from Lemma

lye + Sellz, < Nyellz, + 16el 5, < Ur + Ms||@(O)II) + ]|, =’

we define the operator N : B! — B! by
0, t € (—o0,0],

Sa(t)[=9(0, $(0))] + g(

)]
+ Tat5f<8ys+¢sa

t

x) + / W(t—8)g(s,zs)ds

(s 2.)d )

xt) A

h(s,7,z.;)d )ds—l—ZS (t—t;)

(0, t4],

(t—s)g(s,xs)ds

induced by B

5 = sup{[y(s)llx, s € [0, 71}

:|lyllgr < r}. Then for each r, B, is a bounded, close and convex subset.

2.1 that

t
(t,y: + ) +

(87 T7 yT + é‘l’)d7_> ds’
t

te)), t € (s trgal.

B, ={y:y € B,,yo =0} with the

)

/ AT, (t = $)g(s,ys + bs)ds
0

€ (Ovtl]a

Ny =1 s, OF9(0,60)] +ote yt+¢t> [ AT 0= 990590+ 6u)ds
T (t—s)f|sys+ ¢é, h(s,T,yr + qu)dT) ds
+ZS (t—t:) Li(y(t; )+¢( i) t € (t, tysa)-
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It is easy to see that operator I' has a fixed point if and only if operator IV has a fixed point.
In the following, we prove that N has a fixed point.

Step 1 We prove that there exists some r > 0 such that N(B,) C B,. If this is not
true, then, for each positive integer r, there exist 4" € B, and t" € (—o0,T] such that
I(Ny") (@)l > r.

On the other hand, it follows from the assumption that

ro< Ny )

< 118a()[=9(0, pO))]I| + lg(¢", yor + Ger) + | /0 ATL(t" = $)g(s,ys + 0 )ds|

4 / = 5) (y+¢ / h(s,r,yTw)dT) ds|
0

+ Z 1Sa (" =t Li(y"(t7) + ()]
= I ;12—1—134-14—1—[5.
Now we estimate I;, : = 1,2,3,4,5. Assumption (H3) (i) implies
L= [1Sa(t")[=9(0,6(0))][| < Ms[| A7 A%(0, $(0)]|
M| A=7)[[|4%g(0, p(0)]| < Ms[|ATP||HL (1 + [1]l5,),

lg(t" s yer + Ger)ll < AP Hi (1 + llyer + e |1 ,)
AT Hy (1 + ).

A\

I

IN

It follows from assumption (H3) (i) and Hélder’s inequality that
t" .
L= [ AT = 9)g(s,0.+ du)ds]
0

.
_ ||/ AT — 8)APg(s, ys + bs)ds|
0

< O(lelgF(l + ﬁ)

T
T af—1
S T+ ap) Hi(1+ lys BJ/O (t"—s) ds
OéMl_BF(l + ﬁ) / Taﬁ

By using assumptions (H1) and (H2), we obtain

I = H/ <s s + qbs,/ h(s, T,y + ¢37)d7> ds|
0

< My m(H0( + THy(1+ 1)

TOt
< Mp—Q(r" + THy(1 +7")) supm(t).
a teJ
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Using assumptions (H1) (i) and (H4) yields
k

k
L= |Salt = t)IL(y (&) + S < Ms Y 1Ly (t7) + o)

i=1 i=1
m

< Mg g cir'.
i=1

Combining estimates Iy — I5, we obtain

r < I1+I2+I3+I4+I5SMSHAiﬁ”Hl(l“‘HM

aM,_zT(1+ 3) , TP T , “
H,(1 — + Mr—Q THy(1 t)+ M, i
(1t ad) 11 1) g + My Q07 + THy(1+1')) supm(t) + S;cr

B,) + ||AP| H (1 + )

Loy, aMy_sT(L+ BT V|
_ 3 (6207 5 e ] i

aM,_sT(1 + B)T*"
1+ af)ap

+H (A7) + )+ Ms Y e+ Ms| A7 Hi(1 + 6|5, )
i=1

TOé
+Mr—Q(r" + THo(1 +1")) sup m(t)
a tes

Dividing both sides by r and taking » — 400 from

’

M Q
lim T lim Lr + Msllo(O)l) + 19115, =[] and lim inf—= =0
r—oo T T—00 r n—00 n

yields

I'(1+ af)ap
This contradicts (H5). Thus, for some number r, N(B,) C B,.

Step 2 N is continuous on B,.
Let {y"}/> C B,, with y® — y in B, as n — +o0. Then by using hypotheses (H2),
(H4) and (H5), we have

0 f <y 4, / (s, Ty +<57>d7) Ny (y s / h(s, s + @)dT) e
0 0

M,_zT'(1 T8 i
(4= + el UL D) )+Mszci]l21.
i=1

(i) 11" (t) + () — Tl ) + S ) — 0, n— 00i=1,2,+- .
Now for every t € [0,t], we have
INy™(t) = Nyl < llg(t, 97 + 1) = g(tye + 60|
aMy_gT(1 + )T
I'(1+ af)ap

T L[ .
+MT?H]{. <s,y§’ +¢s,/ h(s,T,y" +¢7)dT>
0

Hilly" — will

—f (s,ys+(55,/Sh(5,7,y7+(137)d7> | =0 (n— o0).
0



No. 2 The existence of mild solution for impulsive fractional neutral function integro-differential ...

229

Moreover, for all ¢ € (tg, tri1],k=1,2,--- ,m, we have

INy™ () = Ny@)l < gt yr + de) — 9(tye + o)l

aMy_gT(1 + B)TP
'l +af)ap

T . .
+MT;||f (s,yé’ +<bs,/ h(s, Ty’ +¢7)dT>
0

Hilly: =l

—f (svys + <b/ h(s, 7,y + q%)dT> |
0

k
+Ms Z IZ:(y™ (67) + 0(t7)) = Liy(t7) + (1) = 0 (n — o).

We thus obtain | Ny™ — Ny|| — 0 as n — oo implying that IV is continuous on B,.

Step 3 The map N(B,) is equicontinuous on J.
The function {Ny : y € B,} is equicontinuous at t = 0. For 0 < t; < ty < T t1,ts €
(tgytis1], k=1,2,--- ;m and y € B,, by assumptions (H1) and (H4), we deduce that

IN

IN

[(Ny)(t2) — (Ny) ()]
150 (t2) = Sa(t)ll9(0, SON)I| + llg(t2, yeu + b2) = 9(tr:yes + 1)l

12 t1
1 / AT, (ts — 5)g(5ys + B5)ds — / AT, (b1 — 5)g(s,ys + 62)ds]|
0 0

to S
+/ Ta(tQ - S)f <87y? + ¢87/ h(S,T, y:-L + (bT)dT) ds
0

0

ty s

/ Ta(tl - S)f <Say? + ¢ES7/ h(SaTa y: + ¢E‘r)d7—> dSH
0 0

GISa(ts) = Sa(to)ll + 19(t2: yes + b12) = 9(tr: 5, + 1)l

+II / APTy (ty — 5) — Tol(ts — 8)]A%g(s, ys + &, )ds||
0
to .
[ ATt — $)g(s, s+ d)ds]
+l / T(ts — ) — Tt — 8)If (y + 4, / B,y + éT>dr> ds|
0 0

to S
+||/ Ta(tZ - S)f (573/? + ¢Sa/ h(S,T, y:-L + ¢T)d7_> dSH — 0 as ty — 1.
t1

0

Hence N(B,) is equicontinuous on J.
Step 4 Monch’s condition holds.
Let N = N1 + N2 —+ Ng, where

k
Niy(t) = Z Sa(t —t)Li(x(ty)), tE€ (tr,trrl,

i=1
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Nay(t) = Sa(t)[~9(0, $(0)] + g(t. y: + 1) + /0 AT (t — 8)g(s,ys + 6s)ds

Nsy(t) = / To(t—s)f (s,ys + ¢, /S h(s, 7,y + @)dr) ds.
0 0

Assume W C B, is countable and W C co6 ({0} U N(W)). We show that g(W) = 0,
where [ is the Hausdorff MNC. Without loss of generality, we may suppose that W =
{y"}s2,. Since N(W) is equicontinuous on J;,, W C ¢ ({0} U N(WW)) is equicontinuous on
Ji as well.

By (H4) (ii), we have

BN OF) < Ms 38 ({10 + )}

M Ke sup B (50 + 601 <Ms Y Ki sw B ({1 O)).

=1 —00<0<0

Using Lemma 2.2, (H1) (iii), (H2) (iii) and (H3) (ii), we have
BNy (01:2) <G swp B (y2(0) + (0}, )

—00<0<0

i 204M1 ﬁr 1 +ﬂ / (t S)aﬁ 1 * s) sup /6 (yf(@) + ¢A>t(9)}ff:1) ds

I'(1+ap) —00<0<0
(0717 S of
<G+ ] ) s AR ORL)
5 (1) <20ty [ (=7 h0Gs) | s (O

w0 ntsmz +danye) | as

<ML+ 26l ey SR BN,

We thus obtain
BUNyY" () }21) <B{Nwy" () }21) + B ({ N2y () nz) + B ({Nay™ (8) }o2)

)+
- aM,_gT(1 + B)T*P
<M Ki+G+2 |
_< s; + G+ 20 ahaB 9™, & e

20 (14 2 )*Hnllm ) IOV

where M* is defined in assumption (H5). Since W and N (W) are equicountinuous on every
Jk, it follows from Lemma 2.2 that the inequality implies S(NW) < M*3(W). Thus from

Monch’s condition, we have

BW) < B(co({0} UN(W))) = BINM) < M*B(W).
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Since M* < 1, we get S(W) = 0. Tt follows that W is relatively compact. Using Lemma 2.3,

we know that NV has a fixed point y in W. The proof is completed.
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—30 < a < 15 AT IREFAI B KR D 512
mild R FIEM

BEIET!, BP/MRY, 1R 82
(LI KRR SR AT 0, Wik Kb 410082)
(2.7 IR R HOERT, ISR 2248 WEMi/T N2L 3C5)

WE: AR T K0 < o < 1A TCHRINH ) bz 2 Bk i 70 77 REmil ) A7 76 1R AR i L R H
ST A SRR T K Monch A 3) s B 7535, F95 T IX KI5 B M mild i JF 7 DUER, HAGE] TR0 AA e
IR

XA APOL Rk R O R mild il B s E B AR

MR(2010)E & 5 ¥ 5:  35R11; 26A33 hESES: 0175.29



