
Vol. 38 ( 2018 )
No. 2

数 学 杂 志
J. of Math. (PRC)

A NOTE ON POWER CALCULATION FOR

GENERALIZED CASE-COHORT SAMPLING WITH

ACCELERATED FAILURE TIME MODEL

SHI Yue-yong1,3, CAO Yong-xiu2, JIAO Yu-ling2, YU Ji-chang2

(1.School of Economics and Management, China University of Geosciences, Wuhan 430074, China)
(2.School of Statistics and Mathematics, Zhongnan University of Economics and Law,

Wuhan 430073, China)
(3.Center for Resources and Environmental Economic Research, China University of Geosciences,

Wuhan 430074, China)

Abstract: In this paper, we study the power calculation for the generalized case-cohort sam-

pling. By using the smoothed weighted Gehan estimating equation method, we obtain the unbiased

estimators of the unknown regression parameters in the accelerated failure time model. The simu-

lation studies and the real data analysis show the good performances of the proposed method.
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1 Introduction

In many epidemiological studies, the meaningful results can be obtained through ob-
serving thousands of subjects for a long time. Due to the financial limitation or technical
difficulties, it needs to develop the cost-effective design for selecting subjects in the underly-
ing cohort to observe their expensive covariates. The case-cohort sampling (Prentice, 1986)
is a well-known cost-effective design with the response subject to censoring, where the ex-
pensive covariates are measured only for a subcohort randomly selected from the cohort and
additional failures outside the subcohort. The statistical methods for case-cohort sampling
were well studied in the literature (e.g., Self and Prentice, 1988; Chen and Lo, 1999; Kulich
and Lin, 2000; Kong, Cai and Sen, 2004; Kong and Cai, 2009).

Aforementioned works show the case-cohort sampling is especially useful when the fail-
ure rate is low. However, the failure rate may be high in practice. Therefore, it’s unpractical
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to assemble covariates of all failures due to the fixed budget. Under such situations, the gen-
eralized case-cohort (GCC) sampling is proposed, which selects a subset of failures instead
of all the failures in the case-cohort design. For example, Chen (2001) proposed the GCC
design and studied its statistical properties. Kang and Cai (2009) studied the GCC design
with the multivariate failure time. Cao, Yu and Liu (2015) studied the optimal GCC design
through the power function of a significant test. The aforementioned works are all under the
framework of Cox’s proportional hazards model (Cox, 1972). Yu et al. (2014), Cao and Yu
(2017) studied the GCC design under the additive hazards model (Lin and Ying, 1994).

Both the Cox proportional hazards model and additive hazards model are based on
modeling the hazards function. However, it is important to directly model the failure time
in some applications. Recently, the accelerated failure time (AFT) model which linearly
relates the logarithm of the failure time to the covariates gained more and more attention.
Kong and Cai (2009) studied the case-cohort sampling under the AFT model. Chiou, Kang
and Yan (2014) proposed a fast algorithm for the AFT model under the case-cohort sampling.
Cao et al. (2017) studied the GCC sampling under the AFT model and discussed the optimal
subsample allocation by the asymptotic relative efficiency between the proposed estimators
and the estimators from the simple random sampling scheme.

In order to design a GCC study in practice, there is an important question for the
principal investigators that how to calculate the power function under a fixed budget. To
the best of our knowledge, no such consideration is given under the generalized case-cohort
design. Therefore, we will fill this gap under the accelerated failure time model in this paper.

The article is organized as follows. In Section 2, we propose the generalized case-cohort
sampling, use the smoothed weighted Gehan estimating equation approach to estimate the
unknown regression parameters in the accelerated failure time model, and give the corre-
sponding asymptotic properties. In Section 3, we study the power calculation under a fixed
budget. In Section 4, we conduct the simulation studies to evaluate the performances of the
proposed methods. A real data analysis is analyzed through the proposed method in Section
5. Some concluding remarks are presented in Section 6.

2 Generalized Case–Cohort Sampling and Inference Procedures

2.1 Model

Let T̃ and C denote the failure time and the corresponding censoring time, respectively.
Due to the right censoring, we only observe T = min(T̃ , C) and δ = I(T̃ ≤ C), where I(·) is
an indicator function. Let Ze be a d1-dimensional vector of covariates which are expensive
to measure and Zc be a d2-dimensional vector of covariates which are cheap or easily to
measure. It is assumed that given the covariates (Ze, Zc), T̃ and C are independent. We
consider the following accelerated failure time model

log(T̃ ) = β
′
0Ze + γ

′
0Zc + ε, (2.1)

where β0 and γ0 are unknown regression parameters and ε is the random error with an
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unknown distribution function.

2.2 Generalized Case-Cohort Sampling

Suppose the underlying population has n subjects and {Ti, δi, Ze,i, Zc,i, i = 1, · · · , n}
are the independent copies of (T, δ, Ze, Zc). In the generalized case-cohort sampling, binary
random variable ξi denotes whether or not the i-th subject is selected into the subcohort and
the corresponding successful probability is p. Let ηi be the selection indicator for whether
or not the j-th subject is selected into supplemental failure samples and the conditional
probability P (ηj = 1|ξj = 0, δj = 1) = q. In the GCC sampling, the covariates Ze are only
observed on the selected subjects. Hence, the observed data structure is given as follows:

{Ti, δi, Ze,i [ξi + (1− ξi)δiηi] , Zc,i, i = 1, · · · , n} .

2.3 Inference Procedures

Define θ = (β
′
, γ

′
)
′
, θ0 = (β

′
0, γ

′
0)
′
, Xi = (Z

′
e,i, Z

′
c,i)

′
, and ei(θ) = log(Ti) − β

′
Ze,i −

γ
′
Zc,i, i = 1, · · · , n. Let Ni(t, θ) = I(ei(θ) ≤ t, δi = 1) and Yi(t, θ) = I(ei(θ) ≥ t) denote the

counting process and at risk process, respectively. If the data {Ti, δi, Ze,i, Zc,i, i = 1, · · · , n}
are completely observed, the unknown regression parameters in model (2.1) can be estimated
by solving the following estimating equations

Un,ψ(θ) =
n∑

i=1

∫ ∞

−∞
ψ(t, θ)[Xi − X̄(t, θ)]dNi(t, θ) = 0, (2.2)

where ψ(·) is a possible data-dependent weight function and X̄(t, θ) = S(1)(t, θ)/S(0)(t, θ)

with S(d)(t, θ) = n−1
n∑

j=1

Yj(t, θ)Xd
j for d = 0, 1. The weight function ψ(t, θ) = 1 and S(0)(t, θ)

are corresponding to the log-rank and Gehan statistics, respectively.
Unfortunately, in the GCC sampling, the covariates Ze are only observed for selected

subject and the distribution of selected supplemental failures is different from the distribution
of the underlying population. Therefore, the inverse probability weight method (Horvitz
and Thompson, 1951) is needed to adjust for the biased sampling mechanism of the GCC
sampling

Wi = δiξi + (1− δi)ξi/p + (1− ξi)δiηi/q, i = 1, · · · , n. (2.3)

Then, the true regression parameters θ0 in model (2.1) can be estimated by solving the
following weighted estimating equations

Ũn,ψ̃(θ) =
n∑

i=1

∫ ∞

−∞
ψ̃(t, θ)Wi[Xi − X̃(t, θ)]dNi(t, θ) = 0, (2.4)

where ψ̃(·) is also a possible data-dependent weight function and X̃(t, θ) = S̃(1)(t, θ)/S̃(0)(t, θ)
with

S̃(d)(t, θ) = n−1

n∑
j=1

WjYj(t, θ)Xd
j
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for d = 0, 1. In this paper, we consider Gehan statistics, ψ̃(t, θ) = S̃(0)(t, θ). Hence, the
weighted Gehan estimating equations can be re-written as

Ũn,G(θ) = n−1

n∑
i=1

n∑
j=1

δiWiWj(Xi −Xj)I(ei(θ) ≤ ej(θ)) = 0, (2.5)

which are monotone in each component of θ and let θ̃n denote the estimators obtained by
solving (2.5).

Due to the fact that the weighted Gehan estimating equations are not continuous, in-
duced smoothing procedure is adopted to smooth the weighted Gehan estimating equations
(Brown and Wang, 2007; Cao, Yang and Yu, 2017). The smoothed weighted Gehan estimat-
ing equations can be re-written as

Ūn,G(θ) = n−1

n∑
i=1

n∑
j=1

δiWiWj(Xi −Xj)Φ
(

ej(θ)− ei(θ)
rij

)
= 0, (2.6)

where r2
ij = n−1(Xj − Xi)

′
(Xj − Xi) and Φ(·) is a distribution function of the standard

normal distribution. As n goes to infinity, the distribution function Φ(·) will convergent to
the indicator function. Let θ̂n denote the estimators by solving estimating equation (2.6).

2.4 Asymptotic Properties

In this subsection, we will show the consistency and asymptotic distribution of the
θ̂n. Furthermore, the asymptotic distribution of θ̂n is also the same as that of θ̃n. Define

Mi(t, θ) = Ni(t, θ)− Λi(t, θ), Λi(t, θ) =
∫ t

−∞
Yi(s, θ)λ(u)du, and λ(·) is the common hazard

function of the error term and a⊗2 = aa
′
for a vector a.

Theorem 2.1 Under some regular conditions,

n−1/2Ũn,G(θ0) = n−1/2Ūn,G(θ0) + op(1),

θ̂n is strong consistency, and
√

n(θ̂n−θ0) converges in distribution to zero-mean normal with
covariance

Σ−1
A (θ0)(ΣF (θ0) +

1− p

p
ΣC(θ0) +

(1− p)(1− q)
q

ΣG(θ0))(Σ−1
A (θ0))

′
,

where the matrix ΣA(θ0) is the limit of

n−1∂Ūn,G(θ0)/∂θ, ΣF (θ0) = E[H1(θ0)⊗2],

ΣC(θ0) = E[(1− δ1)H1(θ0)⊗2],ΣG(θ0) = E[δ1H1(θ0)⊗2]

with

H1(θ0) =
∫ ∞

−∞
ψ̃(t, θ0)[X1 − eX(t, θ0)]dM1(t, θ0).

The regularity conditions and the proof of Theorem 2.1 can be founded in [15].
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3 Power Calculation

In this section, we consider the power calculation for GCC sampling with a fixed budget.
In order to simplify the notations, let B denote the fixed budget, Cc denote the unit price
to measure the observed failure time, censoring indicator and cheap covariates {Ti, δi, Zc,i},
and Ce denote the unit price to measure expensive covariates Ze,i. Hence,

B = n{Cc + [p + (1− p)πq]Ce}, (3.1)

where π = P (δ = 1). In practice, n, B, Cc and Ce are known, π can be estimated by

n−1
n∑

i=1

δi, which is equal to p + (1 − p)πq fixed. Let ρv = p + (1 − p)πq, which is the

proportion of the validation data set in the missing data literature, where all the data is
completely observed.

We consider the following significant test

H0 : β0 = 0 VS H1 : β0 = k, (3.2)

where k is a non-zero d1-dimensional constant. Let β̂n denote the proposed estimator of β0

and α denote the type I error, respectively. From Theorem 2.1, the reject region of the test
(3.2) at the significant level α is

W = {|β̂n − β0| ≥ Ψ−1(1− α

2
)Σ(β̂n)1/2},

where

Σ(β̂n) =
1
n

[Σ−1
A (θ0)ΣF (θ0)Σ−1

A (θ0)]d1×d1 +
1− p

np
[Σ−1

A (θ0)ΣC(θ0)Σ−1
A (θ0)]d1×d1

+
(1− p)(1− q)

nq
[Σ−1

A (θ0)ΣG(θ0)Σ−1
A (θ0)]d1×d1 ,

Ψ−1(1− α
2
) is a d1-dimensional vector with same element (Φ−1(1− α

2
), · · · ,Φ−1(1− α

2
))
′
with

Φ(·) being the distribution function of the standard norm distribution, and [A]d1×d1 is the
upper-left d1 × d1 submatrix of matrix A. Obviously, the power function for the significant
test is a function of (p, q) given as follows

Power(p, q) = P (β̂n ∈ W |H1 : β0 = k)

= 1−Ψ(Ψ−1(1− α

2
)− kΣ(β̂n)−1/2) + Ψ(−Ψ−1(1− α

2
)− kΣ(β̂n)−1/2).

When we calculate the power function, due to constrain (3.1), we need to consider the
following optimization problem through the Lagrange multiplier argument

Ln(p, q, λ) = ‖1−Ψ(Ψ−1(1− α

2
)− kΣ(β̂n)−1/2) + Ψ(−Ψ−1(1− α

2
)− kΣ(β̂n)−1/2)‖1

−λ{B− nCc − n[p + (1− p)πq]Ce},

where ‖·‖1 denote the L1 norm. Because the power function is positive, the optimal solution
(p∗, q∗) can be easy to obtain and the corresponding power is Power(p∗, q∗).
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4 Simulation Study

In this section, the simulation studies are conducted to evaluate the finite sample per-
formances of the proposed method. We generate the failure time from the accelerated failure
time model

log T = β0Ze + γ0Zc + ε, (4.1)

where Ze follows a standard normal distribution, Zc follows a Bernoulli distribution with a
successful probability of 0.5, the regression parameters β0 = 0 and γ0 = 0.5, and the error
term ε follows a standard normal distribution or a standard extreme value distribution, which
will result a log-norm distribution or a Weibull distribution for the failure time, respectively.
The censoring time is generated from the uniform distribution over the interval [0, c], where
c is chosen to yield around 80% censoring rate, respectively.

We consider the following test at the significant level α being 0.05:

H0 : β0 = 0 VS H1 : β0 = 0.3.

The size of the underlying population is n = 600. We investigate different scenarios for
sampling probabilities (p, q) under constraint (3.1), which is equal to ρv being fixed. For
each configuration, we generate 1000 simulated data sets. The results of the simulation
studies are summarized in Figure 1. From Figure 1, we can obtain following results
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Figure 1: Power function with fixed ρv and different sampling probability p

(I) When the error term follows the standard normal distribution, the powers are 0.746
and 0.967 with ρv being 0.200 and 0.400, respectively, and the corresponding sampling
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probability (p, q) are (0.100, 0.556) and (0.260, 0.946), respectively.
(II) When the error term follows the extreme value distribution, the powers are 0.893

and 0.994 with ρv being 0.200 and 0.400, respectively, and the corresponding sampling
probability (p, q) are (0.120, 0.455) and (0.260, 0.946), respectively.

5 National Wilm’s Tumor Study Group

The national Wilm’s tumor study group (NWTSG) is a cancer research which was con-
ducted to improve the survival of children with Wilms’ tumor by evaluating the relationship
between the time to tumor relapse and the tumor histology (Green et al., 1998). However,
the tumor histology is difficult and expensive to measure. According to the cell type, the
tumor histology can be classified into two categories, named as favorable and unfavorable.
Let the variable histol denote the category of the tumor histology. We also consider other
covariates including the patient age, the disease stages and the study group.

We consider the accelerated failure time model

log T = α1histol + α2age + α3stage2 + α4stage3 + α5stage4 + α6study + ε,

where the covariates stage2, stage3, stage4 indicate the disease stages and the variable study

indicates the study group. There are 4028 subjects in the full cohort and 571 subjects subject
to tumor relapse. We randomly selected a subcohort by p = 0.166 and select a subset of
the failures outside subcohort through q = 0.400. We compare the proposed estimator α̂G

with α̂S , which is based on the simple random sampling design with the same sample size
as GCC design. The results are summarized in Table 1.

Table 1: Analysis results for NWTSG

Method Covariate Estimate SD pvalue
α̂S histol -3.244 0.332 0.000

age -0.100 0.061 0.051
stage2 -0.976 0.488 0.023
stage3 -1.735 0.423 0.000
stage4 -2.125 0.557 0.000
study -0.485 0.396 0.110

α̂G histol -2.783 0.208 0.000
age -0.113 0.046 0.007

stage2 -1.284 0.366 0.000
stage3 -1.130 0.375 0.001
stage4 -2.175 0.356 0.000
study -0.027 0.244 0.456

From Table 1, both the two methods confirm that tumor histology is significant to the cancer
relapse. The proposed method shows the age is significant to cancer relapse which is different
from the result from α̂S .
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6 Concluding Remarks

In this paper, we study the power calculation for the generalized case-cohort (GCC)
design under the accelerated failure time model. Due to the biased sampling mechanism
of GCC, the weighted Gehan estimating equations are adopted to estimate the regression
coefficients. The induced smoothing procedure is introduced to overcome the discontinuous
of the smoothed weighted Gehan estimating equation, which could lead to continuously
differentiable estimating equations and can be solved by the standard numerical methods.
The simulation studies are conducted to evaluate the finite sample performances of the
proposed method and we also analyze a real data set from national Wilm’s tumor study
group.

In this paper, we consider the covariates which are time-invariant. Next, we will consider
power calculation in the accelerated failure time model under the GCC design with time-
dependent covariates. Finally, it will be interesting to evaluate the performance of stratified
sampling in the subcohort to enhance the efficiency. Study along this directions is currently
under way.
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加速失效时间模型下关于广义病例队列抽样功效计算的一个注记
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摘要: 本文在加速失效时间模型下研究了广义病例队列抽样的功效计算问题. 利用光滑加权Gehan估

计方程方法估计了未知回归参数, 研究了固定预算下广义病例队列抽样的功效计算. 模拟研究和实际数据分

析评估了提出方法在有限样本下的表现.
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