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Abstract: In this paper, we mainly study the nontriviality of the products in the cohomology
of the Steenrod algebra. Let p be a prime greater than five and A be the mod p Steenrod algebra.
By using the explicit combinatorial analysis of the May spectral sequence, we prove that the product
b30s+a € Ext’ "% (Z,, Zy) is nontrivial, where 0 < s < p — 5, which is helpful for us to study the
nontriviality of homotopy elements in the stable homotopy of spheres.
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1 Introduction

To determine the stable homotopy groups of spheres is one of the most important prob-
lems in algebraic topology. So far, several methods were found to determine the stable homo-
topy groups of spheres. For example, we have the classical Adams spectral sequence (ASS)
(see [1]) based on the Eilenberg-MacLane spectrum K7Z,, whose Ep-term is Ext%'(Z,,Z,)
and the Adams differential is given by d, : E5' — EStm+7=1 where A denotes the mod
p Steenrod algebra. There are three problems in using the ASS: calculation of FEs-term
Ext’*(Z,,Z,), computation of the differentials and determination of the nontrivial exten-
sions from FE,, to the stable homotopy groups of spheres. So, for computing the stable
homotopy groups of spheres with the classical ASS, we must compute the Es-term of the
ASS, Exty(Z,, Zy).

Throughout this paper, p denotes an odd prime and ¢ = 2(p — 1). The known re-
sults on Ext*(Z,,Z,) are as follows. Ext%*(Z,,7Z,) is trivial by its definition. From [2],
Ext*(Z,,Z,) has Z,-basis consisting of ay € Ext}'(Z,,Z,), h; € Ext}"'Y(Z,,Z,) for all
i > 0 and Ext%*(Z,,Z,) has Z,-basis consisting of a, a2, agh;(i > 0), g;(i = 0), k(i > 0),
b;(i > 0), and h;h;(j = i+2,7 > 0) whose internal degrees are 2¢+1, 2, p'qg+1,p" g+ 2p'q,
2pitq+piq, p'tlq and piq+pq, respectively. In 1980, Aikawa [3] determined Ext%*(Z,,Z,)
by A-algebra.
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Studying higher-dimensional cohomology of the mod p Steenrod algebra A was an in-
teresting subject and studied by several authors. For example, Liu and Zhao [4] proved the
following theorems, respectively.

Theorem 1.1 For p > 11 and 4 < s < p, the product hobods # 0 in the classical
Adams spectral sequence, where 8, was given in [5].

In this paper, our main result can be stated as follows.

Theorem 1.2 Let p > 7, and 0 < s < p— 5. Then in the cohomology of the mod p

Steenrod algebra A, the product b3d,,4 € Extf4+10’t(s)(Zp, Z,) is nontrivial, where

t(s)=q[(s + 1)+ (s +5)p+ (s +3)p* + (s + 4)p*] + s.

The main method of proof is the (modified) May spectral sequence, so we will recall
some knowledge on the May spectral sequence in Section 2. After detecting the generators

of some May FEi-terms in Section 3, we will prove Theorem 1.2.

2 The May Spectral Sequence

As we know, the most successful method to compute Ext’y*(Z,,Z,) is the MSS. From
[6], there is a May spectral sequence(MSS) {E>**, d,} which converges to Ext’'(Z,, Z,) with

FE-term
ETr = E(hpilm >0,i > 0) ® P(bym|m > 0,i > 0) @ P(a,|n > 0), (2.1)
where E( ) is the exterior algebra, P( ) is the polynomial algebra, and

1,2(p™—1)p*,2m—1 2,2(p™—-1)p*t1 p(2m—1) 1,2p™ —1,2n+1
hm,i S El ,bmﬁ‘ € El ,Qn € El .

One has
d, : Bt — pEthtu-r (2.2)

and if z € EY* and y € E¥'"*, then

In particular, the first May differential d; is given by

di(hi ;) = Z Rk prjh,, di(a;) = Z hi—kkak, di(b; ;) = 0. (2.4)

0<k<i 0<k<i

There also exists a graded commutativity in the MSS:

Ty = (—1)Ss/+tt,y -z for x,y = hyi,bmi O Gy
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For each element z € E"", we define dim 2 = s, deg z = t, M(z) = u. Then we have

that

dim h; ; = dim a; =1,

dim b; ; = 2,deg ag = 1,

deg hij = q(p™ " + -+ ),

deg b; ; = q(pit + -+ pith), (2.5)
dega; =q(p' '+ - +1)+1,

M(hi) = M(a;_) = 2i — 1,

M (b; ;) = (2i — 1)p,

where i > 1, 7 > 0.

Note that by the knowledge on the p-adic expression in number theory, for each integer
0, it can be expressed uniquely as t = q(c,p" + cp_1p" ' + -+ c1p + ) + e, where
ci<p(0<i<n),p>c,>0,0<e<q.

3 Proof of Theorem 1.2

Before showing Theorem 1.2, we first give some important lemmas which will be used

in the proof of it. The first one is a lemma on the representative of 55+4 in the May spectral

sequence.
Lemma 3.1 For p > 7 and 0 < s < p — 4. Then the fourth Greek letter element
boya € Ext’ (7, 7,) is represented by

s+4,t1(s),*
azhaohsiheohi s € By !

in the F;-term of the May spectral sequence, where 5s+4 is actually &224 described in [6]
and t1(s) = q[(s+ 1)+ (s +2)p+ (s + 3)p* + (s + 4)p°] + s.

By (2.2), we know that to prove the non-triviality of 630,44 € Ext’ ") (z,,Z,), we
have to show that the representative of the product cannot be hit by any May differential.
For doing it, we give the following two lemmas.

Lemma 3.2 Let p>7,0<s<p—>5. Then we have the May FE:-term

Ef+9’t(5)’* = Zp {Gla G2y e 7G11} )
where t(s,n) =¢[(s+ 1)+ (s +5)p + (s + 3)p* + (s + 4)p*] + s, and

G, = ai_1a26370b1,0h4,0h371h173, Gy = aj_1a2b§’0h470h173h1,1,

Gs = aifla2b§,obl,2h4,0h3,1h1,1, Gy = aibg,obiohz;,oh&thB7

Gs = aib§,0b1,0h4,oh1,3h1,1, Ge = aib3,ob1,2bl,oh4,0h3,1h1,1,

Gr = aif2agb§,oh4,oh3,1h2,2h1,3h1,17 Gg = CLZ*10253,0b1,0h4,0h3,1h2,2h1,3h1,17
Gy = ai‘lazbs,ob1,2h4,0h3,1h2,1h1,3h1,1, G = Cbibiofm,ohs,lh2,2h1,3h1,17
G = aib1,2b1,oh4,oh3,1h2,1h1,3h1,1-
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For the convenience of writing,we make the following rules:

(i) if i > j, we put a; on the left side of a;;

(ii) if j < k, we put h; ; on the left side of hy, x;

(iii) if 4 > w, we put h, ; on the left side of h,, ;;

(iv) apply the rules (ii) and (iii) to b; ;.

Now we give the proof of the above lemma.

Proof The proof of this lemma is divided into the following six cases. Consider

h=x1Ts Ty € Eerg ()

intheMSS,wherexi isone of ag, hyjorb, ., 0 <k<4,0<r+5<4,0<u+2<3,r>0,
>0,u>0,z>0. By (2.5), we can assume that deg z; = q(¢; 3p* + ¢; 2p* —|—cZ 1D+ Cio)+e,

Wherec” =0orl,e =1if z; = ag, or e; = 0. It follows that dim h = Zdlmxl—s—i—Q

=1
and

Ms

ei)

degh = > degx; =] Zng)p + ( Zczzp + ZmpHZczo +(

=1 1=1 =1 =1 [

- =[(13—|—4)p B4 (s+3)p> + (s +5)p+ (s +1)] + 1

Note that
dim h; ; =dima; =1, dimb;; =2 and 0 < s <p—5.

From dim h = Zdlmxl =5+9, we can have m < s+ 9 < p+ 3.
Using 0 < ] + 5,s+4,s+3,s+1,s < p and the knowledge on the p-adic expression in

number theory, we have that

( m
dei=s;
i;l
Z Ci,O =S5+ 1,
=1
;Cig =S+ 5; (3.1)
Ycia=5+3
i;l
Z Ci3 =S + 4.
\ =1

By ¢;2 =0 or 1, one has m > s+ 4 from 2013—34—4 Note that m < s+ 9. Thus

=1

m may equal s +4, s+5,s+6, s+ 7, s+ 8 or s+ 9. Since Zel—s deg h; ; = 0(mod q)
(t>0,7>0), deg a; = 1(mod q) (i > 0) and deg b; ; _O(rnod q) (i > 0,7 > 0), then by the

graded commutativity of E;"™" and degree reasons, we can assume that h = alaYa3akalh’
with A/ = 44 1%s40 - T, where 0 < z,y, 2,k 1 < s, x +y+ 2+ k + 1 = s. Consequently,
we have

’ 9,t2(s),*
h = Ts41Ts42" " Tm € E1 5
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where to(s) = q[(s+4—1)p*+ (s +3—1—k)p*+ (s+b—1l—k—2)p+(s+1—-1—k—2—y)].
From (3.1), we have

Y ocio=s+1-l—-k—z—y;
i=s+1

Y ocii=s+5—-1l—k—z (3.2)

i=s5+1
m

Z Ci72:S+3—l—kI;
1=s+1

Z Ci73:S+4—l.
1=s+1

By the reason of dimension, all the possibilities of A’ can be listed as

Y121 24, Y1Y2Y3212223, Y1 Ys2122, Y1 Y721, Y1 Yo,

where y; is in the form of h, ;with 0 <7+ 7 <4, 7 >0, j > 0 and zis in the form of b, .

with0<u+2<3,u>0,z=>0.
9,q(4p3+3p2+5p+1),*

Casel m=s+4. Soh' = x5, 1%512T513Ts14 € F and it is impossible
to exist. Then h doesn’t exist ei:crl;er. -
Case2 m = s+5. From ) ¢;3 =s+4—1in (3.2), wehave thatl = s+4— > ¢;3>
i=s+1 i=s+1
s—1. Thusl =s—1orsand h' = y121---24 € E?’t2(8)7*. We list all the possibilities in
Table 1.

Table 1: for Case 2
The possibility l x oy z k Efvtz(sx*

The existence of

!
h :xs+1...xm

The 1st s—1 1 0 0 O Ef’q(5p3+4p2+6p+2)’* =0  Nonexistence
The 2nd s—1 0 1 0 O E?’q(5p3+4p2+6p+1)’* =0  Nonexistence
The 3rd s—1 0 0 1 0 E?’q(5p3+4p2+5p+1)’* =0  Nonexistence
The 4th s—1 0 0 0 1 E?’q(5p3+3p2+5p+1)’* =0  Nonexistence
The 5th s 0 0 0 0 EEPEFIDE g Nopexistence
s+6 s+6
Case 3 m = s+6. From ) ¢;3=s+4—1in(3.2), we have thatl =s+4— > ¢; 3>
i=s+1 i=s+1
s—2. Thusl=5s—2,s—1or s and b/ = y1y2y3212223 € E?’tz(s)’*. We list all the possibilities
in Table 2.

In the table, b§,0b1,oh4,oh3,1h1,3, b§70h4,0h1,3h1,17 b§,0b1,2h4,oh3,1h1,1, bs,ob%,oh4,0h3,1h1,37
b§,0b1,0h4,0h1,3h1,1, b3,0b1,2b1,0h4,0h3,1h1 1, denoted by g1, g2, 83, 84, 85, 86, respectively. Con-
sequently, in this case up to sign h = a ‘asgy, ai ‘asgs, ai ‘asgs, aigs,algs ,aigsdenoted
by G, Go, Gs, G4 , Gj, Gg, respectively.

s5+7 s+7
Case4 m =s+7. From ) ¢ 3=s+4—1in(3.2), we havethatl =s+4— > ¢; 3>
i=s+1 1=s+1

s—3. Thusl=s5—-3,s—2,s—1ors,and h' =y, -+ ys2122 EE?’Q(S)’*. When | = s — 3, we
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Table 2: for Case 3

The possibility l r y z k E? ta(s).x The existence of
B = Zgpq - Tm
The 1st s—2 2 0 0 O Ef’q(6p3+5p2+7p+3)’* = Nonexistence
The 2nd s—2 0 2 0 0 EXOCEPHTEDE o Nonexistence
The 3rd s—2 0 0 2 0 E?’q(6p3+5p2+5p+1)’* = Nonexistence
The 4th s—2 0 0 0 2 E?’q<6p3+3p2+5p+1)’* = Nonexistence
The 5th s—2 1 1 0 0 E?’q(6p3+5p2+7p+2)’* = Nonexistence
The 6th s—2 1 0 1 0 Ef’q(6p3+5p2+6p+2)’* = Nonexistence
The 7th s—2 1 0 0 1 EMOCHPHEDE o Nopeistence
The 8th s—2 0 1 1 0 E?’q(6p3+5p2+6p+1)’* = Nonexistence
The 9th s—2 0 1 0 1 E?’q<6p3+4p2+6p+1)’* = Nonexistence
The 10th s—2 0 0 1 1 EMOTHPHEDE o Nonexistence
The 11th s—1 1 0 0 O Ef’q(5p3+4p2+6p+2)’* = Nonexistence
The 12th s—1 0 1 0 0 EXOCHPHEDE o Noneistence
The 13th s—1 0 0 1 0  EOPH o W= g1, 8,85
= Z;D{gh g2, g3} up to sign
The 14th s—1 0 0 1 Ef’q(5p3+3p2+5p+1)’* = Nonexistence
The 15th s 0 EMUTEIESEL o e e
= Zp{84, 85,86} up to sign
Table 3: for Case 4
The possibility l r y z k E?’tQ(s)’* The existence of
B = Zgyq - Tm
The 1st 5—2 Ef’q(6p3+5p2+7p+3)’* = Nonexistence
The 2nd s—2 Ef’q(6p3+5p2+7p+1)’* = Nonexistence
The 3rd s—2 0 0 2 0  EHOrertEsey =g
= Zp{gr} up to sign
The 4th s—2 0 0 0 2 E?’q(6p3+3p2+5p+1)’* = Nonexistence
The 5th s—2 1 1 0 0 EXOCEHTEDE g Nonexistence
The 6th s—2 1 0 1 0 E?’q(6p3+5p2+6p+2)’* = Nonexistence
The 7th s—2 1 0 0 1 E?’q<6p3+4p2+6p+2)’* = Nonexistence
The 8th s—2 0 1 1 0 E?’q(6p3+5p2+6p+1)’* = Nonexistence
The 9th s—2 0 1 0 1 E?’q(6p3+4p2+6p+1)’* = Nonexistence
The 10th s—2 0 0 1 1 EXOCHPHEDE o Nonexistence
The 11th s—1 1 0 0 O E?’q(5p3+4p2+6p+2)’* = Nonexistence
The 12th s—1 0 1 0 O E?’q<5p3+4p2+6p+1)’* = Nonexistence
The 13th s—1 0 0 1 0  EXOPH B = g5, 8o
= Zp{gs, 8o} up to sign
The 14th s—1 0 0 1 E?’q(5p3+3p2+5p+1)’* = Nonexistence
The 15th s 0 E?’q<4p3+3p2+5p+1)’* h' = g10,811
= Zp{g10,811} up to sign
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have that to(s) = ¢[7p® + ---]. In this case, I/ is impossible to exist. Then h doesn’t exist
either. Next we list all the rest of possibilities in Table 3.

In the table, b§70h4,oh3,1h2,2h1,3h1,1, bs,obl,oh4,oh3,1h2,2h1,3h1,1, b3,ob1,2h4,0h3,1h2,1h1,3h1,1>
b%,oh4,oh3,1h2,2h1,3h1,1, b1,251,0h4,0h3,1h2,1h1,3h1,17 denoted by g7, gs, 89, 810, 811, respec-
tively. Consequently, in this case up to sign h = a5 2a2gr, ai 'asgs, ai 'asgo, aig0,a5811

denoted by G7, Gg, Gg, Gig, G11, respectively.
548 548

Case 5 m = s+8. From ) ¢;3 =s+4—1in (3.2), we have thatl = s+4— > ¢;3>
i=s+1 i=s+1
s—4. Thusl=s5—-4,5—3,s—2,s—1lors,and b/ =y, ---yrz1 € E?’b(s)’*. When | < s—2,

the coefficient of P? € t,(s)is > 5. In these cases, I’ is impossible to exist. Then h doesn’t
exist either. Next we list all the other possibilities in Table 4.

Table 4: for Case 5
The possibility l z y z k E? ta(s).x The existence of

li
h = Ts41""Tm

The 1st s—1 1 0 0 O E?’q(5p3+4p2+6p+2)’* =0  Nonexistence
The 2nd s—1 0 1 0 0 EMCTHPHEDE o Nonexistence
The 3rd s—1 0 0 1 0 Ef’q(5p3+4p2+5p+1)’* =0  Nonexistence
The 4th s—1 0 0 0 1 E?’q(5p3+3p2+5p+1)’* =0  Nonexistence
The 5th s 0 0 0 O E?’q(4p3+3p2+5p+1)’* =0  Nonexistence

549 549

Case 6 m = s+9. From > ¢;3=s+4—1in(3.2), we havethatl =s+4— > ¢;3>
i=s+1 i=s+1

s—5. Thusl =s-5,5s—4,5—3,s—2,s—1lors,andh/ =y, ---yg € E?’tz(s)’*. When! < s—1,
the coefficient of P? € t5(s) is > 5. In these cases, h' is impossible to exist. Then h doesn’t
exist either. In the last possibility, t2(s) = 4p* +3p® +5p+ 1, 80 ha, ha 1, ha2, hiz € W', B/is
impossible to exist in this case by the reason of dimension. Then h doesn’t exist either.
Combining Cases 1-6 above, we obtain that Ef+9’t(s)’* = Z,{G1,Gq,--- ,Gq1}. This
completes the proof of Lemma 3.2.
Lemma 3.3 (1) b30,.4 € Extflo’t(s)(Zp,Zp) is represented by b} jaihaohsihe2hi s €
ESTI0H% 4 the MSS, where £(s) = g[(s +4)p3 + (s + 3)p> + (s + 5)p+ (s + 1)] + s.
(2) For the eleven generators of E; """ we have that
M(Gi) = M(G3) = M(Gs) =11p+9s+9,
M(G3)=15p+9s+5, M(Gy) = M(Gg) =7p+9s+ 13,
M(G7) =10p+9s + 49, M(Gsg) = M(Gy) = 6p+ 9s + 13,
(Glo) = M(Gu) =2p+9s+ 17.

S

Moreover, we have that M (b3 jaihaohs1ha2hi3) = 3p + 9s + 16.
Proof (1) Since it is known that by ; and ajhgohs1ho2hi 3 € E7™" are all permanent
cycles in the MSS as [7] and converge nontrivially to b;, 0544 € Ext’*(Z,,Z,) for 0 < s < p—5
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and i > 0, respectively (cf. Lemma 3.1), then b} jaihy ohsiheohi s € B0 H(s):3p 495416 4o
permanent cycle in the MSS and converges to b30,,4 € Ext’ " #(5) (Zy, Z,).

(2) From (2.5), the result follows by direct calculation.

Now we give the proof of Theorem 1.2.

Proof of Theorem 1.2 From Lemma 3.3 (1), b30,.4 € Ext'""")(Z,.Z,) is rep-
resented by b3 gaihsohsiheohis € BT Hs)SpH0sH16 1) the MSS. Now we will show that
nothlng hits the permanent cycle b3 0a4h4 ohs1h22h1 3 under the May differential d, for

> 1. From Lemma 3.2, we have ESJr9 o) =Zpy{G1,Gy, - ,G11}.

For the generators Gi, G3 and G5 whose May filtration are

M(G1) = M(G3) = M(Gs) = 11p+ 95 + 9
(see Lemma 3.3), by the reason of May filtration, from (2.2) we see that
b§’0a3h470h371h2,2h1,3 c E;+10,t(5),3p+95+16’

which represents b3d,,4 € Exty "7, Z,) in the MSS is not in dy (BT 1P+

9,t(s),11 9540
Now we will show ESTt(s)11p+9s+

(2.4), one can have the first May differentials of G1, Gz and Gy as follows

= 0 for r > 2. By an easy calculation, from (2.3) and

di(G1) = (—1)*"%a3” 10253 ob1,0hs3,1ha2hoghy g3+ -+ # 0,
di(Gs) = (—1)*"%a3” 1002[?3 ob1,2h3.1ha 2hoghy g + -+ # 0,
di1(Gs) = (=1)*"3ab3 oby,0ha,2hooh1 shi1 + - - # 0.

It is easy to see that the first May differentials of G; ,Gsand Gy are linearly in-

s49,t(s),11p+9s+9

dependent.Consequently, the cocycle of EY must be zero. This means that

EETOHE IR0 _ g g > 2, from which we have that

3 49,t(5),11p+95+9
b} gaihaohsihaohy s & dp(ETOH)1PT9549)

for > 2. In all,b? gaihaohs hoohi g ¢ d (BT HPH9F9 for > 1,
For the generator Gy with May filtration M (Gz) = 15p + 9s + 5 (see Lemma 3.3), by
an easy calculation, from (2.3) and (2.4), we have the first May differentials of G, as follows

dl(G2) ( 1)S+8 i 1a2b3 0h3 1h1 3h1 1h10 + - ?é 0.

Thus ESHOH1PH9545 g 51 1 > 2. At the same time, we also have that up to nonzero

scalar di(Gz) # b3 yaihaohsihoahy s

In summary, b} jaihsohs1heohy s ¢ d,(E for r > 1.

For the generators G, and Gg whose May filtration are M (G4) = M(Gg) = Tp+9s+13
(see Lemma 3.3), by the reason of May filtration, from (2.2) we see that

s+9,t(s),15p+95+5)
"

s+10,t(s),3p+9s+16
b1 0a4h4 ohs1haohy s € EY )
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which represents b3d,,4 € Ext’ """z, 7.)) ¢ dy (BT PT3) C Now we will show
BT PHOSHIS () fo1 > 2. By an easy calculation, from (2.3) and (2.4) one can have

the first May differentials of G4 and Gg as follows

di1(Gy) = (—1)S+8aibs,obioh3,1h2,2h2,0h1,3 +---#0,
d1(Gg) = (—1)*TBa5bs 0b1 201 oh31ho2haghiy + -+ # 0.

It is easy to see that the first May differentials of G4 and Gg are linearly independent.

s+9,t(s),7p+9s+13

Consequently, the cocycle of Ej must be zero. This means that

Eﬁ+9,t(s),7p+95+13 =0

for v > 2, from which we have that b} jaihyohs1he2hy 3 ¢ dr(Eﬁ+9’t(s)’7p+gs+13) for r > 2.
In all, b3 gajhaohs hoohy s ¢ d (BT PEH3) for g > 1,
For the generator G; with May filtration M (G7) = 10p + 9s + 9 (see Lemma 3.3), by

an easy calculation, from (2.3) and (2.4) we have the first May differentials of G as follows

dl(G7) = (—1)S+8 Z 2Clzaobg,ohzx,ohalh2,2h2,0h1,3hl,1 + ?é 0.

Thus ESTOH10PH9549 g 51 1 > 2. At the same time, we also have that up to nonzero

scalar dy (Gr) # b} gajhaohs1ho2h 3.

In summary, b} jaihohs1heohy s ¢ d,(E

Finally,for the generators Gg and Gg whose May filtration are M (Gg) = M(Gy) =
6p + 9s + 13 (see Lemma 3.3), by the reason of May filtration, from (2.2) we see that
b} gaihaohs1haphis € B TIOR3 H16 ohich represents b30,44 € Ext (2, Z,) in
the MSS is not in d,(E; 9110918y for > 1,

The discussion of Gig and Gi; whose May filtration are M (G1) = M(Gq1) = 2p +
9s 4 17 is just like the analysis about Gip and Gi; .

From the above discussion, we see the permanent cycle b1 0@ihaohs 1hoohy 3 cannot
be hit by any May differential in the MSS. Thus, b} jajhsohs1he2his € ESJF10 () 3p 9316
converges nontrivially to b3 5é+4 € Exts+10 i S)(Z Z,) in the MSS. Consequently, b058+4 #0.
This finishes the proof of Theorem 1.2.

Remark For further study on the typesetting based on English-Chinese KTEX and

some special techniques, we may refer to [1-7].

5+9,t(s),10p+9s+9
:+»(5)7 P+ 6+)f0r7“21.
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Steenrodft #_t EHFEI—MNEE FLIFITTH0, 4

ot xF 52
(LI NITE 5 B B 5 Git- 2 B, Wk 61 061001)
(2. FHF K2 HCERL 24, RHE 300071)

WE: AL EE A T SteenrodfR 1 L [7 8 95 F LR B oo il . tpy K F5HI &= #, A%
BiplSteenrodfC %, i 1L X Mayit ¢ 51 (7 R 4 & 20 Br, IEBA T 7 St Admasi 5 51 SR AR IC —b3ds 14 €
Ext’ 0 (2, Z,) AT AU, Hoip > 7,0 < s < p— 5, t(s) = 2(p — D)[(s + 4)p° + (s + 3)p* + (s +
5)p + (s + 1)] + s. XA BTXEREFRGE FMCEE FEAC LR B U T — D 5.

XK #i8):  SteenrodfE; EIFIH; Mayi /741
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