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Abstract: In this paper, we mainly study the nontriviality of the products in the cohomology

of the Steenrod algebra. Let p be a prime greater than five and A be the mod p Steenrod algebra.

By using the explicit combinatorial analysis of the May spectral sequence, we prove that the product

b3
0δ̃s+4 ∈ Exts+10,∗

A (Zp,Zp) is nontrivial, where 0 6 s < p − 5, which is helpful for us to study the

nontriviality of homotopy elements in the stable homotopy of spheres.

Keywords: Steenrod algebra; cohomology; May spectral sequence

2010 MR Subject Classification: 55Q45

Document code: A Article ID: 0255-7797(2018)01-0057-10

1 Introduction

To determine the stable homotopy groups of spheres is one of the most important prob-
lems in algebraic topology. So far, several methods were found to determine the stable homo-
topy groups of spheres. For example, we have the classical Adams spectral sequence (ASS)
(see [1]) based on the Eilenberg-MacLane spectrum KZp, whose E2-term is Exts,t

A (Zp,Zp)
and the Adams differential is given by d̃r : Es,t

r → Es+r,t+r−1
r , where A denotes the mod

p Steenrod algebra. There are three problems in using the ASS: calculation of E2-term
Ext∗,∗A (Zp,Zp), computation of the differentials and determination of the nontrivial exten-
sions from E∞ to the stable homotopy groups of spheres. So, for computing the stable
homotopy groups of spheres with the classical ASS, we must compute the E2-term of the
ASS, Ext∗,∗A (Zp,Zp).

Throughout this paper, p denotes an odd prime and q = 2(p − 1). The known re-
sults on Ext∗,∗A (Zp,Zp) are as follows. Ext0,∗

A (Zp,Zp) is trivial by its definition. From [2],
Ext1,∗

A (Zp,Zp) has Zp-basis consisting of a0 ∈ Ext1,1
A (Zp,Zp), hi ∈ Ext1,piq

A (Zp,Zp) for all
i > 0 and Ext2,∗

A (Zp,Zp) has Zp-basis consisting of α2, a2
0, a0hi(i > 0), gi(i > 0), ki(i > 0),

bi(i > 0), and hihj(j > i+2, i > 0) whose internal degrees are 2q +1, 2, piq +1, pi+1q +2piq,
2pi+1q+piq, pi+1q and piq+pjq, respectively. In 1980, Aikawa [3] determined Ext3,∗

A (Zp,Zp)
by λ-algebra.
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Studying higher-dimensional cohomology of the mod p Steenrod algebra A was an in-
teresting subject and studied by several authors. For example, Liu and Zhao [4] proved the
following theorems, respectively.

Theorem 1.1 For p > 11 and 4 6 s < p, the product h0b0δ̃s 6= 0 in the classical
Adams spectral sequence, where δ̃s was given in [5].

In this paper, our main result can be stated as follows.

Theorem 1.2 Let p > 7, and 0 6 s < p − 5. Then in the cohomology of the mod p

Steenrod algebra A, the product b3
0δ̃s+4 ∈ Exts+10,t(s)

A (Zp,Zp) is nontrivial, where

t(s) = q[(s + 1) + (s + 5)p + (s + 3)p2 + (s + 4)p3] + s.

The main method of proof is the (modified) May spectral sequence, so we will recall
some knowledge on the May spectral sequence in Section 2. After detecting the generators
of some May E1-terms in Section 3, we will prove Theorem 1.2.

2 The May Spectral Sequence

As we know, the most successful method to compute Ext∗,∗A (Zp,Zp) is the MSS. From
[6], there is a May spectral sequence(MSS) {Es,t,∗

r , dr} which converges to Exts,t
A (Zp,Zp) with

E1-term

E∗,∗,∗
1 = E(hm,i|m > 0, i > 0)⊗ P (bm,i|m > 0, i > 0)⊗ P (an|n > 0), (2.1)

where E( ) is the exterior algebra, P ( ) is the polynomial algebra, and

hm,i ∈ E
1,2(pm−1)pi,2m−1
1 , bm,i ∈ E

2,2(pm−1)pi+1,p(2m−1)
1 , an ∈ E1,2pn−1,2n+1

1 .

One has

dr : Es,t,u
r → Es+1,t,u−r

r (2.2)

and if x ∈ Es,t,∗
r and y ∈ Es′,t′,∗

r , then

dr(x · y) = dr(x) · y + (−1)sx · dr(y). (2.3)

In particular, the first May differential d1 is given by

d1(hi,j) =
∑

0<k<i

hi−k,k+jhk,j , d1(ai) =
∑

06k<i

hi−k,kak, d1(bi,j) = 0. (2.4)

There also exists a graded commutativity in the MSS:

x · y = (−1)ss′+tt′y · x for x, y = hm,i, bm,i or an.
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For each element x ∈ Es,t,u
1 , we define dim x = s, deg x = t, M(x) = u. Then we have

that 



dim hi,j = dim ai = 1,

dim bi,j = 2,deg a0 = 1,

deg hi,j = q(pi+j−1 + · · ·+ pj),
deg bi,j = q(pi+j + · · ·+ pj+1),
deg ai = q(pi−1 + · · ·+ 1) + 1,

M(hi,j) = M(ai−1) = 2i− 1,

M(bi,j) = (2i− 1)p,

(2.5)

where i > 1, j > 0.
Note that by the knowledge on the p-adic expression in number theory, for each integer

t > 0, it can be expressed uniquely as t = q(cnpn + cn−1p
n−1 + · · · + c1p + c0) + e, where

0 6 ci < p (0 6 i < n), p > cn > 0, 0 6 e < q.

3 Proof of Theorem 1.2

Before showing Theorem 1.2, we first give some important lemmas which will be used
in the proof of it. The first one is a lemma on the representative of δ̃s+4 in the May spectral
sequence.

Lemma 3.1 For p > 7 and 0 6 s < p − 4. Then the fourth Greek letter element
δ̃s+4 ∈ Exts+4,t1(s)

A (Zp,Zp) is represented by

as
4h4,0h3,1h2,2h1,3 ∈ E

s+4,t1(s),∗
1

in the E1-term of the May spectral sequence, where δ̃s+4 is actually α̃
(4)
s+4 described in [6]

and t1(s) = q[(s + 1) + (s + 2)p + (s + 3)p2 + (s + 4)p3] + s.

By (2.2), we know that to prove the non-triviality of b3
0δ̃s+4 ∈ Exts+10,t(s)

A (Zp,Zp), we
have to show that the representative of the product cannot be hit by any May differential.
For doing it, we give the following two lemmas.

Lemma 3.2 Let p > 7, 0 6 s < p− 5. Then we have the May E1-term

E
s+9,t(s),∗
1 = Zp {G1, G2, · · · , G11} ,

where t(s, n) = q[(s + 1) + (s + 5)p + (s + 3)p2 + (s + 4)p3] + s, and

G1 = as−1
4 a2b

2
3,0b1,0h4,0h3,1h1,3, G2 = as−1

4 a2b
3
3,0h4,0h1,3h1,1,

G3 = as−1
4 a2b

2
3,0b1,2h4,0h3,1h1,1, G4 = as

4b3,0b
2
1,0h4,0h3,1h1,3,

G5 = as
4b

2
3,0b1,0h4,0h1,3h1,1, G6 = as

4b3,0b1,2b1,0h4,0h3,1h1,1,

G7 = as−2
4 a2

2b
2
3,0h4,0h3,1h2,2h1,3h1,1, G8 = as−1

4 a2b3,0b1,0h4,0h3,1h2,2h1,3h1,1,

G9 = as−1
4 a2b3,0b1,2h4,0h3,1h2,1h1,3h1,1, G10 = as

4b
2
1,0h4,0h3,1h2,2h1,3h1,1,

G11 = as
4b1,2b1,0h4,0h3,1h2,1h1,3h1,1.
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For the convenience of writing,we make the following rules:
(i) if i > j, we put ai on the left side of aj ;
(ii) if j < k, we put hi,j on the left side of hw,k;
(iii) if i > w, we put hi,j on the left side of hw,j ;
(iv) apply the rules (ii) and (iii) to bi,j .

Now we give the proof of the above lemma.
Proof The proof of this lemma is divided into the following six cases. Consider

h = x1x2 · · ·xm ∈ E
s+9,t(s),∗
1

in the MSS, where xi is one of ak, hr,j or bu,z, 0 6 k 6 4, 0 6 r+ j 6 4, 0 6 u+z 6 3, r > 0,
j > 0, u > 0, z > 0. By (2.5), we can assume that deg xi = q(ci,3p

3 +ci,2p
2 +ci,1p+ci,0)+ei,

where ci,j = 0 or 1, ei = 1 if xi = aki
or ei = 0. It follows that dim h =

m∑
i=1

dim xi = s + 9

and

deg h =
m∑

i=1

deg xi = q[(
m∑

i=1

ci,3)p3 + (
m∑

i=1

ci,2)p2 + (
m∑

i=1

ci,1)p + (
m∑

i=1

ci,0)] + (
m∑

i=1

ei)

= q[(s + 4)p3 + (s + 3)p2 + (s + 5)p + (s + 1)] + s.

Note that

dim hi,j = dim ai = 1, dim bi,j = 2 and 0 6 s < p− 5.

From dim h =
m∑

i=1

dim xi = s + 9, we can have m 6 s + 9 6 p + 3.

Using 0 6 s + 5, s + 4, s + 3, s + 1, s < p and the knowledge on the p-adic expression in
number theory, we have that 




m∑
i=1

ei = s;
m∑

i=1

ci,0 = s + 1;
m∑

i=1

ci,1 = s + 5;
m∑

i=1

ci,2 = s + 3;
m∑

i=1

ci,3 = s + 4.

(3.1)

By ci,2 = 0 or 1, one has m > s + 4 from
m∑

i=1

ci,3 = s + 4. Note that m 6 s + 9. Thus

m may equal s + 4, s + 5, s + 6, s + 7, s + 8 or s + 9. Since
m∑

i=1

ei = s, deg hi,j ≡ 0(mod q)

(i > 0, j > 0), deg ai ≡ 1(mod q) (i > 0) and deg bi,j ≡ 0(mod q) (i > 0, j > 0), then by the
graded commutativity of E∗,∗,∗

1 and degree reasons, we can assume that h = ax
0a

y
1a

z
2a

k
3a

l
4h
′

with h′ = xs+1xs+2 · · ·xm, where 0 6 x, y, z, k, l 6 s, x + y + z + k + l = s. Consequently,
we have

h′ = xs+1xs+2 · · ·xm ∈ E
9,t2(s),∗
1 ,
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where t2(s) = q[(s+4− l)p3 +(s+3− l− k)p2 +(s+5− l− k− z)p+(s+1− l− k− z− y)].
From (3.1), we have 




m∑
i=s+1

ei = 0;
m∑

i=s+1

ci,0 = s + 1− l − k − z − y;
m∑

i=s+1

ci,1 = s + 5− l − k − z;
m∑

i=s+1

ci,2 = s + 3− l − k;
m∑

i=s+1

ci,3 = s + 4− l.

(3.2)

By the reason of dimension, all the possibilities of h′ can be listed as

y1z1 · · · z4, y1y2y3z1z2z3, y1 · · · y5z1z2, y1 · · · y7z1, y1 · · · y9,

where yi is in the form of hr,jwith 0 6 r + j 6 4, r > 0, j > 0 and ziis in the form of bu,z

with 0 6 u + z 6 3, u > 0, z > 0.
Case 1 m = s+4. So h′ = xs+1xs+2xs+3xs+4 ∈ E

9,q(4p3+3p2+5p+1),∗
1 and it is impossible

to exist. Then h doesn’t exist either.

Case 2 m = s+5. From
s+5∑

i=s+1

ci,3 = s+4−l in (3.2), we have that l = s+4−
s+5∑

i=s+1

ci,3 >

s − 1. Thus l = s − 1 or s and h′ = y1z1 · · · z4 ∈ E
9,t2(s),∗
1 . We list all the possibilities in

Table 1.

Table 1: for Case 2
The possibility l x y z k E

9,t2(s),∗
1 The existence of

h′ = xs+1 · · ·xm

The 1st s− 1 1 0 0 0 E
9,q(5p3+4p2+6p+2),∗
1 = 0 Nonexistence

The 2nd s− 1 0 1 0 0 E
9,q(5p3+4p2+6p+1),∗
1 = 0 Nonexistence

The 3rd s− 1 0 0 1 0 E
9,q(5p3+4p2+5p+1),∗
1 = 0 Nonexistence

The 4th s− 1 0 0 0 1 E
9,q(5p3+3p2+5p+1),∗
1 = 0 Nonexistence

The 5th s 0 0 0 0 E
9,q(4p3+3p2+5p+1),∗
1 = 0 Nonexistence

Case 3 m = s+6. From
s+6∑

i=s+1

ci,3 = s+4−l in (3.2), we have that l = s+4−
s+6∑

i=s+1

ci,3 >

s−2. Thus l = s−2,s−1 or s and h′ = y1y2y3z1z2z3 ∈ E
9,t2(s),∗
1 . We list all the possibilities

in Table 2.
In the table, b2

3,0b1,0h4,0h3,1h1,3, b3
3,0h4,0h1,3h1,1, b2

3,0b1,2h4,0h3,1h1,1, b3,0b
2
1,0h4,0h3,1h1,3,

b2
3,0b1,0h4,0h1,3h1,1, b3,0b1,2b1,0h4,0h3,1h1,1, denoted by g1, g2, g3, g4, g5, g6, respectively. Con-

sequently, in this case up to sign h = as−1
4 a2g1, as−1

4 a2g2, as−1
4 a2g3, as

4g4,as
4g5 ,as

4g6denoted
by G1, G2, G3, G4 , G5, G6, respectively.

Case 4 m = s+7. From
s+7∑

i=s+1

ci,3 = s+4−l in (3.2), we have that l = s+4−
s+7∑

i=s+1

ci,3 >

s− 3. Thus l = s− 3, s− 2, s− 1 or s, and h′ = y1 · · · y5z1z2 ∈ E
9,t2(s),∗
1 . When l = s− 3, we
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Table 2: for Case 3
The possibility l x y z k E

9,t2(s),∗
1 The existence of

h′ = xs+1 · · ·xm

The 1st s− 2 2 0 0 0 E
9,q(6p3+5p2+7p+3),∗
1 = 0 Nonexistence

The 2nd s− 2 0 2 0 0 E
9,q(6p3+5p2+7p+1),∗
1 = 0 Nonexistence

The 3rd s− 2 0 0 2 0 E
9,q(6p3+5p2+5p+1),∗
1 = 0 Nonexistence

The 4th s− 2 0 0 0 2 E
9,q(6p3+3p2+5p+1),∗
1 = 0 Nonexistence

The 5th s− 2 1 1 0 0 E
9,q(6p3+5p2+7p+2),∗
1 = 0 Nonexistence

The 6th s− 2 1 0 1 0 E
9,q(6p3+5p2+6p+2),∗
1 = 0 Nonexistence

The 7th s− 2 1 0 0 1 E
9,q(6p3+4p2+6p+2),∗
1 = 0 Nonexistence

The 8th s− 2 0 1 1 0 E
9,q(6p3+5p2+6p+1),∗
1 = 0 Nonexistence

The 9th s− 2 0 1 0 1 E
9,q(6p3+4p2+6p+1),∗
1 = 0 Nonexistence

The 10th s− 2 0 0 1 1 E
9,q(6p3+4p2+5p+1),∗
1 = 0 Nonexistence

The 11th s− 1 1 0 0 0 E
9,q(5p3+4p2+6p+2),∗
1 = 0 Nonexistence

The 12th s− 1 0 1 0 0 E
9,q(5p3+4p2+6p+1),∗
1 = 0 Nonexistence

The 13th s− 1 0 0 1 0 E
9,q(5p3+4p2+5p+1),∗
1 h′ = g1,g2,g3

= Zp{g1,g2,g3} up to sign

The 14th s− 1 0 0 0 1 E
9,q(5p3+3p2+5p+1),∗
1 = 0 Nonexistence

The 15th s 0 0 0 0 E
9,q(4p3+3p2+5p+1),∗
1 h′ = g4,g5,g6

= Zp{g4,g5,g6} up to sign

Table 3: for Case 4
The possibility l x y z k E

9,t2(s),∗
1 The existence of

h′ = xs+1 · · ·xm

The 1st s− 2 2 0 0 0 E
9,q(6p3+5p2+7p+3),∗
1 = 0 Nonexistence

The 2nd s− 2 0 2 0 0 E
9,q(6p3+5p2+7p+1),∗
1 = 0 Nonexistence

The 3rd s− 2 0 0 2 0 E
9,q(6p3+5p2+5p+1),∗
1 h′ = g7

= Zp{g7} up to sign

The 4th s− 2 0 0 0 2 E
9,q(6p3+3p2+5p+1),∗
1 = 0 Nonexistence

The 5th s− 2 1 1 0 0 E
9,q(6p3+5p2+7p+2),∗
1 = 0 Nonexistence

The 6th s− 2 1 0 1 0 E
9,q(6p3+5p2+6p+2),∗
1 = 0 Nonexistence

The 7th s− 2 1 0 0 1 E
9,q(6p3+4p2+6p+2),∗
1 = 0 Nonexistence

The 8th s− 2 0 1 1 0 E
9,q(6p3+5p2+6p+1),∗
1 = 0 Nonexistence

The 9th s− 2 0 1 0 1 E
9,q(6p3+4p2+6p+1),∗
1 = 0 Nonexistence

The 10th s− 2 0 0 1 1 E
9,q(6p3+4p2+5p+1),∗
1 = 0 Nonexistence

The 11th s− 1 1 0 0 0 E
9,q(5p3+4p2+6p+2),∗
1 = 0 Nonexistence

The 12th s− 1 0 1 0 0 E
9,q(5p3+4p2+6p+1),∗
1 = 0 Nonexistence

The 13th s− 1 0 0 1 0 E
9,q(5p3+4p2+5p+1),∗
1 h′ = g8,g9

= Zp{g8,g9} up to sign

The 14th s− 1 0 0 0 1 E
9,q(5p3+3p2+5p+1),∗
1 = 0 Nonexistence

The 15th s 0 0 0 0 E
9,q(4p3+3p2+5p+1),∗
1 h′ = g10,g11

= Zp{g10,g11} up to sign
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have that t2(s) = q[7p3 + · · · ]. In this case, h′ is impossible to exist. Then h doesn’t exist
either. Next we list all the rest of possibilities in Table 3.

In the table, b2
3,0h4,0h3,1h2,2h1,3h1,1, b3,0b1,0h4,0h3,1h2,2h1,3h1,1, b3,0b1,2h4,0h3,1h2,1h1,3h1,1,

b2
1,0h4,0h3,1h2,2h1,3h1,1, b1,2b1,0h4,0h3,1h2,1h1,3h1,1, denoted by g7, g8, g9, g10, g11, respec-

tively. Consequently, in this case up to sign h = as−2
4 a2

2g7, as−1
4 a2g8, as−1

4 a2g9, as
4g10,as

4g11

denoted by G7, G8, G9, G10, G11, respectively.

Case 5 m = s+8. From
s+8∑

i=s+1

ci,3 = s+4−l in (3.2), we have that l = s+4−
s+8∑

i=s+1

ci,3 >

s−4. Thus l = s−4, s−3, s−2, s−1 or s, and h′ = y1 · · · y7z1 ∈ E
9,t2(s),∗
1 . When l 6 s−2,

the coefficient of P 3 ∈ t2(s)is > 5. In these cases, h′ is impossible to exist. Then h doesn’t
exist either. Next we list all the other possibilities in Table 4.

Table 4: for Case 5
The possibility l x y z k E

9,t2(s),∗
1 The existence of

h′ = xs+1 · · ·xm

The 1st s− 1 1 0 0 0 E
9,q(5p3+4p2+6p+2),∗
1 = 0 Nonexistence

The 2nd s− 1 0 1 0 0 E
9,q(5p3+4p2+6p+1),∗
1 = 0 Nonexistence

The 3rd s− 1 0 0 1 0 E
9,q(5p3+4p2+5p+1),∗
1 = 0 Nonexistence

The 4th s− 1 0 0 0 1 E
9,q(5p3+3p2+5p+1),∗
1 = 0 Nonexistence

The 5th s 0 0 0 0 E
9,q(4p3+3p2+5p+1),∗
1 = 0 Nonexistence

Case 6 m = s+9. From
s+9∑

i=s+1

ci,3 = s+4−l in (3.2), we have that l = s+4−
s+9∑

i=s+1

ci,3 >

s−5. Thus l = s−5, s−4, s−3, s−2, s−1 or s, and h′ = y1 · · · y9 ∈ E
9,t2(s),∗
1 . When l 6 s−1,

the coefficient of P 3 ∈ t2(s) is > 5. In these cases, h′ is impossible to exist. Then h doesn’t
exist either. In the last possibility, t2(s) = 4p3 +3p2 +5p+1, so h4,0, h3,1, h2,2, h1,3 ∈ h′, h′is
impossible to exist in this case by the reason of dimension. Then h doesn’t exist either.

Combining Cases 1–6 above, we obtain that E
s+9,t(s),∗
1 = Zp{G1,G2, · · · ,G11}. This

completes the proof of Lemma 3.2.
Lemma 3.3 (1) b3

0δ̃s+4 ∈ Exts+10,t(s)
A (Zp,Zp) is represented by b3

1,0a
s
4h4,0h3,1h2,2h1,3 ∈

E
s+10,t(s),∗
1 in the MSS, where t(s) = q[(s + 4)p3 + (s + 3)p2 + (s + 5)p + (s + 1)] + s.

(2) For the eleven generators of E
s+9,t(s),∗
1 , we have that

M(G1) = M(G3) = M(G5) = 11p + 9s + 9,

M(G2) = 15p + 9s + 5, M(G4) = M(G6) = 7p + 9s + 13,

M(G7) = 10p + 9s + +9, M(G8) = M(G9) = 6p + 9s + 13,

M(G10) = M(G11) = 2p + 9s + 17.

Moreover, we have that M(b3
1,0a

s
4h4,0h3,1h2,2h1,3) = 3p + 9s + 16.

Proof (1) Since it is known that b1,i and as
4h4,0h3,1h2,2h1,3 ∈ E∗,∗,∗

1 are all permanent
cycles in the MSS as [7] and converge nontrivially to bi, δ̃s+4 ∈ Ext∗,∗A (Zp,Zp) for 0 6 s < p−5
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and i > 0, respectively (cf. Lemma 3.1), then b3
1,0a

s
4h4,0h3,1h2,2h1,3 ∈ E

s+10,t(s),3p+9s+16
1 is a

permanent cycle in the MSS and converges to b3
0δ̃s+4 ∈ Exts+10,t(s)

A (Zp,Zp).
(2) From (2.5), the result follows by direct calculation.
Now we give the proof of Theorem 1.2.
Proof of Theorem 1.2 From Lemma 3.3 (1), b3

0δ̃s+4 ∈ Exts+10,t(s)
A (Zp,Zp) is rep-

resented by b3
1,0a

s
4h4,0h3,1h2,2h1,3 ∈ E

s+10,t(s),3p+9s+16
1 in the MSS. Now we will show that

nothing hits the permanent cycle b3
1,0a

s
4h4,0h3,1h2,2h1,3 under the May differential dr for

r > 1. From Lemma 3.2, we have E
s+9,t(s),∗
1 = Zp{G1,G2, · · · ,G11}.

For the generators G1, G3 and G5 whose May filtration are

M(G1) = M(G3) = M(G5) = 11p + 9s + 9

(see Lemma 3.3), by the reason of May filtration, from (2.2) we see that

b3
1,0a

s
4h4,0h3,1h2,2h1,3 ∈ E

s+10,t(s),3p+9s+16
1 ,

which represents b3
0δ̃s+4 ∈ Exts+10,t(s)

A (Zp,Zp) in the MSS is not in d1(E
s+9,t(s),11p+9s+9
1 ).

Now we will show E
s+9,t(s),11p+9s+9
r = 0 for r > 2. By an easy calculation, from (2.3) and

(2.4), one can have the first May differentials of G1, G3 and G5 as follows

d1(G1) = (−1)s+8as−1
4 a2b

2
3,0b1,0h3,1h2,2h2,0h1,3 + · · · 6= 0,

d1(G3) = (−1)s+8as−1
4 a2b

2
3,0b1,2h3,1h2,2h2,0h1,1 + · · · 6= 0,

d1(G5) = (−1)s+8as
4b

2
3,0b1,0h2,2h2,0h1,3h1,1 + · · · 6= 0.

It is easy to see that the first May differentials of G1 ,G3and G5 are linearly in-
dependent.Consequently, the cocycle of E

s+9,t(s),11p+9s+9
1 must be zero. This means that

E
s+9,t(s),11p+9s+9
r = 0 for r > 2, from which we have that

b3
1,0a

s
4h4,0h3,1h2,2h1,3 /∈ dr(Es+9,t(s),11p+9s+9

r )

for r > 2. In all,b3
1,0a

s
4h4,0h3,1h2,2h1,3 /∈ dr(E

s+9,t(s),11p+9s+9
r ) for r > 1.

For the generator G2 with May filtration M(G2) = 15p + 9s + 5 (see Lemma 3.3), by
an easy calculation, from (2.3) and (2.4), we have the first May differentials of G2 as follows

d1(G2) = (−1)s+8as−1
4 a2b

2
3,0h3,1h1,3h1,1h1,0 + · · · 6= 0.

Thus E
s+9,t(s),15p+9s+5
r = 0 for r > 2. At the same time, we also have that up to nonzero

scalar d1(G2) 6= b3
1,0a

s
4h4,0h3,1h2,2h1,3.

In summary, b3
1,0a

s
4h4,0h3,1h2,2h1,3 /∈ dr(E

s+9,t(s),15p+9s+5
r ) for r > 1.

For the generators G4 and G6 whose May filtration are M(G4) = M(G6) = 7p+9s+13
(see Lemma 3.3), by the reason of May filtration, from (2.2) we see that

b3
1,0a

s
4h4,0h3,1h2,2h1,3 ∈ E

s+10,t(s),3p+9s+16
1 ,
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which represents b3
0δ̃s+4 ∈ Exts+10,t(s)

A (Zp,Zp) /∈ d1(E
s+9,t(s),7p+9s+13
1 ). Now we will show

E
s+9,t(s),7p+9s+13
r = 0 for r > 2. By an easy calculation, from (2.3) and (2.4) one can have

the first May differentials of G4 and G6 as follows

d1(G4) = (−1)s+8as
4b3,0b

2
1,0h3,1h2,2h2,0h1,3 + · · · 6= 0,

d1(G6) = (−1)s+8as
4b3,0b1,2b1,0h3,1h2,2h2,0h1,1 + · · · 6= 0.

It is easy to see that the first May differentials of G4 and G6 are linearly independent.
Consequently, the cocycle of E

s+9,t(s),7p+9s+13
1 must be zero. This means that

Es+9,t(s),7p+9s+13
r = 0

for r > 2, from which we have that b3
1,0a

s
4h4,0h3,1h2,2h1,3 /∈ dr(E

s+9,t(s),7p+9s+13
r ) for r > 2.

In all, b3
1,0a

s
4h4,0h3,1h2,2h1,3 /∈ dr(E

s+9,t(s),7p+9s+13
r ) for r > 1.

For the generator G7 with May filtration M(G7) = 10p + 9s + 9 (see Lemma 3.3), by
an easy calculation, from (2.3) and (2.4) we have the first May differentials of G7 as follows

d1(G7) = (−1)s+8as−2
4 a2a0b

2
3,0h4,0h3,1h2,2h2,0h1,3h1,1 + · · · 6= 0.

Thus E
s+9,t(s),10p+9s+9
r = 0 for r > 2. At the same time, we also have that up to nonzero

scalar d1(G7) 6= b3
1,0a

s
4h4,0h3,1h2,2h1,3.

In summary, b3
1,0a

s
4h4,0h3,1h2,2h1,3 /∈ dr(E

s+9,t(s),10p+9s+9
r ) for r > 1.

Finally,for the generators G8 and G9 whose May filtration are M(G8) = M(G9) =
6p + 9s + 13 (see Lemma 3.3), by the reason of May filtration, from (2.2) we see that
b3
1,0a

s
4h4,0h3,1h2,2h1,3 ∈ E

s+10,t(s),3p+9s+16
1 , which represents b3

0δ̃s+4 ∈ Exts+10,t(s)
A (Zp,Zp) in

the MSS is not in dr(E
s+9,t(s),6p+9s+13
1 ) for r > 1.

The discussion of G10 and G11 whose May filtration are M(G10) = M(G11) = 2p +
9s + 17 is just like the analysis about G10 and G11 .

From the above discussion, we see the permanent cycle b3
1,0a

s
4h4,0h3,1h2,2h1,3 cannot

be hit by any May differential in the MSS. Thus, b3
1,0a

s
4h4,0h3,1h2,2h1,3 ∈ E

s+10,t(s),3p+9s+16
1

converges nontrivially to b3
0δ̃s+4 ∈ Exts+10,t(s)

A (Zp,Zp) in the MSS. Consequently, b3
0δ̃s+4 6= 0.

This finishes the proof of Theorem 1.2.
Remark For further study on the typesetting based on English-Chinese LATEX and

some special techniques, we may refer to [1–7].
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Steenrod代数上同调中的一个非平凡乘积元b3
0δ̃s+4

王 冲1,刘秀贵2

(1.沧州师范学院数学与统计学院, 河北沧州 061001)

(2.南开大学数学科学学院,天津 300071)

摘要: 本文主要研究了Steenrod代数上同调非平凡乘积元问题. 设p为大于5的素数, A代表

模p的Steenrod代数. 通过对May谱序列的详尽组合分析, 证明了古典Admas谱序列中乘积元―b3
0δ̃s+4 ∈

Ext
s+10,t(s)
A (Zp,Zp)的非平凡性, 其中p > 7, 0 6 s < p − 5, t(s) = 2(p − 1)[(s + 4)p3 + (s + 3)p2 + (s +

5)p + (s + 1)] + s. 这有助于对球面稳定同伦群中同伦元素非平凡性进行进一步研究.
关键词: Steenrod代数; 上同调; May谱序列
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