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Abstract: This paper considers minimax linear fractional programming (MLFP) problem,

which has many applications in engineering, management, and so on. For solving problem MLFP, a

new branch and bound algorithm is proposed. In this algorithm, a new linear relaxation technique

is presented firstly, and then, the branch and bound algorithm is developed. The convergence of

this algorithm is proved, and some experiments are provided to show its feasibility and efficiency.
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1 Introduction

This paper considers the following minimax linear fractional programming problem
(MLFP)

MLFP





minmax
{

n1(x)
d1(x)

,
n2(x)
d2(x)

, · · · ,
np(x)
dp(x)

}
,

s.t. Ax ≤ b,

where p ≥ 2, A ∈ Rm×n, b ∈ Rm are arbitrary real numbers, ni(x) =
n∑

j=1

cijxj + di, di(x) =

n∑
j=1

eijxj + fi are affine functions, D = {x ∈ Rn | Ax ≤ b} is bounded with intD 6= ∅, and

∀x ∈ D, ni(x) ≥ 0, di(x) > 0, i = 1, · · · , p. In fact, if we use the method of [1] to preprocess
problem MLFP, we also only require di(x) 6= 0, i = 1, · · · , p.

As an important branch of nonlinear optimization, fractional programming attracted the
interest of practitioners and researchers since the 1970’s. There are two main reasons. One
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reason is that it frequently appears in various disciplines, including transportation planing [2,
3], government planing [4], finance and investment [5–7], and so on. Another reason is that,
fractional programming is NP-hard [8, 9], that is, it generally posses multiple local optimal
solutions that are not globally optimal, so it is of great challenge to solve this problem, and
it is necessary to put forward some effective methods.

The problem MLFP is a special class of fractional programming, which also attracted
the interest of practitioners and researchers during the past years [10–16]. To solve prob-
lem MLFP, many algorithms were proposed, including partial linearization algorithm [17],
interior point algorithm [18], parametric programming method [19], cutting plane algorithm
[20], monotonic optimization approach [21], branch and bound algorithms [1, 22–23], and so
on. In addition, some theoretical results were obtained about the problem MLFP, and the
readers can refer to the literature [1].

The aim of this paper is to present a new branch and bound algorithm for solving
problem MLFP. Compared with other three branch and bound algorithms [1, 22–23], our
algorithm is easier to implement. In their methods, to obtain a linear relaxation program-
ming problem of problem MLFP, their procedures need twice linear relaxation. However,
our method only need once linear relaxation. Comparison results show that the performance
of our algorithm is superior to the other three methods in most case.

This paper is organized as follows. In Section 2, the new linear relaxation technique
is presented, which can be used to obtain the linear relaxation programming problem LRP
for problem MLFP. In Section 3, the global optimization algorithm is described, and the
convergence of this algorithm is established. Numerical results are reported to show the
feasibility and efficiency of our algorithm in Section 4.

2 Equivalent Problem and its Linear Relaxation

To solve problem MLFP, we first convert it into an equivalent problem (EP). After
that, for generate the linear relaxation problem of EP, we present a new linear relaxation
technique.

2.1 Equivalent Problem

In order to derive the equivalent EP of MLFP, we first compute l0j = min
x∈D

xj , l0j = max
x∈D

xj ,

and construct the initial rectangle X0 = {x ∈ Rn | l0j ≤ xj ≤ u0
j , j = 1, · · · , n}.

Then by introducing a new variable t, we can obtain the EP of problem MLFP as follows

EP





min t,

s.t.
ni(x)
di(x)

≤ t, i = 1, · · · , p,

Ax ≤ b,

x ∈ X0 = {x ∈ Rn | l0j ≤ xj ≤ u0
j , j = 1, · · · , n}.

Theorem 1 If (x∗, t∗) is a global optimal solution of EP, then x∗ is also a global optimal
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solution of problem MLFP, and t∗ is the optimal value of EP and MLFP.
Proof Readers can refer to [1].
By Theorem 1, in order to globally solve problem MLFP, we may globally solve EP

instead. So, in the following, we only consider how to solve the EP.

2.2 Linear Relaxation Programming Problem

To solve EP, we present a branch and bound algorithm. In this algorithm, a principal
process is to construct a linear relaxation programming problem for EP, which can provide
a lower bound for the optimal value of EP over Xk ⊆ X0.

Let Xk = {x | l ≤ x ≤ u} be the initial box X0 or modified box as defined for some
partitioned subproblem in a branch and bound scheme. We will show how to construct the
problem LRP for EP over Xk.

For convenience in expression, let

ξ
i
=

n∑
j=1

min{cijlj , cijuj}+ di, ξi =
n∑

j=1

max{cijlj , cijuj}+ di,

η
i
=

n∑
j=1

min{eijlj , eijuj}+ fi, ηi =
n∑

j=1

max{eijlj , eijuj}+ fi.

Obviously, we have ξ
i
≤ ni(x) ≤ ξi, η

i
≤ di(x) ≤ ηi, i = 1, · · · , p.

To derive the problem LRP of EP over Xk, we first consider the term ni(x)
di(x)

, i = 1, · · · , p.
From ηini(x)− ξ

i
di(x) ≥ 0, di(x)− ηi ≤ 0, we have

η2
i ni(x) ≥ ηini(x)di(x)− ξ

i
d2

i (x) + ξ
i
ηidi(x). (1)

Since ηiηi
di(x) > 0, by dividing (1) with ηiηdi(x), simplifying and rearranging, we have

ni(x)
di(x)

≥ ni(x)
ηi

− ξ
i

η2
i

di(x) +
ξ

i

ηi

. (2)

Let Φi(x, t) = ni(x)
di(x)

− t, from (2), we have the following relation

Φi(x, t) =
ni(x)
di(x)

− t ≥ ni(x)
ηi

− ξ
i

η2
i

di(x) +
ξ

i

ηi

− t = Φl
i(x, t). (3)

By (3), the linear relaxation programming problem LRP can be established as follows

LRP





min t,

s.t. Φl
i(x, t) ≤ 0, i = 1, · · · , p,

Ax ≤ b, x ∈ Xk.

Let v(LRP) and v(EP) be the optimal value of problems LRP and EP, respectively, from
the above discussion, obviously, we have v(LRP) ≤ v(EP) over Xk.

Theorem 2 For all x ∈ Xk = [l, u], let ∆x = u− l, consider the functions Φl
i(x, t) and

Φi(x, t). Then we have
lim

∆x→0
(Φi(x, t)− Φl

i(x, t)) → 0.



116 Journal of Mathematics Vol. 38

Proof From the definitions Φi(x, t) and Φl
i(x, t), we have

| Φi(x, t)− Φl
i(x, t) |=| ni(x)

di(x)
− (ni(x)

ηi
− ξ

i

η2
i
di(x) +

ξ
i

ηi
) |

≤| ni(x)
di(x)

− (ni(x)
ηi

− ξ
i

η2
i
di(x) +

ξ
i

ηi
) |

≤| ni(x)( 1
di(x)

− 1
ηi

) | + | ξ
i

ηi
(di(x)

ηi
− 1) |

=| ni(x)ηi−di(x)

ηidi(x)
| + | ξ

i

ηi

di(x)−ηi

ηi
|

≤ ξi

ηi−η
i

ηiηi

+
ξ

i

ηi

ηi−η
i

ηi
.

(4)

By the definitions of η
i
and ηi, we know that, ∆s , ηi− η

i
→ 0 as ∆x → 0. Thus from

the above inequality, we have

lim
∆x→0

(Φi(x, t)− Φl
i(x, t)) = 0.

From Theorem 2, it follows that Φl
i(x, t) will approximate the function Φi(x, t) as ∆x → 0.

3 Algorithm and its Convergence

In this section, based on the former results, we present the branch and bound algorithm
to solve EP.

3.1 Branching Rule

During each iteration of the algorithm, the branching process will generate a more
refined partition that cannot yet be excluded from further consideration in searching for a
global optimal solution for EP, which is a critical element in guaranteeing convergence. This
paper chooses a simple and standard bisection rule, which is sufficient to ensure convergence
since it drives the intervals shrinking to a singleton for all the variables along any infinite
branch of the branch and bound tree.

Consider rectangle X = {x ∈ Rn | lj ≤ xj ≤ uj , j = 1, · · · , n} ⊆ X0, which is
associated with a node subproblem. The branching rule is described as follows

(i) let k = argmax{uj − lj | j = 1, · · · , n};
(ii) let τ = (lk + uk)/2;
(iii) let

X1 = {x ∈ Rn | lj ≤ xj ≤ uj , j 6= k, lk ≤ xk ≤ τ},
X2 = {x ∈ Rn | lj ≤ xj ≤ uj , j 6= k, τ ≤ xk ≤ uk}.

Through using this branching rule, the rectangle X is partitioned into two subrectangles
X1 and X2.

3.2 Branch and Bound Algorithm

Based upon the results and operations given above, this subsection summarizes the
basic steps of the proposed algorithm.
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Let LB(Xk) and (x(Xk), t(Xk)) be the optimal function value of problem LRP and an
element of the corresponding argmin over the subrectangle Xk, respectively.

Algorithm statement
Step 1 Set the convergence tolerance ε ≥ 0; the feasible error ε1 ≥ 0; the upper bound

UB0 = +∞; the set of feasible points F = ∅.
Find LB0 = LB(X0) and (x(X0), t(X0)) by solving the problem LRP over X0. With

the feasible error ε1, if (x(X0), t(X0)) is feasible to EP, set (x0, t0) = (x(X0), t(X0)), F =
F

⋃{(x0, t0)} and update UB0. If UB0−LB0 ≤ ε, then stop: (x0, t0) is an ε-optimal solution
of EP. Otherwise, set Q0 = {X0}, k = 1, and go to Step 2.

Step 2 Set UBk = UBk−1. Subdivide Xk−1 into two subrectangles Xk,1, Xk,2 via the
branching rule. Let X = {Xk,1, Xk,2}.

Step 3 For each Xk,t ∈ X (t = 1, 2), find the lower bound LB(Xk,t) and (x(Xk,t), t(Xk,t))
by solving the LRP over Xk,t. If LB(Xk,t) > UBk, set X = X\Xk,t; else if (x(Xk,t), t(Xk,t))
is feasible to EP with feasible error ε1, then set

F = F
⋃
{(x(X), t(X))}, UBk = min{UBk, t(Xk,t)}.

If UBk = t(Xk,t), set (xk, tk) = (x(Xk,t), t(Xk,t)).
Step 4 Set Qk = (Qk−1 \Xk−1)

⋃
X.

Step 5 Set LBk = min{LB(X) | X ∈ Qk}. Let Xk be the subrectangle which satisfies
that LBk = LB(Xk). If UBk −LBk ≤ ε, then stop: (xk, tk) is a global ε-optimal solution of
problem EP. Otherwise, set k = k + 1, and go to Step 2.

3.3 Convergence Analysis

The following theorem gives the global convergence properties of the above algorithm.
Theorem 3 If the algorithm terminates finitely, then upon termination, xk is a global

ε-optimal solution for problem MLFP; else, it will generate an infinite sequence {xk} of itera-
tions such that along any infinite branch of the branch and bound tree, and any accumulation
point will be a global optimal solution of problem MLFP.

Proof When the algorithm terminates finitely, the conclusion is obvious. When the
algorithm terminates infinitely, as stated in [25], a sufficient condition for the algorithm to
be convergent to a global optimum is that the bounding operation must be consistent and
the selection operation is bound improving.

A bounding operation is called consistent if at every step any unfathomed partition can
be further refined, and if any infinitely decreasing sequence of successively refined partition
elements satisfies

lim
k→∞

(UBk − LBk) = 0, (5)

where UBk is a computed upper bound in stage k and LBk is the best lower bound at
iteration k not necessarily occurring inside the same subrectangle with UBk. In the following,
we will show (5) holds.
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Since the employed subdivision process is the bisection, the process is exhaustive. Con-
sequently, from Theorem 2 and the relationship v(LRP) ≤ v(EP), formulation (5) holds,
this implies that the employed bounding operation is consistent.

A selection operation is called bound improving if at least one partition element where
the actual upper bound is attained is selected for further partition after a finite number
of refinements. Clearly, the employed selection operation is bound improving because the
partition element where the actual upper bound is attained is selected for further partition
in the immediately following iteration.

Based on the above discussion, we know that the bounding operation is consistent and
that selection operation is bound improving. Therefore, according to [25], the employed
algorithm is convergent to the global optimum of MFLP.

4 Numerical Experiments

In this section, to verify the performance of the proposed algorithm, some numerical
experiments are carried out and compared with three latest algorithms [1, 22–23]. The
algorithm is implemented by Matlab 7.1, and all test problems are carried out on a Pentium
IV (3.06 GHZ) microcomputer. The simplex method is applied to solve the linear relaxation
programming problems.

For test problems 1–8, the convergence tolerance ε is set to 5× 10−8, the feasible error
ε1 are set 0.005, 0.001, 0.001, 0.005, 0.001, 0.001, 0.001, 0.001, which agree with the feasible
error used in [1].

The results of problems 1–8 are summarized in Table 1, where the following notations
have been used in row headers: Iter: number of algorithm iterations; Lmax: the maximal
number of algorithm active nodes necessary.

Example 9 is a random test problem. Table 2 summarizes our computational results of
Example 9. For this test problem, the convergence tolerance ε = 5e − 8, and the feasible
error ε1 = 0.001. In Table 2, Ave.Iter denotes the average number of iterations; Ave.T ime

represents the average CPU time of the algorithm in seconds, which are obtained by solving
10 different random instances for each size.

Example 1 [1, 21, 22]

minmax
{

3x1 + x2 − 2x3 + 0.8
2x1 − x2 + x3

,
4x1 − 2x2 + x3

7x1 + 3x2 − x3

}
,

s.t. x1 + x2 − x3 ≤ 1,

−x1 + x2 − x3 ≤ −1,

12x1 + 5x2 + 12x3 ≤ 34.8,

12x1 + 12x2 + 7x3 ≤ 29.1,

−6x1 + x2 + x3 ≤ −4.1,

1.0 ≤ x1 ≤ 1.1, 0.55 ≤ x2 ≤ 0.65, 1.35 ≤ x3 ≤ 1.45.
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Example 2 [1, 21, 22]

minmax
{

37x1 + 73x2 + 13
13x1 + 13x2 + 13

,
63x1 − 18x2 + 39x3

13x1 + 26x2 + 13

}
,

s.t. 5x1 − 3x2 = 3,

1.5 ≤ x1 ≤ 3.

Example 3 [1, 22]

minmax
{

2x1 + 2x2 − x3 + 0.9
x1 − x2 + x3

,
3x1 − x2 + x3

8x1 + 4x2 − x3

}
,

s.t. x1 + x2 − x3 ≤ 1,

−x1 + x2 − x3 ≤ −1,

12x1 + 5x2 + 12x3 ≤ 34.8,

12x1 + 12x2 + 7x3 ≤ 29.1,

−6x1 + x2 + x3 ≤ −4.1,

1.0 ≤ x1 ≤ 1.2, 0.55 ≤ x2 ≤ 0.65, 1.35 ≤ x3 ≤ 1.45.

Example 4 [1,22]

minmax
{

3x1 + x2 − 2x3 + 0.8
2x1 − x2 + x3

,
4x1 − 2x2 + x3

7x1 + 3x2 − x3

,
3x1 + 2x2 − x3 + 1.9

x1 − x2 + x3

,
4x1 − x2 + x3

8x1 + 4x2 − x3

}
,

s.t. x1 + x2 − x3 ≤ 1,

−x1 + x2 − x3 ≤ −1,

12x1 + 5x2 + 12x3 ≤ 34.8,

12x1 + 12x2 + 7x3 ≤ 29.1,

−6x1 + x2 + x3 ≤ −4.1,

1.0 ≤ x1 ≤ 1.2, 0.55 ≤ x2 ≤ 0.65, 1.35 ≤ x3 ≤ 1.45.

Example 5 [1,23]

minmax
{

2.1x1 + 2.2x2 − x3 + 0.8
1.1x1 − x2 + 1.2x3

,
3.1x1 − x2 + 1.3x3

8.2x1 + 4.1x2 − x3

}
,

s.t. x1 + x2 − x3 ≤ 1,

−x1 + x2 − x3 ≤ −1,

12x1 + 5x2 + 12x3 ≤ 40,

12x1 + 12x2 + 7x3 ≤ 50,

−6x1 + x2 + x3 ≤ −2,

1.0 ≤ x1 ≤ 1.2, 0.55 ≤ x2 ≤ 0.65, 1.35 ≤ x3 ≤ 1.45.
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Example 6 [1,23]

minmax
{

3x1+4x2−x3+0.5
2x1−x2+x3+0.5

, 3x1−x2+3x3+0.5
9x1+5x2−x3+0.5

, 4x1−x2+5x3+0.5
11x1+6x2−x3

, 5x1−x2+6x3+0.5
12x1+7x2−x3+0.9

}
,

s.t. x1 + x2 − x3 ≤ 1,

−x1 + x2 − x3 ≤ −1,

12x1 + 5x2 + 12x3 ≤ 42,

12x1 + 12x2 + 7x3 ≤ 55,

−6x1 + x2 + x3 ≤ −3,

1.0 ≤ x1 ≤ 2, 0.5 ≤ x2 ≤ 2, 0.5 ≤ x3 ≤ 2.

Example 7 [1,23]

minmax
{

3x1+4x2−x3+0.9
2x1−x2+x3+0.5

, 3x1−x2+3x3+0.5
9x1+5x2−x3+0.5

, 4x1−x2+5x3+0.5
11x1+6x2−x3+0.9

, 5x1−x2+6x3+0.5
12x1+7x2−x3+0.9

, 6x1−x2+7x3+0.6
11x1+6x2−x3+0.9

}
,

s.t. 2x1 + x2 − x3 ≤ 2,

−2x1 + x2 − 2x3 ≤ −1,

11x1 + 6x2 + 12x3 ≤ 45,

11x1 + 13x2 + 6x3 ≤ 52,

−7x1 + x2 + x3 ≤ −2,

1.0 ≤ x1 ≤ 2, 0.35 ≤ x2 ≤ 0.9, 1 ≤ x3 ≤ 1.55.

Example 8 [1,23]

minmax
{

5x1+4x2−x3+0.9
3x1−x2+2x3+0.5

, 3x1−x2+4x3+0.5
9x1+3x2−x3+0.5

, 4x1−x2+6x3+0.5
12x1+7x2−x3+0.9

, 7x1−x2+7x3+0.5
11x1+9x2−x3+0.9

, 7x1−x2+7x3+0.7
11x1+7x2−x3+0.8

}
,

s.t. 2x1 + 2x2 − x3 ≤ 3,

−2x1 + x2 − 3x3 ≤ −1,

11x1 + 7x2 + 12x3 ≤ 47,

13x1 + 13x2 + 6x3 ≤ 56,

−6x1 + x2 + 3x3 ≤ −1,

1.0 ≤ x1 ≤ 2, 0.35 ≤ x2 ≤ 0.9, 1 ≤ x3 ≤ 1.55.

Example 9

minmax





n∑
j=1

c1jxj + d1

n∑
j=1

e1jxj + f1

,

n∑
j=1

c2jxj + d2

n∑
j=1

e2jxj + d2

, · · · ,

n∑
j=1

cpjxj + dp

n∑
j=1

epjxj + dp





,

s.t. Ax ≤ b,

0 ≤ xi ≤ 3, i = 1, · · · , n,

where all elements of cij , dij , i = 1, · · · , p, j = 1, · · · , n are randomly generated in [0, 1];
all elements of di, fi are randomly generated in [0, p]; all elements of A and b are randomly
generated in [0, 1].

From Table 1, it can be seen that, except for Examples 2 and 8, the performance of
our algorithm is superior to the other three methods. From Table 2, we can see that the
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Table 1: Computational results of Examples 1–8

Example Methods Optimal solution Optimal value Iter Lmax Time
1 [1] (1.01557,0.59185,1.40157) 0.57139 1 2 0.00692539

[21] (1.01569,0.59049,1.40367) 0.573102 1 - 0.06
[22] (1.01567, 0.59067,1.40339) 0.572810738 6 5 0.017700826
ours (1.01568,0.59063,1.40345) 0.57032 1 1 0.005185

2 [1] (1.5,1.5) 1.49661806 3 4 0.004879
[21] (1.5,1.5) 1.489510 1 - 0
[22] (1.5,1.5) 1.49072061 6 7 0.00680581
ours (1.5,1.5) 1.49124130 6 5 0.006917

3 [1] (1.016666667,0.55,1.45) 1.344502171 4 4 0.0144057
[22] (1.016666667, 0.55,1.45) 1.346854863 8 8 0.0228725
ours (1.016667,0.55, 1.45) 1.347325 3 2 0.025291

4 [1] (1.008333333,0.5,1.45) 2.280126353 3 4 0.0197122
[22] (1.008333333,0.5,1.45) 2.284427051 7 8 0.0288736
ours (1.016667,0.55, 1.45) 2.39605 1 1 0.003642

5 [1] (1.0,0.55,1.45) 1.160998779 6 7 0.0104895
[23] (1.0,0.55,1.45) 1.160759760 113 106 0.235226
ours (1.0,0.55,1.45) 1.16093 5 4 0.01027

6 [1] (1.345382850,0.50,1.946283817) 0.989117392 21 20 0.0557114
[23] (1.339843750,0.50,1.943285553) 0.985599329 580 420 1.19123
ours (1.34375, 0.50, 1.94637) 0.98939 20 19 0.049236

7 [1] (1.504885652,0.350,1.550) 1.117070767 20 20 0.0819911
[23] (1.504882813,0.350, 1.550) 1.117065399 747 638 1.68613
ours (1.50436, 0.350, 1.550) 1.11772 19 5 0.079462

8 [1] (1.752859889,0.350,1.550) 1.117793086 26 22 0.148766
[23] (1.753906250,0.350, 1.550) 1.117416325 2901 2534 6.52166
ours (1.75181, 0.350, 1.550) 1.11788 32 27 0.260751

Table 2: Computational results of Example 9

(p,m, n) Ave.T ime(s) Ave.Iter

(2,3,5) 1.3399 25.5
(3,5,5) 1.9204 44.9
(4,10,5) 2.0625 47.9
(10,5,5) 2.5284 50.0
(10,20,5) 2.9531 58.3
(10,50,5) 7.1952 64.8
(20,20,5) 4.5687 63.0
(30,30,5) 9.8783 80.3
(10,10,10) 12.5283 243.2
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CPU time and the number of iterations of our algorithm are not sensitive to the size of the
problems p and m.

Test results show that our algorithm is competitive and can be used to solve the problem
MLFP.
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求极小极大分式规划问题的一个新的分支定界算法

汪春峰1,蒋 妍2, 申培萍1

(1.河南师范大学数学与信息科学学院, 河南新乡 453007)

(2. 郑州旅游职业学院基础部, 河南郑州 450009)

摘要: 本文研究在工程、管理等领域应用广泛的极小极大线性分式规划问题(MLFP). 为求解MLFP

问题, 提出一个新的分支定界算法. 在算法中, 首先给出一个新的线性松弛化技巧; 然后, 构造了一个新的分

支定界算法. 算法的收敛性得以证明. 数值实验结果表明了算法的可行性与有效性.
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