A NONTRIVIAL PRODUCT OF $b_{0}^{3} \tilde{\delta}_{s+4}$ IN THE COHOMOLOGY OF THE STEENROD ALGEBRA

WANG Chong ${ }^{1}$ ，LIU Xiu－gui ${ }^{2}$
（1．College of Mathematical and Statistics，Cangzhou Normal University，Cangzhou 061001，China） （2．School of Mathematical Sciences，Nankai University，Tianjin 300071，China）

Abstract

In this paper，we mainly study the nontriviality of the products in the cohomology of the Steenrod algebra．Let p be a prime greater than five and A be the $\bmod p$ Steenrod algebra． By using the explicit combinatorial analysis of the May spectral sequence，we prove that the product $b_{0}^{3} \tilde{\delta}_{s+4} \in \operatorname{Ext}_{A}^{s+10, *}\left(\mathbb{Z}_{p}, \mathbb{Z}_{p}\right)$ is nontrivial，where $0 \leqslant s<p-5$ ，which is helpful for us to study the nontriviality of homotopy elements in the stable homotopy of spheres．

Keywords：Steenrod algebra；cohomology；May spectral sequence
2010 MR Subject Classification：55Q45
Document code：A Article ID：0255－7797（2018）01－0057－10

1 Introduction

To determine the stable homotopy groups of spheres is one of the most important prob－ lems in algebraic topology．So far，several methods were found to determine the stable homo－ topy groups of spheres．For example，we have the classical Adams spectral sequence（ASS） （see［1］）based on the Eilenberg－MacLane spectrum $K \mathbb{Z}_{p}$ ，whose E_{2}－term is Ext ${ }_{A}^{s, t}\left(\mathbb{Z}_{p}, \mathbb{Z}_{p}\right)$ and the Adams differential is given by $\tilde{d}_{r}: E_{r}^{s, t} \rightarrow E_{r}^{s+r, t+r-1}$ ，where A denotes the mod p Steenrod algebra．There are three problems in using the ASS：calculation of E_{2}－term $\operatorname{Ext}_{A}^{* * *}\left(\mathbb{Z}_{p}, \mathbb{Z}_{p}\right)$ ，computation of the differentials and determination of the nontrivial exten－ sions from E_{∞} to the stable homotopy groups of spheres．So，for computing the stable homotopy groups of spheres with the classical ASS，we must compute the E_{2}－term of the ASS， $\operatorname{Ext}_{A}^{*, *}\left(\mathbb{Z}_{p}, \mathbb{Z}_{p}\right)$ ．

Throughout this paper，p denotes an odd prime and $q=2(p-1)$ ．The known re－ sults on $\operatorname{Ext}_{A}^{*, *}\left(\mathbb{Z}_{p}, \mathbb{Z}_{p}\right)$ are as follows． $\operatorname{Ext}_{A}^{0, *}\left(\mathbb{Z}_{p}, \mathbb{Z}_{p}\right)$ is trivial by its definition．From［2］， $\operatorname{Ext}_{A}^{1, *}\left(\mathbb{Z}_{p}, \mathbb{Z}_{p}\right)$ has \mathbb{Z}_{p}－basis consisting of $a_{0} \in \operatorname{Ext}_{A}^{1,1}\left(\mathbb{Z}_{p}, \mathbb{Z}_{p}\right), h_{i} \in \operatorname{Ext}_{A}^{1, p^{i} q}\left(\mathbb{Z}_{p}, \mathbb{Z}_{p}\right)$ for all $i \geqslant 0$ and $\operatorname{Ext}_{A}^{2, *}\left(\mathbb{Z}_{p}, \mathbb{Z}_{p}\right)$ has \mathbb{Z}_{p}－basis consisting of $\alpha_{2}, a_{0}^{2}, a_{0} h_{i}(i>0), g_{i}(i \geqslant 0), k_{i}(i \geqslant 0)$, $b_{i}(i \geqslant 0)$ ，and $h_{i} h_{j}(j \geqslant i+2, i \geqslant 0)$ whose internal degrees are $2 q+1,2, p^{i} q+1, p^{i+1} q+2 p^{i} q$ ， $2 p^{i+1} q+p^{i} q, p^{i+1} q$ and $p^{i} q+p^{j} q$ ，respectively．In 1980，Aikawa［3］determined $\operatorname{Ext}_{A}^{3, *}\left(\mathbb{Z}_{p}, \mathbb{Z}_{p}\right)$ by λ－algebra．

[^0]Studying higher-dimensional cohomology of the $\bmod p$ Steenrod algebra A was an interesting subject and studied by several authors. For example, Liu and Zhao [4] proved the following theorems, respectively.

Theorem 1.1 For $p \geqslant 11$ and $4 \leqslant s<p$, the product $h_{0} b_{0} \tilde{\delta}_{s} \neq 0$ in the classical Adams spectral sequence, where $\tilde{\delta}_{s}$ was given in [5].

In this paper, our main result can be stated as follows.
Theorem 1.2 Let $p \geqslant 7$, and $0 \leqslant s<p-5$. Then in the cohomology of the $\bmod p$ Steenrod algebra A, the product $b_{0}^{3} \tilde{\delta}_{s+4} \in \operatorname{Ext}_{A}^{s+10, t(s)}\left(\mathbb{Z}_{p}, \mathbb{Z}_{p}\right)$ is nontrivial, where

$$
t(s)=q\left[(s+1)+(s+5) p+(s+3) p^{2}+(s+4) p^{3}\right]+s
$$

The main method of proof is the (modified) May spectral sequence, so we will recall some knowledge on the May spectral sequence in Section 2. After detecting the generators of some May E_{1}-terms in Section 3, we will prove Theorem 1.2.

2 The May Spectral Sequence

As we know, the most successful method to compute $\operatorname{Ext}_{A}^{*, *}\left(\mathbb{Z}_{p}, \mathbb{Z}_{p}\right)$ is the MSS. From [6], there is a May spectral sequence(MSS) $\left\{E_{r}^{s, t, *}, d_{r}\right\}$ which converges to $\operatorname{Ext}_{A}^{s, t}\left(\mathbb{Z}_{p}, \mathbb{Z}_{p}\right)$ with E_{1}-term

$$
\begin{equation*}
E_{1}^{*, *, *}=E\left(h_{m, i} \mid m>0, i \geqslant 0\right) \otimes P\left(b_{m, i} \mid m>0, i \geqslant 0\right) \otimes P\left(a_{n} \mid n \geqslant 0\right) \tag{2.1}
\end{equation*}
$$

where $E()$ is the exterior algebra, $P()$ is the polynomial algebra, and

$$
h_{m, i} \in E_{1}^{1,2\left(p^{m}-1\right) p^{i}, 2 m-1}, b_{m, i} \in E_{1}^{2,2\left(p^{m}-1\right) p^{i+1}, p(2 m-1)}, a_{n} \in E_{1}^{1,2 p^{n}-1,2 n+1}
$$

One has

$$
\begin{equation*}
d_{r}: E_{r}^{s, t, u} \rightarrow E_{r}^{s+1, t, u-r} \tag{2.2}
\end{equation*}
$$

and if $x \in E_{r}^{s, t, *}$ and $y \in E_{r}^{s^{\prime}, t^{\prime}, *}$, then

$$
\begin{equation*}
d_{r}(x \cdot y)=d_{r}(x) \cdot y+(-1)^{s} x \cdot d_{r}(y) \tag{2.3}
\end{equation*}
$$

In particular, the first May differential d_{1} is given by

$$
\begin{equation*}
d_{1}\left(h_{i, j}\right)=\sum_{0<k<i} h_{i-k, k+j} h_{k, j}, d_{1}\left(a_{i}\right)=\sum_{0 \leqslant k<i} h_{i-k, k} a_{k}, d_{1}\left(b_{i, j}\right)=0 . \tag{2.4}
\end{equation*}
$$

There also exists a graded commutativity in the MSS:

$$
x \cdot y=(-1)^{s s^{\prime}+t t^{\prime}} y \cdot x \text { for } x, y=h_{m, i}, b_{m, i} \text { or } a_{n}
$$

For each element $x \in E_{1}^{s, t, u}$, we define $\operatorname{dim} x=s, \operatorname{deg} x=t, M(x)=u$. Then we have that

$$
\left\{\begin{array}{l}
\operatorname{dim} h_{i, j}=\operatorname{dim} a_{i}=1 \tag{2.5}\\
\operatorname{dim} b_{i, j}=2, \operatorname{deg} a_{0}=1 \\
\operatorname{deg} h_{i, j}=q\left(p^{i+j-1}+\cdots+p^{j}\right) \\
\operatorname{deg} b_{i, j}=q\left(p^{i+j}+\cdots+p^{j+1}\right) \\
\operatorname{deg} a_{i}=q\left(p^{i-1}+\cdots+1\right)+1 \\
M\left(h_{i, j}\right)=M\left(a_{i-1}\right)=2 i-1 \\
M\left(b_{i, j}\right)=(2 i-1) p
\end{array}\right.
$$

where $i \geqslant 1, j \geqslant 0$.
Note that by the knowledge on the p-adic expression in number theory, for each integer $t \geqslant 0$, it can be expressed uniquely as $t=q\left(c_{n} p^{n}+c_{n-1} p^{n-1}+\cdots+c_{1} p+c_{0}\right)+e$, where $0 \leqslant c_{i}<p(0 \leqslant i<n), p>c_{n}>0,0 \leqslant e<q$.

3 Proof of Theorem 1.2

Before showing Theorem 1.2, we first give some important lemmas which will be used in the proof of it. The first one is a lemma on the representative of $\tilde{\delta}_{s+4}$ in the May spectral sequence.

Lemma 3.1 For $p \geqslant 7$ and $0 \leqslant s<p-4$. Then the fourth Greek letter element $\tilde{\delta}_{s+4} \in \operatorname{Ext}_{A}^{s+4, t_{1}(s)}\left(\mathbb{Z}_{p}, \mathbb{Z}_{p}\right)$ is represented by

$$
a_{4}^{s} h_{4,0} h_{3,1} h_{2,2} h_{1,3} \in E_{1}^{s+4, t_{1}(s), *}
$$

in the E_{1}-term of the May spectral sequence, where $\tilde{\delta}_{s+4}$ is actually $\tilde{\alpha}_{s+4}^{(4)}$ described in [6] and $t_{1}(s)=q\left[(s+1)+(s+2) p+(s+3) p^{2}+(s+4) p^{3}\right]+s$.

By (2.2), we know that to prove the non-triviality of $b_{0}^{3} \tilde{\delta}_{s+4} \in \operatorname{Ext}_{A}^{s+10, t(s)}\left(\mathbb{Z}_{p}, \mathbb{Z}_{p}\right)$, we have to show that the representative of the product cannot be hit by any May differential. For doing it, we give the following two lemmas.

Lemma 3.2 Let $p \geqslant 7,0 \leqslant s<p-5$. Then we have the May E_{1}-term

$$
E_{1}^{s+9, t(s), *}=\mathbb{Z}_{p}\left\{G_{1}, G_{2}, \cdots, G_{11}\right\}
$$

where $t(s, n)=q\left[(s+1)+(s+5) p+(s+3) p^{2}+(s+4) p^{3}\right]+s$, and

$$
\begin{aligned}
& G_{1}=a_{4}^{s-1} a_{2} b_{3,0}^{2} b_{1,0} h_{4,0} h_{3,1} h_{1,3}, \quad G_{2}=a_{4}^{s-1} a_{2} b_{3,0}^{3} h_{4,0} h_{1,3} h_{1,1} \\
& G_{3}=a_{4}^{s-1} a_{2} b_{3,0}^{2} b_{1,2} h_{4,0} h_{3,1} h_{1,1}, \quad G_{4}=a_{4}^{s} b_{3,0} b_{1,0}^{2} h_{4,0} h_{3,1} h_{1,3} \\
& G_{5}=a_{4}^{s} b_{3,0}^{2} b_{1,0} h_{4,0} h_{1,3} h_{1,1}, \quad G_{6}=a_{4}^{s} b_{3,0} b_{1,2} b_{1,0} h_{4,0} h_{3,1} h_{1,1} \\
& G_{7}=a_{4}^{s-2} a_{2}^{2} b_{3,0}^{2} h_{4,0} h_{3,1} h_{2,2} h_{1,3} h_{1,1}, \quad G_{8}=a_{4}^{s-1} a_{2} b_{3,0} b_{1,0} h_{4,0} h_{3,1} h_{2,2} h_{1,3} h_{1,1}, \\
& G_{9}=a_{4}^{s-1} a_{2} b_{3,0} b_{1,2} h_{4,0} h_{3,1} h_{2,1} h_{1,3} h_{1,1}, \quad G_{10}=a_{4}^{s} b_{1,0}^{2} h_{4,0} h_{3,1} h_{2,2} h_{1,3} h_{1,1} \\
& G_{11}=a_{4}^{s} b_{1,2} b_{1,0} h_{4,0} h_{3,1} h_{2,1} h_{1,3} h_{1,1} .
\end{aligned}
$$

For the convenience of writing, we make the following rules:
(i) if $i>j$, we put a_{i} on the left side of a_{j};
(ii) if $j<k$, we put $h_{i, j}$ on the left side of $h_{w, k}$;
(iii) if $i>w$, we put $h_{i, j}$ on the left side of $h_{w, j}$;
(iv) apply the rules (ii) and (iii) to $b_{i, j}$.

Now we give the proof of the above lemma.
Proof The proof of this lemma is divided into the following six cases. Consider

$$
h=x_{1} x_{2} \cdots x_{m} \in E_{1}^{s+9, t(s), *}
$$

in the MSS, where x_{i} is one of $a_{k}, h_{r, j}$ or $b_{u, z}, 0 \leqslant k \leqslant 4,0 \leqslant r+j \leqslant 4,0 \leqslant u+z \leqslant 3, r>0$, $j \geqslant 0, u>0, z \geqslant 0$. By (2.5), we can assume that $\operatorname{deg} x_{i}=q\left(c_{i, 3} p^{3}+c_{i, 2} p^{2}+c_{i, 1} p+c_{i, 0}\right)+e_{i}$, where $c_{i, j}=0$ or $1, e_{i}=1$ if $x_{i}=a_{k_{i}}$ or $e_{i}=0$. It follows that $\operatorname{dim} h=\sum_{i=1}^{m} \operatorname{dim} x_{i}=s+9$ and

$$
\begin{aligned}
\operatorname{deg} h & =\sum_{i=1}^{m} \operatorname{deg} x_{i}=q\left[\left(\sum_{i=1}^{m} c_{i, 3}\right) p^{3}+\left(\sum_{i=1}^{m} c_{i, 2}\right) p^{2}+\left(\sum_{i=1}^{m} c_{i, 1}\right) p+\left(\sum_{i=1}^{m} c_{i, 0}\right)\right]+\left(\sum_{i=1}^{m} e_{i}\right) \\
& =q\left[(s+4) p^{3}+(s+3) p^{2}+(s+5) p+(s+1)\right]+s .
\end{aligned}
$$

Note that

$$
\operatorname{dim} h_{i, j}=\operatorname{dim} a_{i}=1, \quad \operatorname{dim} b_{i, j}=2 \text { and } 0 \leqslant s<p-5
$$

From $\operatorname{dim} h=\sum_{i=1}^{m} \operatorname{dim} x_{i}=s+9$, we can have $m \leqslant s+9 \leqslant p+3$.
Using $0 \leqslant s+5, s+4, s+3, s+1, s<p$ and the knowledge on the p-adic expression in number theory, we have that

$$
\left\{\begin{array}{l}
\sum_{i=1}^{m} e_{i}=s \tag{3.1}\\
\sum_{i=1}^{m} c_{i, 0}=s+1 \\
\sum_{i=1}^{m} c_{i, 1}=s+5 \\
\sum_{i=1}^{m} c_{i, 2}=s+3 \\
\sum_{i=1}^{m} c_{i, 3}=s+4
\end{array}\right.
$$

By $c_{i, 2}=0$ or 1 , one has $m \geqslant s+4$ from $\sum_{i=1}^{m} c_{i, 3}=s+4$. Note that $m \leqslant s+9$. Thus m may equal $s+4, s+5, s+6, s+7, s+8$ or $s+9$. Since $\sum_{i=1}^{m} e_{i}=s, \operatorname{deg} h_{i, j} \equiv 0(\bmod q)$ $(i>0, j \geqslant 0), \operatorname{deg} a_{i} \equiv 1(\bmod q)(i \geqslant 0)$ and $\operatorname{deg} b_{i, j} \equiv 0(\bmod q)(i>0, j \geqslant 0)$, then by the graded commutativity of $E_{1}^{*, *, *}$ and degree reasons, we can assume that $h=a_{0}^{x} a_{1}^{y} a_{2}^{z} a_{3}^{k} a_{4}^{l} h^{\prime}$ with $h^{\prime}=x_{s+1} x_{s+2} \cdots x_{m}$, where $0 \leqslant x, y, z, k, l \leqslant s, x+y+z+k+l=s$. Consequently, we have

$$
h^{\prime}=x_{s+1} x_{s+2} \cdots x_{m} \in E_{1}^{9, t_{2}(s), *}
$$

where $t_{2}(s)=q\left[(s+4-l) p^{3}+(s+3-l-k) p^{2}+(s+5-l-k-z) p+(s+1-l-k-z-y)\right]$. From (3.1), we have

$$
\left\{\begin{array}{l}
\sum_{i=s+1}^{m} e_{i}=0 \tag{3.2}\\
\sum_{i=s+1}^{m} c_{i, 0}=s+1-l-k-z-y \\
\sum_{i=s+1}^{m} c_{i, 1}=s+5-l-k-z \\
\sum_{i=s+1}^{m} c_{i, 2}=s+3-l-k \\
\sum_{i=s+1}^{m} c_{i, 3}=s+4-l
\end{array}\right.
$$

By the reason of dimension, all the possibilities of h^{\prime} can be listed as

$$
y_{1} z_{1} \cdots z_{4}, \quad y_{1} y_{2} y_{3} z_{1} z_{2} z_{3}, \quad y_{1} \cdots y_{5} z_{1} z_{2}, \quad y_{1} \cdots y_{7} z_{1}, \quad y_{1} \cdots y_{9}
$$

where y_{i} is in the form of $h_{r, j}$ with $0 \leqslant r+j \leqslant 4, r>0, j \geqslant 0$ and z_{i} is in the form of $b_{u, z}$ with $0 \leqslant u+z \leqslant 3, u>0, z \geqslant 0$.

Case $1 m=s+4$. So $h^{\prime}=x_{s+1} x_{s+2} x_{s+3} x_{s+4} \in E_{1}^{9, q\left(4 p^{3}+3 p^{2}+5 p+1\right), *}$ and it is impossible to exist. Then h doesn't exist either.

Case $2 m=s+5$. From $\sum_{i=s+1}^{s+5} c_{i, 3}=s+4-l$ in (3.2), we have that $l=s+4-\sum_{i=s+1}^{s+5} c_{i, 3} \geqslant$ $s-1$. Thus $l=s-1$ or s and $h^{\prime}=y_{1} z_{1} \cdots z_{4} \in E_{1}^{9, t_{2}(s), *}$. We list all the possibilities in Table 1.

Table 1: for Case 2							
The possibility	l	x	y	z	k	$E_{1}^{9, t_{2}(s), *}$	The existence of
					$h^{\prime}=x_{s+1} \cdots x_{m}$		

Case $3 m=s+6$. From $\sum_{i=s+1}^{s+6} c_{i, 3}=s+4-l$ in (3.2), we have that $l=s+4-\sum_{i=s+1}^{s+6} c_{i, 3} \geqslant$ $s-2$. Thus $l=s-2, s-1$ or s and $h^{\prime}=y_{1} y_{2} y_{3} z_{1} z_{2} z_{3} \in E_{1}^{9, t_{2}(s), *}$. We list all the possibilities in Table 2.

In the table, $b_{3,0}^{2} b_{1,0} h_{4,0} h_{3,1} h_{1,3}, b_{3,0}^{3} h_{4,0} h_{1,3} h_{1,1}, b_{3,0}^{2} b_{1,2} h_{4,0} h_{3,1} h_{1,1}, b_{3,0} b_{1,0}^{2} h_{4,0} h_{3,1} h_{1,3}$, $b_{3,0}^{2} b_{1,0} h_{4,0} h_{1,3} h_{1,1}, b_{3,0} b_{1,2} b_{1,0} h_{4,0} h_{3,1} h_{1,1}$, denoted by $\mathbf{g}_{1}, \mathbf{g}_{2}, \mathbf{g}_{3}, \mathbf{g}_{4}, \mathbf{g}_{5}, \mathbf{g}_{6}$, respectively. Consequently, in this case up to sign $h=a_{4}^{s-1} a_{2} \mathbf{g}_{1}, a_{4}^{s-1} a_{2} \mathbf{g}_{2}, a_{4}^{s-1} a_{2} \mathbf{g}_{3}, a_{4}^{s} \mathbf{g}_{4}, a_{4}^{s} \mathbf{g}_{5}, a_{4}^{s} \mathbf{g}_{6}$ denoted by $\mathbf{G}_{1}, \mathbf{G}_{2}, \mathbf{G}_{3}, \mathbf{G}_{4}, \mathbf{G}_{5}, \mathbf{G}_{6}$, respectively.

Case $4 m=s+7$. From $\sum_{i=s+1}^{s+7} c_{i, 3}=s+4-l$ in (3.2), we have that $l=s+4-\sum_{i=s+1}^{s+7} c_{i, 3} \geqslant$ $s-3$. Thus $l=s-3, s-2, s-1$ or s, and $h^{\prime}=y_{1} \cdots y_{5} z_{1} z_{2} \in E_{1}^{9, t_{2}(s), *}$. When $l=s-3$, we

	Table 2: for Case 3						
The possibility	l	x	y	z	k	$E_{1}^{9, t_{2}(s), *}$	The existence of
					$h^{\prime}=x_{s+1} \cdots x_{m}$		
The 1st	$s-2$	2	0	0	0	$E_{1}^{9, q\left(6 p^{3}+5 p^{2}+7 p+3\right), *}=0$	Nonexistence
The 2nd	$s-2$	0	2	0	0	$E_{1}^{9, q\left(6 p^{3}+5 p^{2}+7 p+1\right), *}=0$	Nonexistence
The 3rd	$s-2$	0	0	2	0	$E_{1}^{9, q\left(6 p^{3}+5 p^{2}+5 p+1\right), *}=0$	Nonexistence
The 4th	$s-2$	0	0	0	2	$E_{1}^{9, q\left(6 p^{3}+3 p^{2}+5 p+1\right), *}=0$	Nonexistence
The 5th	$s-2$	1	1	0	0	$E_{1}^{9, q\left(6 p^{3}+5 p^{2}+7 p+2\right), *}=0$	Nonexistence
The 6th	$s-2$	1	0	1	0	$E_{1}^{9, q\left(6 p^{3}+5 p^{2}+6 p+2\right), *}=0$	Nonexistence
The 7th	$s-2$	1	0	0	1	$E_{1}^{9, q\left(6 p^{3}+4 p^{2}+6 p+2\right), *}=0$	Nonexistence
The 8th	$s-2$	0	1	1	0	$E_{1}^{9, q\left(6 p^{3}+5 p^{2}+6 p+1\right), *}=0$	Nonexistence
The 9th	$s-2$	0	1	0	1	$E_{1}^{9, q\left(6 p^{3}+4 p^{2}+6 p+1\right), *}=0$	Nonexistence
The 10th	$s-2$	0	0	1	1	$E_{1}^{9, q\left(6 p^{3}+4 p^{2}+5 p+1\right), *}=0$	Nonexistence
The 11th	$s-1$	1	0	0	0	$E_{1}^{9, q\left(5 p^{3}+4 p^{2}+6 p+2\right), *}=0$	Nonexistence
The 12th	$s-1$	0	1	0	0	$E_{1}^{9, q\left(5 p^{3}+4 p^{2}+6 p+1\right), *}=0$	Nonexistence
The 13th	$s-1$	0	0	1	0	$E_{1}^{9, q\left(5 p^{3}+4 p^{2}+5 p+1\right), *}$	$h^{\prime}=\mathbf{g}_{1}, \mathbf{g}_{2}, \mathbf{g}_{3}$
					$=\mathbb{Z}_{p}\left\{\mathbf{g}_{1}, \mathbf{g}_{2}, \mathbf{g}_{3}\right\}$	up to sign	
The 14th	$s-1$	0	0	0	1	$E_{1}^{9, q\left(5 p^{3}+3 p^{2}+5 p+1\right), *}=0$	Nonexistence
The 15th	s	0	0	0	0	$E_{1}^{9, q\left(4 p^{3}+3 p^{2}+5 p+1\right), *}$	$h^{\prime}=\mathbf{g}_{4}, \mathbf{g}_{5}, \mathbf{g}_{6}$
						$=\mathbb{Z}_{p}\left\{\mathbf{g}_{4}, \mathbf{g}_{5}, \mathbf{g}_{6}\right\}$	up to sign

The possibility	l	x	y	z	k	$E_{1}^{9, t_{2}(s), *}$	The existence of $h^{\prime}=x_{s+1} \cdots x_{m}$
The 1st	$s-2$	2	0	0	0	$E_{1}^{9, q\left(6 p^{3}+5 p^{2}+7 p+3\right), *}=0$	Nonexistence
The 2nd	$s-2$	0	2	0	0	$E_{1}^{9, q\left(6 p^{3}+5 p^{2}+7 p+1\right), *}=0$	Nonexistence
The 3rd	$s-2$	0	0	2	0	$\begin{gathered} E_{1}^{9, q\left(6 p^{3}+5 p^{2}+5 p+1\right), *} \\ =\mathbb{Z}_{p}\left\{\mathbf{g}_{7}\right\} \end{gathered}$	$h^{\prime}=\mathbf{g}_{7}$ up to sign
The 4th	$s-2$	0	0	0	2	$E_{1}^{9, q\left(6 p^{3}+3 p^{2}+5 p+1\right), *}=0$	Nonexistence
The 5th	$s-2$	1	1	0	0	$E_{1}^{9, q\left(6 p^{3}+5 p^{2}+7 p+2\right), *}=0$	Nonexistence
The 6th	$s-2$	1	0	1	0	$E_{1}^{9, q\left(6 p^{3}+5 p^{2}+6 p+2\right), *}=0$	Nonexistence
The 7th	$s-2$	1	0	0	1	$E_{1}^{9, q\left(6 p^{3}+4 p^{2}+6 p+2\right), *}=0$	Nonexistence
The 8th	$s-2$	0	1	1	0	$E_{1}^{9, q\left(6 p^{3}+5 p^{2}+6 p+1\right), *}=0$	Nonexistence
The 9th	$s-2$	0	1	0	1	$E_{1}^{9, q\left(6 p^{3}+4 p^{2}+6 p+1\right), *}=0$	Nonexistence
The 10th	$s-2$	0	0	1	1	$E_{1}^{9, q\left(6 p^{3}+4 p^{2}+5 p+1\right), *}=0$	Nonexistence
The 11th	$s-1$	1	0	0	0	$E_{1}^{9, q\left(5 p^{3}+4 p^{2}+6 p+2\right), *}=0$	Nonexistence
The 12th	$s-1$	0	1	0	0	$E_{1}^{9, q\left(5 p^{3}+4 p^{2}+6 p+1\right), *}=0$	Nonexistence
The 13th	$s-1$	0	0	1	0	$E_{1}^{9, q\left(5 p^{3}+4 p^{2}+5 p+1\right), *}$	$h^{\prime}=\mathbf{g}_{8}, \mathbf{g}_{9}$
The 14th	$s-1$	0	0	0	1	$\begin{gathered} =\mathbb{Z}_{p}\left\{\mathbf{g}_{8}, \mathbf{g}_{9}\right\} \\ E_{1}^{9, q\left(5 p^{3}+3 p^{2}+5 p+1\right), *}=0 \end{gathered}$	up to sign Nonexistence
The 15th	s	0	0	0	0	$\begin{aligned} & E_{1}^{9, q\left(4 p^{3}+3 p^{2}+5 p+1\right), *} \\ & \quad=\mathbb{Z}_{p}\left\{\mathbf{g}_{10}, \mathbf{g}_{11}\right\} \end{aligned}$	$\begin{gathered} h^{\prime}=\mathbf{g}_{10}, \mathbf{g}_{11} \\ \text { up to sign } \end{gathered}$

have that $t_{2}(s)=q\left[7 p^{3}+\cdots\right]$. In this case, h^{\prime} is impossible to exist. Then h doesn't exist either. Next we list all the rest of possibilities in Table 3.

In the table, $b_{3,0}^{2} h_{4,0} h_{3,1} h_{2,2} h_{1,3} h_{1,1}, b_{3,0} b_{1,0} h_{4,0} h_{3,1} h_{2,2} h_{1,3} h_{1,1}, b_{3,0} b_{1,2} h_{4,0} h_{3,1} h_{2,1} h_{1,3} h_{1,1}$, $b_{1,0}^{2} h_{4,0} h_{3,1} h_{2,2} h_{1,3} h_{1,1}, b_{1,2} b_{1,0} h_{4,0} h_{3,1} h_{2,1} h_{1,3} h_{1,1}$, denoted by $\mathbf{g}_{7}, \mathbf{g}_{8}, \mathbf{g}_{9}, \mathbf{g}_{10}, \mathbf{g}_{11}$, respectively. Consequently, in this case up to sign $h=a_{4}^{s-2} a_{2}^{2} \mathbf{g}_{7}, a_{4}^{s-1} a_{2} \mathbf{g}_{8}, a_{4}^{s-1} a_{2} \mathbf{g}_{9}, a_{4}^{s} \mathbf{g}_{10}, a_{4}^{s} \mathbf{g}_{11}$ denoted by $\mathbf{G}_{7}, \mathbf{G}_{8}, \mathbf{G}_{9}, \mathbf{G}_{10}, \mathbf{G}_{11}$, respectively.

Case $5 m=s+8$. From $\sum_{i=s+1}^{s+8} c_{i, 3}=s+4-l$ in (3.2), we have that $l=s+4-\sum_{i=s+1}^{s+8} c_{i, 3} \geqslant$ $s-4$. Thus $l=s-4, s-3, s-2, s-1$ or s, and $h^{\prime}=y_{1} \cdots y_{7} z_{1} \in E_{1}^{9, t_{2}(s), *}$. When $l \leqslant s-2$, the coefficient of $P^{3} \in t_{2}(s)$ is >5. In these cases, h^{\prime} is impossible to exist. Then h doesn't exist either. Next we list all the other possibilities in Table 4.

Table 4: for Case 5

Table 4: for Case 5							
The possibility	l	x	y	z	k	$E_{1}^{9, t_{2}(s), *}$	The existence of $h^{\prime}=x_{s+1} \cdots x_{m}$
The 1st	$s-1$	1	0	0	0	$E_{1}^{9, q\left(5 p^{3}+4 p^{2}+6 p+2\right), *}=0$	Nonexistence
The 2nd	$s-1$	0	1	0	0	$E_{1}^{9, q\left(5 p^{3}+4 p^{2}+6 p+1\right), *}=0$	Nonexistence
The 3rd	$s-1$	0	0	1	0	$E_{1}^{9, q\left(5 p^{3}+4 p^{2}+5 p+1\right), *}=0$	Nonexistence
The 4th	$s-1$	0	0	0	1	$E_{1}^{9, q\left(5 p^{3}+3 p^{2}+5 p+1\right), *}=0$	Nonexistence
The 5th	s	0	0	0	0	$E_{1}^{9, q\left(4 p^{3}+3 p^{2}+5 p+1\right), *}=0$	Nonexistence

Case $6 m=s+9$. From $\sum_{i=s+1}^{s+9} c_{i, 3}=s+4-l$ in (3.2), we have that $l=s+4-\sum_{i=s+1}^{s+9} c_{i, 3} \geqslant$ $s-5$. Thus $l=s-5, s-4, s-3, s-2, s-1$ or s, and $h^{\prime}=y_{1} \cdots y_{9} \in E_{1}^{9, t_{2}(s), *}$. When $l \leqslant s-1$, the coefficient of $P^{3} \in t_{2}(s)$ is $\geqslant 5$. In these cases, h^{\prime} is impossible to exist. Then h doesn't exist either. In the last possibility, $t_{2}(s)=4 p^{3}+3 p^{2}+5 p+1$, so $h_{4,0}, h_{3,1}, h_{2,2}, h_{1,3} \in h^{\prime}, h^{\prime}$ is impossible to exist in this case by the reason of dimension. Then h doesn't exist either.

Combining Cases 1-6 above, we obtain that $E_{1}^{s+9, t(s), *}=\mathbb{Z}_{p}\left\{\mathbf{G}_{1}, \mathbf{G}_{2}, \cdots, \mathbf{G}_{11}\right\}$. This completes the proof of Lemma 3.2.

Lemma 3.3 (1) $b_{0}^{3} \tilde{\delta}_{s+4} \in \operatorname{Ext}_{A}^{s+10, t(s)}\left(\mathbb{Z}_{p}, \mathbb{Z}_{p}\right)$ is represented by $b_{1,0}^{3} a_{4}^{s} h_{4,0} h_{3,1} h_{2,2} h_{1,3} \in$ $E_{1}^{s+10, t(s), *}$ in the MSS, where $t(s)=q\left[(s+4) p^{3}+(s+3) p^{2}+(s+5) p+(s+1)\right]+s$.
(2) For the eleven generators of $E_{1}^{s+9, t(s), *}$, we have that

$$
\begin{aligned}
& M\left(\mathbf{G}_{1}\right)=M\left(\mathbf{G}_{3}\right)=M\left(\mathbf{G}_{5}\right)=11 p+9 s+9, \\
& M\left(\mathbf{G}_{2}\right)=15 p+9 s+5, M\left(\mathbf{G}_{4}\right)=M\left(\mathbf{G}_{6}\right)=7 p+9 s+13, \\
& M\left(\mathbf{G}_{7}\right)=10 p+9 s++9, \quad M\left(\mathbf{G}_{8}\right)=M\left(\mathbf{G}_{9}\right)=6 p+9 s+13, \\
& M\left(\mathbf{G}_{10}\right)=M\left(\mathbf{G}_{11}\right)=2 p+9 s+17 .
\end{aligned}
$$

Moreover, we have that $M\left(b_{1,0}^{3} a_{4}^{s} h_{4,0} h_{3,1} h_{2,2} h_{1,3}\right)=3 p+9 s+16$.
Proof (1) Since it is known that $b_{1, i}$ and $a_{4}^{s} h_{4,0} h_{3,1} h_{2,2} h_{1,3} \in E_{1}^{*, *, *}$ are all permanent cycles in the MSS as $[7]$ and converge nontrivially to $b_{i}, \tilde{\delta}_{s+4} \in \operatorname{Ext}_{A}^{* *}\left(\mathbb{Z}_{p}, \mathbb{Z}_{p}\right)$ for $0 \leqslant s<p-5$
and $i \geqslant 0$, respectively (cf. Lemma 3.1), then $b_{1,0}^{3} a_{4}^{s} h_{4,0} h_{3,1} h_{2,2} h_{1,3} \in E_{1}^{s+10, t(s), 3 p+9 s+16}$ is a permanent cycle in the MSS and converges to $b_{0}^{3} \tilde{\delta}_{s+4} \in \operatorname{Ext}_{A}^{s+10, t(s)}\left(\mathbb{Z}_{p}, \mathbb{Z}_{p}\right)$.
(2) From (2.5), the result follows by direct calculation.

Now we give the proof of Theorem 1.2.
Proof of Theorem 1.2 From Lemma 3.3 (1), $b_{0}^{3} \tilde{\delta}_{s+4} \in \operatorname{Ext}_{A}^{s+10, t(s)}\left(\mathbb{Z}_{p}, \mathbb{Z}_{p}\right)$ is represented by $b_{1,0}^{3} a_{4}^{s} h_{4,0} h_{3,1} h_{2,2} h_{1,3} \in E_{1}^{s+10, t(s), 3 p+9 s+16}$ in the MSS. Now we will show that nothing hits the permanent cycle $b_{1,0}^{3} a_{4}^{s} h_{4,0} h_{3,1} h_{2,2} h_{1,3}$ under the May differential d_{r} for $r \geqslant 1$. From Lemma 3.2, we have $E_{1}^{s+9, t(s), *}=\mathbb{Z}_{p}\left\{\mathbf{G}_{1}, \mathbf{G}_{2}, \cdots, \mathbf{G}_{1} 1\right\}$.

For the generators $\mathbf{G}_{1}, \mathbf{G}_{3}$ and \mathbf{G}_{5} whose May filtration are

$$
M\left(\mathbf{G}_{1}\right)=M\left(\mathbf{G}_{3}\right)=M\left(\mathbf{G}_{5}\right)=11 p+9 s+9
$$

(see Lemma 3.3), by the reason of May filtration, from (2.2) we see that

$$
b_{1,0}^{3} a_{4}^{s} h_{4,0} h_{3,1} h_{2,2} h_{1,3} \in E_{1}^{s+10, t(s), 3 p+9 s+16}
$$

which represents $b_{0}^{3} \tilde{\delta}_{s+4} \in \operatorname{Ext}_{A}^{s+10, t(s)}\left(\mathbb{Z}_{p}, \mathbb{Z}_{p}\right)$ in the MSS is not in $d_{1}\left(E_{1}^{s+9, t(s), 11 p+9 s+9}\right)$. Now we will show $E_{r}^{s+9, t(s), 11 p+9 s+9}=0$ for $r \geqslant 2$. By an easy calculation, from (2.3) and (2.4), one can have the first May differentials of $\mathbf{G}_{1}, \mathbf{G}_{3}$ and \mathbf{G}_{5} as follows

$$
\begin{aligned}
d_{1}\left(\mathbf{G}_{1}\right) & =(-1)^{s+8} a_{4}^{s-1} a_{2} b_{3,0}^{2} b_{1,0} h_{3,1} h_{2,2} h_{2,0} h_{1,3}+\cdots \neq 0 \\
d_{1}\left(\mathbf{G}_{3}\right) & =(-1)^{s+8} a_{4}^{s-1} a_{2} b_{3,0}^{2} b_{1,2} h_{3,1} h_{2,2} h_{2,0} h_{1,1}+\cdots \neq 0 \\
d_{1}\left(\mathbf{G}_{5}\right) & =(-1)^{s+8} a_{4}^{s} b_{3,0}^{2} b_{1,0} h_{2,2} h_{2,0} h_{1,3} h_{1,1}+\cdots \neq 0
\end{aligned}
$$

It is easy to see that the first May differentials of $\mathbf{G}_{1}, \mathbf{G}_{3}$ and \mathbf{G}_{5} are linearly independent.Consequently, the cocycle of $E_{1}^{s+9, t(s), 11 p+9 s+9}$ must be zero. This means that $E_{r}^{s+9, t(s), 11 p+9 s+9}=0$ for $r \geqslant 2$, from which we have that

$$
b_{1,0}^{3} a_{4}^{s} h_{4,0} h_{3,1} h_{2,2} h_{1,3} \notin d_{r}\left(E_{r}^{s+9, t(s), 11 p+9 s+9}\right)
$$

for $r \geqslant 2$. In all, $b_{1,0}^{3} a_{4}^{s} h_{4,0} h_{3,1} h_{2,2} h_{1,3} \notin d_{r}\left(E_{r}^{s+9, t(s), 11 p+9 s+9}\right)$ for $r \geqslant 1$.
For the generator \mathbf{G}_{2} with May filtration $M\left(\mathbf{G}_{2}\right)=15 p+9 s+5$ (see Lemma 3.3), by an easy calculation, from (2.3) and (2.4), we have the first May differentials of \mathbf{G}_{2} as follows

$$
d_{1}\left(\mathbf{G}_{2}\right)=(-1)^{s+8} a_{4}^{s-1} a_{2} b_{3,0}^{2} h_{3,1} h_{1,3} h_{1,1} h_{1,0}+\cdots \neq 0
$$

Thus $E_{r}^{s+9, t(s), 15 p+9 s+5}=0$ for $r \geqslant 2$. At the same time, we also have that up to nonzero scalar $d_{1}\left(\mathbf{G}_{2}\right) \neq b_{1,0}^{3} a_{4}^{s} h_{4,0} h_{3,1} h_{2,2} h_{1,3}$.

In summary, $b_{1,0}^{3} a_{4}^{s} h_{4,0} h_{3,1} h_{2,2} h_{1,3} \notin d_{r}\left(E_{r}^{s+9, t(s), 15 p+9 s+5}\right)$ for $r \geqslant 1$.
For the generators \mathbf{G}_{4} and \mathbf{G}_{6} whose May filtration are $M\left(\mathbf{G}_{4}\right)=M\left(\mathbf{G}_{6}\right)=7 p+9 s+13$ (see Lemma 3.3), by the reason of May filtration, from (2.2) we see that

$$
b_{1,0}^{3} a_{4}^{s} h_{4,0} h_{3,1} h_{2,2} h_{1,3} \in E_{1}^{s+10, t(s), 3 p+9 s+16}
$$

which represents $b_{0}^{3} \tilde{\delta}_{s+4} \in \operatorname{Ext}_{A}^{s+10, t(s)}\left(\mathbb{Z}_{p}, \mathbb{Z}_{p}\right) \notin d_{1}\left(E_{1}^{s+9, t(s), 7 p+9 s+13}\right)$. Now we will show $E_{r}^{s+9, t(s), 7 p+9 s+13}=0$ for $r \geqslant 2$. By an easy calculation, from (2.3) and (2.4) one can have the first May differentials of \mathbf{G}_{4} and \mathbf{G}_{6} as follows

$$
\begin{aligned}
d_{1}\left(\mathbf{G}_{4}\right) & =(-1)^{s+8} a_{4}^{s} b_{3,0} b_{1,0}^{2} h_{3,1} h_{2,2} h_{2,0} h_{1,3}+\cdots \neq 0 \\
d_{1}\left(\mathbf{G}_{6}\right) & =(-1)^{s+8} a_{4}^{s} b_{3,0} b_{1,2} b_{1,0} h_{3,1} h_{2,2} h_{2,0} h_{1,1}+\cdots \neq 0
\end{aligned}
$$

It is easy to see that the first May differentials of \mathbf{G}_{4} and \mathbf{G}_{6} are linearly independent. Consequently, the cocycle of $E_{1}^{s+9, t(s), 7 p+9 s+13}$ must be zero. This means that

$$
E_{r}^{s+9, t(s), 7 p+9 s+13}=0
$$

for $r \geqslant 2$, from which we have that $b_{1,0}^{3} a_{4}^{s} h_{4,0} h_{3,1} h_{2,2} h_{1,3} \notin d_{r}\left(E_{r}^{s+9, t(s), 7 p+9 s+13}\right)$ for $r \geqslant 2$. In all, $b_{1,0}^{3} a_{4}^{s} h_{4,0} h_{3,1} h_{2,2} h_{1,3} \notin d_{r}\left(E_{r}^{s+9, t(s), 7 p+9 s+13}\right)$ for $r \geqslant 1$.

For the generator \mathbf{G}_{7} with May filtration $M\left(\mathbf{G}_{7}\right)=10 p+9 s+9$ (see Lemma 3.3), by an easy calculation, from (2.3) and (2.4) we have the first May differentials of \mathbf{G}_{7} as follows

$$
d_{1}\left(\mathbf{G}_{7}\right)=(-1)^{s+8} a_{4}^{s-2} a_{2} a_{0} b_{3,0}^{2} h_{4,0} h_{3,1} h_{2,2} h_{2,0} h_{1,3} h_{1,1}+\cdots \neq 0
$$

Thus $E_{r}^{s+9, t(s), 10 p+9 s+9}=0$ for $r \geqslant 2$. At the same time, we also have that up to nonzero scalar $d_{1}\left(\mathbf{G}_{7}\right) \neq b_{1,0}^{3} a_{4}^{s} h_{4,0} h_{3,1} h_{2,2} h_{1,3}$.

In summary, $b_{1,0}^{3} a_{4}^{s} h_{4,0} h_{3,1} h_{2,2} h_{1,3} \notin d_{r}\left(E_{r}^{s+9, t(s), 10 p+9 s+9}\right)$ for $r \geqslant 1$.
Finally,for the generators \mathbf{G}_{8} and \mathbf{G}_{9} whose May filtration are $M\left(\mathbf{G}_{8}\right)=M\left(\mathbf{G}_{9}\right)=$ $6 p+9 s+13$ (see Lemma 3.3), by the reason of May filtration, from (2.2) we see that $b_{1,0}^{3} a_{4}^{s} h_{4,0} h_{3,1} h_{2,2} h_{1,3} \in E_{1}^{s+10, t(s), 3 p+9 s+16}$, which represents $b_{0}^{3} \tilde{\delta}_{s+4} \in \operatorname{Ext}_{A}^{s+10, t(s)}\left(\mathbb{Z}_{p}, \mathbb{Z}_{p}\right)$ in the MSS is not in $d_{r}\left(E_{1}^{s+9, t(s), 6 p+9 s+13}\right)$ for $r \geqslant 1$.

The discussion of \mathbf{G}_{10} and \mathbf{G}_{11} whose May filtration are $M\left(\mathbf{G}_{10}\right)=M\left(\mathbf{G}_{11}\right)=2 p+$ $9 s+17$ is just like the analysis about \mathbf{G}_{10} and \mathbf{G}_{11}.

From the above discussion, we see the permanent cycle $b_{1,0}^{3} a_{4}^{s} h_{4,0} h_{3,1} h_{2,2} h_{1,3}$ cannot be hit by any May differential in the MSS. Thus, $b_{1,0}^{3} a_{4}^{s} h_{4,0} h_{3,1} h_{2,2} h_{1,3} \in E_{1}^{s+10, t(s), 3 p+9 s+16}$ converges nontrivially to $b_{0}^{3} \tilde{\delta}_{s+4} \in \operatorname{Ext}_{A}^{s+10, t(s)}\left(\mathbb{Z}_{p}, \mathbb{Z}_{p}\right)$ in the MSS. Consequently, $b_{0}^{3} \tilde{\delta}_{s+4} \neq 0$. This finishes the proof of Theorem 1.2.

Remark For further study on the typesetting based on English-Chinese $\mathrm{IAT}_{\mathrm{E}} \mathrm{X}$ and some special techniques, we may refer to [1-7].

References

[1] Adams J F. Stable homotopy and generalised homology[M]. Chicago: University of Chicago Press, 1974.
[2] Liulevicius.A. The factorizations of cyclic reduced powers by secondary cohomology operations $[\mathrm{J}]$. Mem. Amer. Math. Soc., 1962, 42: 978-981.
[3] Aikawa.T. 3-dimensional cohomology of the mod p Steenrod algebra[J]. Math. Scand., 1980, 47: 91-115.
［4］Liu Xiugui，Zhao Hao．On a product in the classical Adams spectral of sequence［J］．Pro．Amer． Math．Soc．，2009，137（7）：2489－2496．
［5］Wang Xiangjun，Zhen Qibing．The convergence of $a_{s}^{(n)} h_{0} h_{k}[J]$ ．China Ser．A，1998，6：622－628．
［6］Ravenel D C．Complex cobordism and stable homotopy groups of spheres［M］．Orlando：Academic Press， 1986.
［7］Liu Xiugui．A nontrivial product in the stable homotopy groups of spheres［J］．Sci．China Ser．A， 2004，47（6）：831－841．

Steenrod代数上同调中的一个非平凡乘积元 $b_{0}^{3} \tilde{\delta}_{s+4}$

王 冲 ${ }^{1}$ ，刘秀贵 ${ }^{2}$
（1．沧州师范学院数学与统计学院，河北 沧州 061001）

（2．南开大学数学科学学院，天津 300071）
摘要：本文主要研究了Steenrod代数上同调非平凡乘积元问题。设 p 为大于 5 的素数，A 代表模 p 的Steenrod代数。通过对May谱序列的详尽组合分析，证明了古典Admas谱序列中乘积元 $-b_{0}^{3} \tilde{\delta}_{s+4} \in$ $\operatorname{Ext}_{A}^{s+10, t(s)}\left(\mathbb{Z}_{p}, \mathbb{Z}_{p}\right)$ 的非平凡性，其中 $p \geqslant 7,0 \leqslant s<p-5, t(s)=2(p-1)\left[(s+4) p^{3}+(s+3) p^{2}+(s+\right.$ 5）$p+(s+1)]+s$ ．这有助于对球面稳定同伦群中同伦元素非平凡性进行进一步研究．

关键词：Steenrod代数；上同调；May谱序列
MR（2010）主题分类号：55Q45 中图分类号：O152．4

[^0]: ＊Received date：2017－05－06 Accepted date：2017－10－18
 Foundation item：Supported by the Youth Foundation of Hebei Educational Committee （QN2017505）；NSFC（11571186）．

 Biography：Wang Chong（1981－），female，born at Baoding，Hebei，lecturer，major in algebraic topology and differential topology ．

