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Abstract: In this paper, the control problem of single-species ecological model with the dis-
persal is investigated via the threshold policy (TP). The positive equilibrium’s existence theorem
for the new model is obtained by using the uniform persistence theorem and Filippov theorem. The
sufficient conditions to the uniqueness and globally asymptotical stability of the positive equilib-
rium are obtained based on the new model by applying graph theoretical approach of the coupled
systems and constructing Lyapunov functions method. Related results of [6] are generalized.
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1 Introduction

The study on the patch models became one central issue of concerns in the literature of
ecology systems (see [1-5]), since it is an interesting problem to consider how the dispersal or
migration of the species influences the global dynamics of the interacting ecological system.

Since the systems of discrete patchy models are usually high-dimensional, it is rather a
challenge to study the uniqueness and stability of the positive equilibrium for patchy models
from the mathematical aspect. The availably global dynamics criteria in the literatures
mainly focus on the special case of two-patch (see [2]) or the permanence and existence of
periodic solutions (see [3-6]).

Recently, Li and Shuai (see [6]) considered the following system that described growth
and dispersal of a single species among n patches (n > 2),

n
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here z; € R, represents population density of the species on patch i. f; € CY(R,,R)
represents the density dependent growth rate on patch ¢. Constant d;; > 0 is the dispersal
rate from patch j to ¢, and constant a;; > 0 can be selected to represent different boundary
condition.

In [6], the authors studied the global stability of the coexistence equilibrium of system
(1.1) by considering it as a coupled n sub-models on networks. A systematic approach to
construct global Lyapunov functions for large-scale coupled systems was developed. Li and
Shuai obtained the following sharp result for system (1.1).

Proposition 1 (see [6, Theorem 5.1]) Assume that the following assumptions hold.

(1) (dij)nxn is irreducible.

(2) fi(xi) < 0,2, > 0,i =1,2,--- ,n, and there exists p such that f/(z,) # 0 in any
open interval of R .

(3) System (1.1) is uniformly persistent.

(4) Solutions of system (1.1) are uniformly ultimately bounded.

Then system (1.1) has a positive equilibrium E* € R’} which possesses globally asymptotical
stability.

Although well-improved results were obtained in the above work on the single-species
model with the dispersal, the model is not well studied when the discontinuous control
is considered. In this paper, we will use a so-called threshold policy (TP) to control the
single-species system.

In the context of fishing management, Collie and Spencer (see [8]) introduced a so-called
threshold policy (TP), which was intermediate between the well-known constant escapement
and constant harvest rate policies. A TP is defined as follows: if estimated species abundance
is below a previously chosen threshold level, harvesting is suppressed; above the threshold,
harvesting is applied. TP is also an alternative strategy used in systems such as terrestrial
harvesting (see [11]), grazing (see [12]) and control of aquatic vegetation (see [13]) etc.

A lot of researchers were interested in the threshold policy in the recent years (see
[14-20, 38-41]). In 2000 (see [14]), authors analyzed the dynamics of two predator-prey
models(Lotka-Volterra and Leslie-Gower) via the weighted escapement policy. In 2005 (see
[15]), stability of predator-prey models with TP was studied by using the idea of backstepping
and control Lyapunov functions (CLF). In 2010 (see [16]), the concept of virtual equilibria
was used to design three different kinds of threshold policies. In 2011 (see [17]), yield
and related economic items generated by a TP were studied. In 2012 (see [18]), a specific
management strategy was proposed in order to control pests. In 2013 (see [19]), a specific
threshold policy was designed in order to control plant diseases and eventually maintain
the number of infected plants below an economic threshold. In 2014 (see [20]), a Filippov
epidemic model with media coverage was proposed to describe the real characteristics of
media/psychological impact in spread of the infectious disease. Mathematical bifurcation
analyses with regard to the local, global stability of equilibria and local sliding bifurcations
were performed.
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In this paper, the single-species ecological system with the dispersal among n patches is
studied. The specific TP is designed to control the increasing of the single species on patch
k.

In this part, we will generalize model (1.1) into the new model (1.2).

First of all, the assumptions of model (1.2) are listed as follows.

(1) x; € R, represents population density of the species on patch 7.

(2) fi € CY(R,, R) represents the density dependent growth rate on patch i.

(3) Constant d;; > 0 is the dispersal rate from patch j to ¢, and constant «;; > 0 can
be selected to represent different boundary condition.

(4) 8, > 0 represents the roguing proportional of the species on patch k.

Second, the control aim is listed as follows.

The Control Aim Through controlling the population density of kth patch less than

ET via the TP
0 ET
I(xk) _ y T < )
1, zp > ET,

the number of species on each patch will be eventually stable at some corresponding positive
value.
Therefore, the following single-species ecological model with the dispersal and discon-

tinuous control term is constructed,

+idij($j*aijl'i)7 16{1, ,’I’L}*{k’},
= (1.2)
)+ 3 dig

% = x; fi(x;)

Tp =z fr(xk () — agjag) — Ozl (xy), @ =k.

The network method was applied widely in recently years (see [22-30, 35-37]). In this
paper, we interpret system (1.2) as a coupled system on a network. Using the method of Li
and Shuai [6] and Filippov system theory, we prove positive equilibrium’s existence theorems
and global stability theorems.

A mathematical description of a network is a directed graph consisting of vertices and
directed arcs connecting them. At each vertex, the local dynamics are given by a system of
differential equations called the vertex system. The directed arcs indicate inter-connections
and interactions among vertex systems.

A digraph G with n vertices for system (1.2) can be constructed as follows. Each vertex
represents a patch and (j,7) € E(G) if and only if d;; > 0, here E(G) denotes the set of
arcs (i, 7) leading from inial vertex i to terminal vertex j. At each vertex of G, the vertex

dynamics are described by a system
z; =z f(x;)(i # k) or oy =z f(zr) — Ol (21).

The coupling among system (1.2) is provided by dispersal of species among patches. The
dispersal network G is strongly connected if and only if the dispersal matrix (d;;)nxn 1S
irreducible.
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From the ecology viewpoint, when the population density of the species on patch k
exceeds E'T', then the control is implemented to reduce the population density of the species
on patch k. While, when the population density of the species on patch k is less than ET,
it is not necessary to implement control.

Remark 1 The term of 6,2z comes from Zhao (see [19]).

On one hand, the value of the roguing rate 6 is dependent on the number of available
workers.

On the other hand, such a roguing term is reasonable in mathematics.

Remark 2 It is natural and reasonable to adopt the threshold policy in order to control
the population density of the species on some patch. Besides, the control cost is reasonable.

Our contribution is listed as follows.

(1) Existence conditions of positive equilibria for system (1.2) are obtained by the uni-
form persistence theory and Filippov theory.

(2) Sufficient conditions that the positive coexistence equilibrium of the coupling model
is unique and globally asymptotically stable are derived by using the method of constructing
Lyapunov functions based on graph-theoretical approach for coupled systems.

This paper is organized as follows. We introduce preliminary results on graph theory
based on coupled network models in Section 2. In Section 3, we obtain main results. Finally,

the conclusions and outlooks are drawn in Section 4.

2 Preliminaries

In this section, we will list some definitions and theorems which will be used in the later
sections.

A directed graph or digraph G = (V, E)) contains a set V = {1,2,--- ,n} of vertices and
a set E of arcs (i, j) leading from initial vertex i to terminal vertex j. A subgraph H of G is
said to be spanning if H and G have the same vertex set. A digraph G is weighted if each

arc (j,1) is assigned a positive weight. a;; > 0 if and only if there exists an arc from vertex

j toiin G.

The weight w(H) of a subgraph H is the product of the weights on all its arcs. A
directed path P in G is a subgraph with distinct vertices 1,42, - , 4, such that its set of
arcs is {(ix,ig+1) 1 kK =1,2,--- ,m}. If 4,,, = i1, we call P a directed cycle.

A connected subgraph T is a tree if it contains no cycles, directed or undirected.

A tree T is rooted at vertex i, called the root, if ¢ is not a terminal vertex of any arcs,
and each of the remaining vertices is a terminal vertex of exactly one arc. A subgraph Q@ is
unicyclic if it is a disjoint union of rooted trees whose roots form a directed cycle.

Given a weighted digraph G with n vertices, the weight matrix A = (a;;)nx» can be
defined by their entry a,; equals the weight of arc (7,1) if it exists, and 0 otherwise. For our
purpose, we denote a weighted digraph as (G, A). A digraph G is strongly connected if, for
any pair of distinct vertices, there exists a directed path from one to the other. A weighted
digraph (G, A) is strongly connected if and only if the weight matrix A is irreducible.
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The Laplacian matrix of (G, A) is denoted by L. Let ¢; denote the cofactor of the i-th
diagonal element of L. The following results are listed.
Theorem 2.1 [6] Assume n > 2. Then

= Z w(T),

TET;

where T; is the set of all spanning trees T of (G, A) that are rooted at vertex ¢, and w(7T') is
the weight of 7. In particular, if (G, A) is strongly connected, then ¢; > 0 for 1 <i <n.

Theorem 2.2 [6] Assume n > 2. Let ¢; be given in Theorem 2.1. Then the following
identity holds

Z ciaij Fij(wi, ;) = Z w(Q) Z Frs(r, @5),

i,j=1 QeQ (s,r)EE(Cq)
here Fj;(z;,x;),1 <i,j < n, are arbitrary functions, @) is the set of all spanning unicyclic
graphs of (G, A), w(Q) is the weight of @), and C denotes the directed cycle of Q.

Given a network represented by digraph G with n vertices (n > 2), a coupled system
can be built on G by assigning each vertex its own internal dynamics and then coupling
these vertex dynamics based on directed arcs in G. Assume that each vertex dynamics
are described by a system of differential equations u; = f;(t,u;), where u; € R™ and
fi: RxR™ — R™. Let g;; : R x R™ x R™ — R™ represent the influence of vertex j
on vertex ¢, and g;; = 0 if there exists no arc from j to ¢ in G. Then we obtain the following

coupled system on graph G:

= ft(t,ul) —|— Zgij(t,ui,uj).i = 1, 2, e, n,
j=1
here we assume that the initial-value problem has the unique solution.
We assume that each vertex system has a globally stable equilibrium and possesses a
global Lyapunov function V;.
Theorem 2.3 [6] Assume that the following assumptions are satisfied.
(1) There exist functions V;(t, u;), F;(t, u;, u;), and constants a;; > 0 such that
Vi(t,u;) < Z aij Fij(t, ug, ug),t > 0,u; € D;.

i,j=1

(2) Along each directed cycle C of the weighted digraph (G, A), A = (a;j),

> Frltup,ug) <0.
(s,r)EE(C)
(3) Constant ¢; is given by the cofactor of the i-th diagonal element of L.

Then the function V (¢, u) Z ¢;Vi(t,u;) satisfies V(t,u) < 0 for t > 0, and u € D =

Dy X Dy--+-x D,. Namely, V i 15 a Lyapunov function for the system.
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3 Main Results

Filippov solutions will be used for the discontinuous system (1.2). Consider the differ-

ential inclusion as follows

@i = wifi(@) + 30 dig(z; — ayy@i), iFk,
= (3.1)
Ty € xkfk .’Ek Z P — Oékj.’L‘k) — ekka_O[I(J}k)], 1= k‘,

S

here co[I(zy)] denotes the convex closure of I(xy).

Definition 1 x(t) = (z1(¢), z2(t), - ,2,(t)) is the solution of system (1.2) with initial
value z1(0) = z1,, 22(0) = 29y, -+, 2,(0) = @, if

(1) z(¢) is defined in the interval [0,7T") with T € (0, +o0].

(2) x(t) is absolutely continuous in any subinterval of [0,7).

(3) x(t) is the solution of system (3.1) for a.e. t € [0,T).

We assume that «* = (x},25,--- ,2%) is a positive equilibrium of system (1.2). By

system (3.1) and measurable selection theorem (see [21]), there is 7 € co[I(z})] such that

o} filzl) + 3 dij(ah — agxl) =0, i # k.
=l (3.2)
fkfk(xk Z x - Oéijk) Ocmpzy =0, 1=k

for a.e. t € [0,7).

In this section, first of all, the existence of the positive equilibrium for system (1.2) is
shown. The uniform persistence theory and Filippov theory are used to discuss the problem.
Secondly, sufficient conditions that the positive coexistence equilibrium of the coupling model
is unique and globally asymptotically stable in R’ as long as it exists are derived by using
the method of constructing Lyapunov functions based on graph-theoretical approach for

coupled systems.

3.1 The Existence Conditions of the Positive Equilibrium for System (1.2)

Define A;(z) = diag[f1(21), fa(2), -+, fu(2n)] and
Ap(x) = (dig)nsn — diagDy_ dijans, Y dojazs--- > dnjan).
j=1 j=1 j=1

Then we obtain that the existence theorem for positive solutions of system (1.2).
Theorem 3.1 The solution z(t) of system (1.2) satisfies that V¢ € [0,%g), x(t) > 0, if it
is defined in the interval [0,y) (0 < to < 4+00) and the initial value satisfies that

x(0) = (21(0), 22(0),- - - ,2,(0)) > 0.

Proof By the definition of I(xy), there exists § > 0 (6 < ET), such that when |z;| < d,
I(x) = 0 holds. Consider z(t) with z(0) > 0 and ||z(¢)|| < ¢, then system (1.2) can be
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simplified as follows & = [A;(z)+ Az(x)]x. In the sequel, we deduce that z(t) = xg exp[A;(z)+
As(z)]t. Therefore, we obtain that z(t) > 0, if (0) > 0 and ||z(t)|| < 4.

By applying the absolutely continuous character of the solutions, it follows that V¢ €
[0,%0), z(t) > 0 holds. This completes the proof.

Now we will consider the existence conditions for the equilibrium of system (1.2). The
theorem is listed as follows.

Theorem 3.2 Assume that the following assumptions hold for system (1.1).

(1) The system is uniformly persistent.

(2) Solutions are uniformly ultimately bounded.
Then system (1.2) has one positive equilibrium at least, if the suitable ET is chosen.

Proof Using the Theorem 5.1 of Li and Shuai [6], we obtain that system (1.1) has one
equilibrium at least. Let z* = (x7,x3,--- ,2)) denote the positive equilibrium of system

» n

(1.1) . Then by choosing ET > zj, we. have {0} € co[I(z})]. Therefore, we can choose
r* =0 € co[I(z})] such that x; fi(z;) + Zdu zj —agx;) =0 for i =1,2,---  n. It means

that x* is the positive equilibrium of bystem (1.2). This completes the proof.

Given the following system

Ti 7x7‘fl le Z aljm2> le{l? 7n}_{k}7
Zil (3.3)
T = xp fr(xr) Z — o) — Oy, i =k.

Using the uniformly persistence theory (see [34]) and Theorem 3.2, the corollary is
obtained naturally.

Corollary 1 Assume that the following assumptions hold for system (3.3).

(1) The system is uniformly persistent.

(2) Solutions are uniformly ultimately bounded.

Then system (1.2) has one positive equilibrium at least, if the suitable ET is chosen.
3.2 The Stability Analysis of the Positive Equilibrium for System (1.2)

Similar to system (3.1), when z(t) = (z1(¢),z2(t), -+, z,(t)) is the solution of system
(1.2), then for any v € co[I(zx(t))] , there is a measurable function 7y (t) € co[l(x(t))]
(measurable selection theorem (see [21])) such that

= fi(z) + > d; —yx;), 1€{1,--- ,n} —{k},
= (3.4)
Q?k = xkfk Q?k Z Oékjl‘k) — Hknk(t)xka 7= ]{I

for a.e. t €[0,7).
The main result is listed as follows.

Theorem 3.3 Assume that the following assumptions hold.



98 Journal of Mathematics Vol. 38

(1) (dij)nxn is irreducible.

(2) fi(x;) < 0,25 > 0,i =1,2,---,n, and there exists p such that f,(z,) # 0 in any
open interval of R .

(3) There exists a positive equilibrium z* = (27,23, --- ,z}) for system (1.2).
Then positive equilibrium z* of system (1.2) is unique and globally asymptotically stable in
RY.

Proof After tedious calculation, we obtain that the positive equilibrium z* satisfies
n T .
=- Z dij (35 — aig), i # &,

fe(ay) = Oumy — Z dij (2 — ogy), i = .

(3.5)

Set Vi(z;) = x; — 27 +xjIn7t. It can be verified that Vi(x;) > 0 for all z; > 0 and Vj(x;) =0

if and only if z; = z7. After direct calculation, we have (i # k)

Vilws) = (@ = 2})lfilw) = fi(w)] + Zdw 7] ; ] vt
Let a;; = dyaf, Fij(xg,z;) = 22 — 2 41— % and G;(z;) = — 2 + lni— Then we obtain
7 K K i i
that ‘/1($2> S Z aijFij(xi,mj), and
j=1
Y i,
Fy(wi ;) = Giw) = Gyla;) +1 - x s

In the sequel, we obtain that Fj;(z;,z;) < Gi(x;) — G;(x;). When i = k, we have

Vi(z) = (ﬂfk i) [(fr(zr) — fi(2i)) + Ok(ne — ni(t))]
+de (-2 +1-23)
for a.e. t € [0,7).
Now the sign of (zy, — x})(n; — mk(t)) will be discussed. By applying the monotonic
property of I(xy), we obtain that
When z;, > 2}, ni(t) > nf holds. When z, < xj, mx(t) < n; holds. It means that
O (r — z3) (g — k() < 0. In the sequel,

E ar; Frj (g, ;)

for a.e. t € [0,7).
Let ¢; denote the cofactor of the i-th diagonal element of Laplacian Matrix of G. Let

Lyapunov function V(z) = V(z1,za, - - Z ¢:Vi(z;). Then we have V(z(t)) < 0 for
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ae. t € [0,T). If V = 0, we obtain that (z, — ) fp(xp) — fp(xy)] = 0 for ae. t €[0,7).
Therefore, we deduce that z, = z; for a.e. t € [0,T). By applying the absolutely continuous
character of the solutions, it follows that x;, = z;. By using the strong connectivity of (G, A)

and

x
T,

r¥x
+In =) =0 (Vj # p)
LT

* *
pTj T

ap;(1—

for a.e. t € [0,T), we obtain that % for ae. t € [0,T). By applying the absolutely

continuous character of the solutions and T, = z,, it follows that x; = z} for any j =
1,2,--- ,n. Furthermore, we obtain that the maximum weak invariant subset of ZZ' () L,
is the set of unique point M = {z*}. By applying the invariance principle of differential
inclusion (see [21]), we obtain that z* is globally asymptotically stable in R . Here

72 = {z € R"0 € V|@V(2)}, L = {z € R"|V(z) < 1}
and
VIeY(z) = {<V.,V(z),v>|veF(a)}
1 f1(z1) +J_Zn:1 dij(z; — ajar)

T fo(w2) + D daj(; — agjzs)
=1

i fi(@r) = Oxzico[I ()] + 327, dij () — anjn)

n

Tofn(@n) + 32 dnj(; — Onjn)

Jj=1

This completes the proof.
Furthermore, the control can be used on all of patches for system (1.1). Consider the

following system
in = xzfz(xz> + Z dij(xj - O‘ijxi) - eixij(xi)’ L= 17 Ny (3-6)
j=1

here

o) 0, x; < ET,
xT;) =
1, x=; > ET,

0; > 0 represents the roguing proportional for the species on the ith patch.

In the sequel, Corollary 2 is obtained.

Corollary 2 Assume that the following assumptions hold.

(1) (dij)nxn is irreducible.

(2) fi(z;) <0,2; > 0,i = 1,2,--- ,n, and there exists p such that f,(z,) # 0 in any
open interval of R .
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(3) There exists a positive equilibrium z* = (27,23, -, z}) for system (3.6).
Then positive equilibrium z* of system (3.6) is unique and globally asymptotically stable in
RY.

Remark 3 Corollary 2 can be seen as the development of the Theorem 2.3. It means
that network method can be applied in the Filippov system.

4 Conclusions and Outlooks

In this paper, we generalize the single-species ecological model (1.1) to the general model
(1.2) with the discontinuous control term for the kth patch. Firstly, the uniform persistence
and Filippov theory are used to prove the existence of positive equilibrium. We obtain the
existence condition for the positive equilibrium which can be seen as the development of the
Theorem 5.1 in [6]. Second, the globally asymptotical stability of positive equilibria of system
(1.2) and (2.6) is proved based on the network method for coupled systems of differential
equations, Filippov theory and differential inclusion. Our main theorems generalize Theorem
5.1 and 3.1 in [6].

Biologically, our result Theorem 3.3 implies that, if we consider to control the population
density of kth patch less than ET by using the TP, the single-species ecological model
with dispersal is dispersing among strongly-connected patches (which is equivalent to the
irreducibility of the dispersal matrix), and if the system has an equilibrium at least, then
the number of species in each patch will be eventually stable at some corresponding positive
value.

Further studies on this subject are being carried out by the presenting authors in the
two aspects: one is to study the TP with time delay; the other is to discuss the method to

design control term via the TP.
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