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1 Introduction

Let α(t) be a nonnegative continuous function defined on R such that

lim
|t|→∞

α(t)
|t| = ∞. (1.1)

The weighted Banach space Cα consists of complex continuous functions f defined on the
real axis R with f(t) exp(−α(t)) vanishing at infinity, equipped with the norm

‖f‖α = sup{|f(t) exp(−α(t))| : t ∈ R}.

Let M(Λ) denote the set of functions which are finite linear combinations of exponential
system {eλt : λ ∈ Λ} with exponents Λ = {λn : n = 1, 2, · · · } which is a sequence of complex
numbers. Condition (1.1) guarantees that M(Λ) is a subspace of Cα.

The completeness of M(Λ) in Cα was studied in many settings. Much was written about
the properties of completeness and the closure of M(Λ) (see [1–6] and [11–15], for example).
There was an interest in the study of stability of the completeness for the exponential systems
in the weighted Banach spaces. We are aware of many results in this direction are on the
stability of the completeness for exponential systems in the spaces C[−a, a] and Lp(−a, a)
(see [7, 12, 13]). Motivated by the work of B. N. Khabibullin (see [7–10]), our purpose here
is to study the stability of the completeness for exponential systems in Cα. Our approach
to the problem is different from theirs. Combination of Deng’s work on the completeness of
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exponential systems in Cα (see [1]) and Khabibullin’s work on subharmonic interpretation of
shifts of zeros of entire functions allows us to characterize the stability of the completeness
of M(Λ) in Cα.

We now give a brief description of the results obtained. In Section 2, we show that
under certain nearness conditions on Λ = {λn} and Γ = {γn} which are complex sequences
with gaps in the right half plane, M(Λ) and M(Γ) are complete or incomplete in Cα simulta-
neously. In Section 3, we characterize the stability of M(Λ) in Cα wherever Λ = {λn, µn} is
a positive sequence, wherever each λn appearing µn times with µn not necessarily bounded.

Notations For a complex sequence Γ = {γn}, the finite linear combination of {eγt :
γ ∈ Γ} is denoted by M(Γ). The symbol D(a, t) is used to denote the disk |z − a| < t. The
letter A denotes positive constants and it may be different at each occurrence. Throughout
this paper, the right half-plane {z = x + iy : x > 0} is denoted by C+.

2 The Exponents with No Multiplicity

In this section, we will consider the stability problem wherever the gap exponents with
no multiplicity. More precisely, the exponents is defined as follows. Let Λ = {λn = |λn|eiθn :
n = 1, 2, · · · } be a sequence of complex numbers satisfying

sup{|θn| : n = 1, 2, · · · } <
π

2
(2.1)

and

inf{|λn+1| − |λn| : n = 1, 2, · · · } > 0. (2.2)

The main result of this section is described as follows.
Theorem 2.1 Let α(t) be a nonnegative convex on R satisfying (1.1). If two sequences

of complex numbers Λ = {λn} and Γ = {γn} satisfy (2.1) and (2.2), furthermore, there exist
a decreasing function β : [0,+∞) → (0,+∞) and a positive sequence {tn} that is linked
with the sequence such that

|λn − γn| < tn, n = 1, 2, · · · and
∑

|λn|≥r

tn < β(r), r ≥ 0, (2.3)

then M(Λ) and M(Γ) are complete or incomplete in Cα simultaneously.
We will make use of the following result from [1].
Lemma 2.1 (see [1]) If Λ = {λn = |λn|eiθn : n = 1, 2, · · · } is a complex sequence

satisfying (2.1) and (2.2), then the function

G(z) =
∞∏

n=1

(1− z
λn

1 + z
λn

)
e
( z

λn + z
λn

) (2.4)

is analytic in the right half-plane C+, and vanishes exactly on the sequence Λ = {λn =
|λn|eiθn : n = 1, 2, · · · }. With r = |z| and x = <z, for some positive constant A,

|G(z)| ≤ exp{xλ(r) + Ax}, z ∈ C+,
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where λ(r) = 2
∑

|λn|≤r

cos θn

|λn| , if r ≥ |λ1|; λ(r) = 0, otherwise.

The crux of the proof of the following proposition is the method applied to shifts of
zeros of entire functions. By this approach, we show that for a function analytic in the right
half-plane C+, shifts of its zeros generate another function analytic in the right half-plane
whose growth and zeros are very similar to the original one.

Proposition 2.1 Let G(z) be a function analytic in the right half-plane C+ which is
defined in (2.4) and vanishes exactly on the sequence Λ = {λn = |λn|eiθn : n = 1, 2, · · · },
where Λ satisfies (2.1) and (2.2). Given a decreasing function β : [0,+∞) → (0,+∞), we can
find a function G1(z) analytic in the right half-plane C+ = {z = x+iy : x > 0} with sequence
of simple zeros Γ = {γn = |γn|eiϑn : n = 1, 2, · · · } satisfies (2.1) and (2.2), furthermore, we
can find a positive sequence {tn} that is linked with the sequences such that (2.3) is satisfied

and for all z ∈ C+\
∞⋃

n=1

D(λn, tn),

| log |G(z)| − log |G1(z)|| ≤ A
( 1
|z| +

1
|z|2 + x

)
. (2.5)

Proof Since the zeros of G(z) have a gap, we can choose a sequence of strict positive
numbers {tn} such that the disks D(λn, tn) are mutually disjoint and (2.3) is satisfied. We
can also select strict positive number dn such that

dn ≤ tn

2
,

∞∑
n=1

dn|λn| < ∞. (2.6)

We will estimate the sum of differences
∑

n

en(z) :=
∑

n

(
log

∣∣∣
1− z

λn

1 + z
λn

∣∣∣− log
∣∣∣
1− z

γn

1 + z
γn

∣∣∣ +
2x cos θn

|λn| − 2x cos ϑn

|γn|
)

for all z ∈ C+\
∞⋃

n=1

D(λn, tn). Firstly, we establish an upper bound for en(z):

en(z) = log
∣∣∣z − λn

z + λn

∣∣∣− log
∣∣∣z − γn

z + γn

∣∣∣ +
2x cos θn

|λn| − 2x cos ϑn

|γn|

= log
∣∣∣1 +

(γn − λn)z + (γn − λn)z + (λnγn − λnγn)
(z + λn)(z − γn)

∣∣∣ +
2x cos θn

|λn| − 2x cos ϑn

|γn|

≤
∣∣∣(γn − λn)z + (γn − λn)z + (λnγn − λnγn)

(z + λn)(z − γn)

∣∣∣ +
2x|λn − γn|
|λn||γn|

≤
∣∣∣(γn − λn)z + (γn − λn)z + (λnγn − λnλn + λnλn − λnγn)

(z + λn)(z − γn)

∣∣∣ +
2x|λn − γn|
|λn||γn|

≤ (2|z|+ 2|λn|)|λn − γn|
|(z + λn)(z − γn)| +

2x|λn − γn|
|λn||γn| .

For z ∈ C+ and <λn > 0, we have |z − λn| ≤ |z + λn|. If we choose a positive sequence dn

which satisfies (2.6), then |z − γn| ≥ |z − λn| − |γn − λn| ≥ |z−λn|
2

, thus

en(z) ≤ 4|z|dn + 4|λn|dn

|z − λn|2 +
2xdn

|λn||γn| . (2.7)
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Second, we establish an upper bound for −en(z):

−en(z) = − log
∣∣∣z − λn

z + λn

∣∣∣ + log
∣∣∣z − γn

z + γn

∣∣∣− 2x cos θn

|λn| +
2x cos ϑn

|γn|

= log
∣∣∣1 +

(λn − γn)z + (λn − γn)z + (λnγn − λnγn)
(z − λn)(z + γn)

∣∣∣− 2x cos θn

|λn| +
2x cos ϑn

|γn|

≤
∣∣∣(λn − γn)z + (λn − γn)z + (λnγn − λnγn)

(z − λn)(z + γn)

∣∣∣ +
2x|λn − γn|
|λn||γn|

≤
∣∣∣(λn − γn)z + (λn − γn)z + (λnγn − λnλn + λnλn − λnγn)

(z − λn)(z + γn)

∣∣∣ +
2x|λn − γn|
|λn||γn|

≤ (2|z|+ 2|λn|)|λn − γn|
|(z − λn)(z + γn)| +

2x|λn − γn|
|λn||γn| .

For z ∈ C+ and <λn > 0, we have |z − γn| ≤ |z + γn|. If we choose a positive sequence dn

which satisfies (2.6), then |z − γn| ≥ |z−λn|
2

and we have

−en(z) ≤ 4|z|dn + 4|λn|dn

|z − λn|2 +
2xdn

|λn||γn| . (2.8)

Combine (2.7) with (2.8), for all z ∈ C+\
∞⋃

n=1

D(λn, tn), we have

|en(z)| ≤ 4|z|dn + 4|λn|dn

|z − λn|2 +
2xdn

|λn||γn|
and

∑
n

|en(z)| ≤
∑

n

4|z|dn + 4|λn|dn

|z − λn|2 +
∑

n

2xdn

|λn||γn| . (2.9)

By (2.2), (2.3) and (2.6), we have

∞∑
n=1

2dn

|λn||γn| < ∞. (2.10)

Fix a point z ∈ C+\
∞⋃

n=1

D(λn, tn),

∑
n

4|z|dn + 4|λn|dn

|z − λn|2 ≤
∑

|λn|≥ |z|2

4|z|dn + 4|λn|dn

|z − λn|2 +
∑

|λn|< |z|
2

4|z|dn + 4|λn|dn

|z − λn|2

≤
∑

|z−λn|≥ |z|2

4|z|dn + 4|λn|dn

|z − λn|2 +
∑

|λn|≥ |z|2

4|z|dn + 4|λn|dn

t2n
.

Hence, we can estimate the first sum as

∑

|z−λn|≥ |z|2

4|z|dn + 4|λn|dn

|z − λn|2 ≤
∑

n

24|z|dn + 24|λn|dn

|z|2 ,
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and the second sum as

∑

|λn|≥ |z|2

4|z|dn + 4|λn|dn

t2n
≤

∑
n

25|λn|dn + 24|λn|dn + 23d2
n

|z|2 .

Thus combine with (2.6), (2.9) and (2.10), we eventually get the esitmate

∑
n

|en(z)| ≤ A
( 1
|z| +

1
|z|2 + x

)
, z ∈ C+\

∞⋃
n=1

D(λn, tn), (2.11)

where A = max{
∞∑

n=1

2dn

|λn||γn| , 2
5
∞∑

n=1

dn|λn|}.
To conclude the proof, we use the representation (2.4) of G(z). By Lemma 2.1 and the

conditions imposed on Γ, we can define a function G1(z) in the form of (2.4),

G1(z) =
∞∏

n=1

(1− z
γn

1 + z
γn

)
e( z

γn + z
γn ),

which is analytic in the right half-plane C+ and vanishes exactly on the sequence Γ = {γn :
n = 1, 2, · · · }. According to (2.11), estimate (2.5) is satisfied for G(z) and G1(z).

We now get ready to prove Theorem 2.1.
Proof of Theorem 2.1 In order to prove M(Λ) and M(Γ) are complete or incomplete

in Cα simultaneously, it suffices to prove that incompleteness of any of the two systems
implies incompleteness of the other. To achieve this, we recall the proof in [1].

We assume that M(Λ) is incomplete in Cα. From [1], we know that the incompleteness
of M(Λ) in Cα is equivalent to the existence of a non-trivial function g(z) analytic in the
right half-plane C+, which vanishes on some sequence Υ ⊇ Λ and is defined by

g(z) =
G(z)

(1 + z)N
exp{−g1(z)−Nz −N}, (2.12)

where N is a large positive integer, G(z) is defined by (2.4), and g1(z) is analytic in the right
half-plane, satisfying

<g1(z) =
x

π

∫ +∞

−∞

ϕ(t)
x2 + (y − t)2

dt, (2.13)

ϕ(t) is an even function such that ϕ(t) = α(λΛ(t)− a) for some a ∈ R and all t ≥ 0, where
λΛ(t) is defined in Lemma 2.1.

Suppose (2.3) is satisfied for some complex sequences Γ with (2.1) and (2.2) imposed.
By (2.10), we know that we can find a non-trivial analytic in the right half-plane whose real
part is defined in (2.13). Replace G(z) with G1(z) which is defined in Proposition 2.1, we
can get a function analytic in the right half-plane, which vanishes on Γ and satisfies (2.12),
wherever the function λΓ(t) defined in Lemma 2.1 has the same growth as λΛ(t). This implies
the incompleteness of M(Γ) in Cα.



108 Journal of Mathematics Vol. 38

3 The Exponents with Multiplicity

In this section, we will consider the stability problem wherever the exponent is a positive
multiplicity sequence Λ = {λn, µn}∞n=1, here µn → ∞ is allowed. We need some definitions
and auxiliary results from [11].

Definition 3.1 If a real positive sequence A = {an} satisfies for some positive constant
c the spacing condition an+1 − an ≥ c for all n ≥ 1 and lim

n→∞
n
an

= D ≥ 0, then we say it

belongs to the class L(c, D).
Definition 3.2 Let the sequence A∈L(c, D) and α, β be real positive numbers such

that α + β < 1. We say that a sequence B = {bn}∞n=1 with real positive terms bn, not
necessarily in an increasing order, belongs to the class Aα,β if for all n ∈ N, we have

bn ∈ {z : |z − an| ≤ aα
n},

and for all m 6= n one of the following holds
(i) bm = bn.

(ii) |bm − bn| ≥ max{e−aβ
m , e−aβ

n}.
We may write B in the form of a multiplicity sequence Λ = {λn, µn}∞n=1, by grouping

together all those terms that have the same modulus, and ordering them so that λn < λn+1,
this form of B is called as {λ, µ} reordering (see [11]).

Theorem 3.1 Let α(t) be a nonnegative convex on R satisfying (1.1). Suppose two
sequences of positive numbers Λ = {λn, µn}∞n=1 and Γ = {γn, µn}∞n=1 are {λ, µ} reordering
of two positive sequence defined in Definition 3.1 and Definition 3.2, furthermore, suppose
there exist a decreasing function β : [0,+∞) → (0,+∞) and a positive sequence {tn} that
is linked with the sequences such that

|λn − γn| < tn, n = 1, 2, · · · and
∑

|λn|≥r

µntn < β(r), r ≥ 0, (3.1)

then M(Λ) and M(Γ) are complete or incomplete in Cα simultaneously.
Before we prove Theorem 3.1, we should establish a proposition which is similar to

Proposition 2.1. And we will use the following result from [11].
Lemma 3.1 (see [11]) Let A∈L(c, D), B∈Aα,β and Λ = {λn, µn}∞n=1 be its {λ, µ}

reordering. Then the function

G(z) =
∞∏

n=1

(bn − z

bn + z

)
e

2z
bn =

∞∏
n=1

(λn − z

λn + z

)µn

e
2zµn

λn (3.2)

is analytic in the right half-plane C+, and vanishes exactly on the sequence Λ = {λn, µn}∞n=1.
With r = |z| and x = <z, for some positive constant A, we have

|G(z)| ≤ exp{xσΛ(r) + Ax}, (3.3)

where σΛ(r) = 2
∑

λn≤r

µn

λn
. The following proposition is a modified version of Proposition 2.1.
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Proposition 3.1 Let G(z) be a function analytic in the right half-plane C+ which is
defined in (3.2) and vanishes exactly on the sequence Λ = {λn, µn}∞n=1, which is the {λ, µ}
reordering of some positive sequence defined in Definition 3.1 and Definition 3.2. Given a
decreasing function β : [0,+∞) → (0,+∞), we can find a function G1(z) analytic in the
right half-plane C+ with the sequence of zeros Γ = {γn, µn}∞n=1 which is the {λ, µ} reordering
of a positive sequence satisfying Definition 3.1 and Definition 3.2, furthermore, we can find
a positive sequence {tn} that is linked with the sequence such that (3.1) is satisfied and for

all z ∈ C+\
∞⋃

n=1

D(λn, tn)

| log |G(z)| − log |G1(z)|| ≤ A
( 1
|z| +

1
|z|2 + x

)
. (3.4)

Proof The proof is a modification of the one for Proposition 2.1. By the properties
of the zeros of G(z), we can choose a sequence of strict positive numbers {tn} such that the
disks D(λn, tn) are mutually disjoint and (3.4) is satisfied. We can also select strict positive
number dn such that

dn ≤ tn

2
and

∞∑
n=1

µndnλn < ∞. (3.5)

We will estimate the sum of differences z ∈ C+\
∞⋃

n=1

D(λn, tn),

∑
n

µnen(z) :=
∑

n

µn

(
log

∣∣∣
1− z

λn

1 + z
λn

∣∣∣− log
∣∣∣
1− z

γn

1 + z
γn

∣∣∣ +
2x

λn

− 2x

γn

)
.

An upper bound for en(z) is obtained as follows:

en(z) = log
∣∣∣z − λn

z + λn

∣∣∣− log
∣∣∣z − γn

z + γn

∣∣∣ +
2x

λn

− 2x

γn

= log
∣∣∣1 +

2(γn − λn)z
(z + λn)(z − γn)

∣∣∣ +
2x

λn

− 2x

γn

≤
∣∣∣ 2(γn − λn)z
(z + λn)(z − γn)

∣∣∣ +
2x|λn − γn|

λnγn

.

For z ∈ C+ and λn > 0, we have |z + λn| ≥ |z − λn|. If we choose a positive sequence
2dn ≤ tn, then |z − γn| ≥ |z − λn| − |γn − λn| ≥ |z−λn|

2
, thus

en(z) ≤ 4|z|dn

|z − λn|2 +
2xdn

λnγn

. (3.6)

A similar upper bound for −en(z) is also obtained in the following estimate

−en(z) = − log
∣∣∣z − λn

z + λn

∣∣∣ + log
∣∣∣z − γn

z + γn

∣∣∣− 2x

λn

+
2x

γn

= log
∣∣∣1 +

2(λn − γn)z
(z − λn)(z + γn)

∣∣∣− 2x

λn

+
2x

γn

≤
∣∣∣ 2(λn − γn)z
(z − λn)(z + γn)

∣∣∣ +
2x|λn − γn|

λnγn

.
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For z ∈ C+ and γn > 0, we have |z+γn| ≥ |z−γn|. If we choose a positive sequence 2dn ≤ tn,
then |z − γn| ≥ |z − λn| − |γn − λn| ≥ |z−λn|

2
, thus

−en(z) ≤ 4|z|dn

|z − λn|2 +
2xdn

λnγn

. (3.7)

By (3.6) and (3.7), for all z ∈ C+\
∞⋃

n=1

D(λn, tn),

∑
n

µn|en(z)| ≤
∑

n

4|z|µndn

|z − λn|2 +
∑

n

2xµndn

λnγn

. (3.8)

By (3.5), we have

∞∑
n=1

2µndn

λnγn

< ∞. (3.9)

The first term in (3.8) can be estimated as follows

∑
n

4|z|µndn

|z − λn|2 ≤
∑

|λn|≥ |z|2

4|z|µndn

|z − λn|2 +
∑

|λn|< |z|
2

4|z|µndn

|z − λn|2

≤
∑

|z−λn|≥ |z|2

4|z|µndn

|z − λn|2 +
∑

|λn|≥ |z|2

4|z|µndn

t2n
.

By

∑

|z−λn|≥ |z|2

4|z|µndn

|z − λn|2 ≤
∑

|z−λn|≥ |z|2

4|z|µndn

( |z|
2

)2
≤

∑
n

24µndn

|z| ,

∑

|λn|≥ |z|2

4|z|µndn

t2n
≤

∑
n

25|λn|µndn

|z|2 ,

(3.8) and (3.9), we have

∑
n

µn|en(z)| ≤ A
( 1
|z| +

1
|z|2 + x

)
, z ∈ C+\

∞⋃
n=1

D(λn, tn), (3.10)

where A = max{
∞∑

n=1

2µndn

λnγn
, 25

∞∑
n=1

µndnλn}.
To conclude the proof, we use representation (3.2) of G(z). By Lemma 3.1 and the

conditions imposed on Γ, we can define a function G1(z) in the form of (3.2)

G1(z) =
∞∏

n=1

(z − γn

z + γn

)µn

e
2zµn

γn ,

which is analytic in the right half-plane C+ = {z = x + iy : x > 0} and vanishes exactly on
the sequence Λ = {λn, µn}∞n=1. According to (3.10), estimate (3.4) is satisfied for G(z) and
G1(z).
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With an application of Proposition 3.1, we can prove Theorem 3.1. The proof of Theo-
rem 3.1 is similar to Theorem 2.1 which is again the proof of the main result in [1].

Proof of Theorem 3.1 To prove M(Λ) and M(Γ) are complete or incomplete in Cα

simultaneously, it suffices to prove that incompleteness of any of the two systems implies
incompleteness of the other. To achieve this, we just need to repeat the proof in [1] word by
word.

We assume that M(Λ) is incomplete in Cα. From [1], we know that the incompleteness
of M(Λ) in Cα is equivalent to the existence of a non-trivial function g(z) analytic in the
right half-plane C+, which vanishes on some sequence Υ ⊇ Λ = {λn, µn}∞n=1 and is defined
by

g(z) =
G(z)

(1 + z)N
exp{−g1(z)−Nz −N}, (3.11)

where N is a large positive integer, G(z) is defined by (3.2), and g1(z) is analytic in the right
half-plane, satisfying

<g1(z) =
x

π

∫ +∞

−∞

ϕ(t)
x2 + (y − t)2

dt, (3.12)

ϕ(t) is an even function such that ϕ(t) = α(σΛ(t)− a) for some a ∈ R and all t ≥ 0, where
σΛ(t) is defined in Lemma 3.1.

Suppose (3.1) is satisfied for some positive sequence Γ = {γn, µn}∞n=1 which is the
{λ, µ} reordering of a positive sequence defined in Definition 3.1 and Definition 3.2. By
(3.8), we know that we can find a non-trivial analytic in the right half-plane whose real part
is defined in (3.12). Replace G(z) with G1(z) which is defined in Proposition 3.1, we can get
a function analytic in the right half-plane, which vanishes on Γ = {γn, µn}∞n=1 and satisfies
(3.11), wherever the function σΓ(t) defined in Lemma 3.1 has the same growth as λΛ(t).
This implies the incompleteness of M(Γ) in Cα.
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加权Banach空间中指数函数系完备的稳定性

杨向东, 王 越

(昆明理工大学数学系, 云南昆明 650093)

摘要: 本文研究了加权Banach空间中指数函数系完备的稳定性问题. 利用解析函数扰动的方法, 获得

了加权Banach空间中指数函数系完备的稳定性若干结果, 推广了现有有限区间Banach空间上的经典结果.
关键词: 稳定性; 指数函数系; 完备性; Banach 空间
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