Vol. 37 (2017) No. 6 数学杂志 J. of Math. (PRC)

T-STRUCTURES INDUCED BY HALF RECOLLEMENTS

YIN You-qi

(Department of Mathematics, Shanghai Jiao Tong University, Shanghai 200240, China) (Department of Mathematics, Shaoxing College of Arts and Sciences, Shaoxing 312000, China)

Abstract: Let $\mathcal{C}', \mathcal{C}$ and \mathcal{C}'' be triangulated categories. In this paper, we consider how to induce *t*-structures on \mathcal{C}' and \mathcal{C}'' from a *t*-structure on \mathcal{C} given an upper (resp. lower) recollement of \mathcal{C} relative to \mathcal{C}' and \mathcal{C}'' . By the concept of left(right) *t*-exact, we give a sufficient condition such that a *t*-structure on \mathcal{C} may induce *t*-structures on \mathcal{C}' and \mathcal{C}'' , which generalizes some results concerning recollements to upper (resp. lower) recollements.

Keywords: triangulated category; upper(lower) recollement; stable *t*-structure 2010 MR Subject Classification: 18A40; 18E35; 18E30 Document code: A Article ID: 0255-7797(2017)06-1215-05

1 Introduction

Recollements of triangulated categories play an important role in algebraic geometry (see [1]), representation theory (see [2–5]), etc. A recollement $(\mathcal{C}', \mathcal{C}, \mathcal{C}'')$ of triangulated categories provides a platform for various questions concerning the three terms in a recollement. For examples, given a recollement of a triangulated category \mathcal{C} relative to \mathcal{C}' and \mathcal{C}'' , *t*-structures $(\mathcal{C}'^{\leq 0}, \mathcal{C}'^{\geq 0})$ and $(\mathcal{C}''^{\leq 0}, \mathcal{C}''^{\geq 0})$ of \mathcal{C}' and \mathcal{C}'' , respectively, Beilinson, Bernstein and Deligne [1] proved that \mathcal{C} also has a *t*-structure $(\mathcal{C}^{\leq 0}, \mathcal{C}^{\geq 0})$, where

$$\begin{aligned} \mathcal{C}^{\leq 0} &:= \{ A \in \mathcal{C} \mid j^* A \in \mathcal{C}''^{\leq 0}, \quad i^* A \in \mathcal{C}'^{\leq 0} \}, \\ \mathcal{C}^{\geq 0} &:= \{ B \in \mathcal{C} \mid j^* B \in \mathcal{C}''^{\geq 0}, \quad i^! B \in \mathcal{C}'^{\geq 0} \}. \end{aligned}$$

On the other hand, Lin [6] proved that certain t-structure on \mathcal{C} may induce t-structures on \mathcal{C}' and \mathcal{C}'' . Chen [7] studied the relationship of cotorsion pairs among three triangulated categories in a recollement. She proved the following results: cotorsion pairs on \mathcal{C} may be obtained from cotorsion pairs on \mathcal{C}' and \mathcal{C}'' and certain cotorsion pairs on \mathcal{C} may induce cotorsion pairs on \mathcal{C}' and \mathcal{C}'' . More relevant results can be seen in [8–11], etc.

In a viewpoint of Beilinson, Ginsburg and Schechtman (see [12]), upper and lower recollements are more fundamental than a recollement (upper and lower recollements are

Received date: 2015-11-11 Accepted date: 2016-02-18

Foundation item: Supported by National Natural Science Foundation of China (11271251; 11431010; 11571239); Zhejiang Provincial Natural Science Foundation (LY14A010006).

Biography: Yin Youqi (1979–), female, born at Shengzhou, Zhejiang, lecturer, major in represent theory of algebras.

called steps in [8]). For a given upper (lower) recollement of C relative to C' and C'', a sufficient condition that *t*-structures on C' and C'' may be induced by a *t*-structure on C is given in this paper.

2 Preliminaries

Recall the following definitions.

Definition 2.1 Let C', C and C'' be triangulated categories.

(1) [1] A recollement of C relative to C' and C'' is a diagram of triangle functors

$$\mathcal{C}' \xrightarrow{i^*}_{i^*} \mathcal{C} \xrightarrow{j_!}_{j^*} \mathcal{C}''$$

$$(2.1)$$

such that

- (R1) $(i^*, i_*), (i_*, i^!), (j_!, j^*)$ and (j^*, j_*) are adjoint pairs;
- (R2) $i_*, j_!$ and j_* are fully faithful;
- (R3) $j^*i_* = 0;$
- (R4) for each $X \in \mathcal{C}$, there are distinguished triangles

$$\begin{split} j_! j^* X \xrightarrow{\epsilon_X} X \xrightarrow{\eta_X} i_* i^* X \longrightarrow (j_! j^* X) [1], \\ i_* i^! X \xrightarrow{\omega_X} X \xrightarrow{\zeta_X} j_* j^* X \longrightarrow (i_* i^! X) [1], \end{split}$$

where ϵ_X is the counit of $(j_!, j^*)$, η_X is the unit of (i^*, i_*) , ω_X is the counit of $(i_*, i^!)$, and ζ_X is the unit of (j^*, j_*) .

(2) [5, 12, 13] Let \mathcal{C}' , \mathcal{C} and \mathcal{C}'' be triangulated categories. An upper recollement of \mathcal{C} relative to \mathcal{C}' and \mathcal{C}'' is a diagram of triangle functors

$$\mathcal{C}' \xrightarrow{i^*} \mathcal{C} \xrightarrow{j!} \mathcal{C}''$$
(2.2)

such that the conditions involved $i^*, i_*, j_!, j^*$ in (1) are satisfied.

(3) [5, 12, 13] Let \mathcal{C}' , \mathcal{C} and \mathcal{C}'' be triangulated categories. An lower recollement of \mathcal{C} relative to \mathcal{C}' and \mathcal{C}'' is a diagram of triangle functors

$$\mathcal{C}' \xrightarrow{i_*} \mathcal{C} \xrightarrow{j^*} \mathcal{C}''$$
(2.3)

such that the conditions involved i_*, i', j^*, j_* in (1) are satisfied.

For short, we denote respectively the recollement (2.1), upper recollement (2.2) and lower recollement (2.3) by $(\mathcal{C}', \mathcal{C}, \mathcal{C}'', i^*, i_*, i^!, j_!, j^*, j_*)$, $(\mathcal{C}', \mathcal{C}, \mathcal{C}'', i^*, i_*, j_!, j^*)$ and $(\mathcal{C}', \mathcal{C}, \mathcal{C}'', i_*, i^!, j^*, j_*)$, or uniformly by $(\mathcal{C}', \mathcal{C}, \mathcal{C}'')$. We need the following fact.

Lemma 2.2 (see [14]) Let $(\mathcal{C}', \mathcal{C}, \mathcal{C}'')$ be an upper recollement. Then there exists a triangle-equivalence $\tilde{j^*} : \mathcal{C}/i_*\mathcal{C}' \cong \mathcal{C}''$ such that $\tilde{j^*}V = j^*$, where $V : \mathcal{C} \to \mathcal{C}/i_*\mathcal{C}'$ is the Verdier functor.

The subcategories in this section are full subcategories closed under isomorphisms.

Definition 2.3 [1] Let C be a triangulated category with the shift functor [1]. A *t*-structure on D is a pair of full subcategories $(D^{\leq 0}, D^{\geq 0})$ with the following properties:

If we put $\mathcal{D}^{\leq n} := \mathcal{D}^{\leq 0}[-n]$ and $\mathcal{D}^{\geq n} := \mathcal{D}^{\geq 0}[-n], \forall n \in \mathbb{Z}$, we have

(t1) Hom_{\mathcal{D}}(X, Y) = 0, $\forall X \in \mathcal{D}^{\leq 0}, Y \in \mathcal{D}^{\geq 1};$

(t2) $\mathcal{D}^{\leq 0} \subseteq \mathcal{D}^{\leq 1}$ and $\mathcal{D}^{\geq 1} \subseteq \mathcal{D}^{\geq 0}$;

(t3) For each $X \in \mathcal{D}$, there is a distinguished triangle

$$A \longrightarrow X \longrightarrow B \longrightarrow A[1],$$

where $A \in \mathcal{D}^{\leq 0}$, $B \in \mathcal{D}^{\geq 1}$.

Let $(\mathcal{U}, \mathcal{V})$ be a *t*-structure on \mathcal{C} . We call $(\mathcal{U}, \mathcal{V})$ a stable *t*-structure, if \mathcal{U} and \mathcal{V} are triangulated subcategories of \mathcal{C} (see [15, Definition 0.2]).

Here are basic properties of stable *t*-structures.

Lemma 2.4 (see [15]) Let \mathcal{D} be a triangulated category, \mathcal{C} a thick subcategory of \mathcal{D} , and $Q: \mathcal{D} \to \mathcal{D}/\mathcal{C}$ the canonical quotient. For a stable *t*-structure $(\mathcal{U}, \mathcal{V})$ on \mathcal{D} , the following are equivalent.

(i) $(Q(\mathcal{U}), Q(\mathcal{V}))$ is a stable *t*-structure on \mathcal{D}/\mathcal{C} , where $Q(\mathcal{U})$ (resp. $Q(\mathcal{V})$) is the full subcategory of \mathcal{D}/\mathcal{C} consisting of objects $Q(\mathcal{X})$ for $X \in \mathcal{U}$ (resp. $Q(\mathcal{Y})$ for $Y \in \mathcal{V}$);

(ii) $(\mathcal{U} \cap \mathcal{C}, \mathcal{V} \cap \mathcal{C})$ is a stable *t*-structure on \mathcal{C} .

Definition 2.5 [1] Let \mathcal{C} and \mathcal{D} be two triangulated categories with *t*-structures $(\mathcal{C}^{\leq 0}, \mathcal{C}^{\geq 0})$ and $(\mathcal{D}^{\leq 0}, \mathcal{D}^{\geq 0})$. An triangle functor $F : \mathcal{C} \longrightarrow \mathcal{D}$ is

- (i) left *t*-exact if $F(\mathcal{C}^{\geq 0}) \subset \mathcal{D}^{\geq 0}$;
- (ii) right *t*-exact if $F(\mathcal{C}^{\leq 0}) \subset \mathcal{D}^{\leq 0}$.

3 *t*-Structure Induced by Upper Recollement

This section aims to prove the main result of this paper. Let $\mathcal{C}', \mathcal{C}$ and \mathcal{C}'' be triangulated categories. Given a upper recollement of \mathcal{C} relative to \mathcal{C}' and \mathcal{C}'' , a *t*-structure on \mathcal{C} induces *t*-structures on \mathcal{C}' and \mathcal{C}'' under some conditions.

Proposition 3.6 Let $\mathcal{C}', \mathcal{C}$ and \mathcal{C}'' be triangulated categories, let diagram (2.2) be an upper recollement of \mathcal{C} relative to \mathcal{C}' and \mathcal{C}'' , and let $(\mathcal{C}^{\leq 0}, \mathcal{C}^{\geq 0})$ be a *t*-structure on \mathcal{C} . If i_*i^* is left *t*-exact and $j_!j^*$ is right *t*-exact, then

(i) $(i^*(\mathcal{C}^{\leq 0}), i^*(\mathcal{C}^{\geq 0}))$ is a *t*-structure on \mathcal{C}' ;

(ii) $(j^*(\mathcal{C}^{\leq 0}), j^*(\mathcal{C}^{\geq 0}))$ is a *t*-structure on \mathcal{C}'' ;

(iii) If $(\mathcal{C}^{\leq 0}, \mathcal{C}^{\geq 0})$ and $(i^*(\mathcal{C}^{\leq 0}), i^*(\mathcal{C}^{\geq 0}))$ are stable *t*-structures on \mathcal{C} and \mathcal{C}' , respectively, then $(j^*(\mathcal{C}^{\leq 0}), j^*(\mathcal{C}^{\geq 0}))$ is a stable *t*-structure on \mathcal{C}'' .

Proof (i) For $X \in \mathcal{C}^{\leq 0}$, $Y \in \mathcal{C}^{\geq 1}$, since (i^*, i_*) is an adjoint pair and i_*i^* is left *t*-exact, we have $\operatorname{Hom}_{\mathcal{C}'}(i^*X, i^*Y) \cong \operatorname{Hom}_{\mathcal{C}}(X, i_*i^*Y) = 0$. Thus (t1) hold.

Condition (t2) follows from the closure of $\mathcal{C}^{\leq 0}$ and $\mathcal{C}^{\geq 0}$ under the shifts [1] and [-1], respectively.

Let $X' \in \mathcal{C}'$. There is a distinguished triangle $A \to i_*X' \to B \to A[1]$ in \mathcal{C} , where $A \in \mathcal{C}^{\leq 0}$, $B \in \mathcal{C}^{\geq 1}$. Applying i^* to this triangle, we have $i^*A \to i^*i_*X' \to i^*B \to i^*A[1]$, where $i^*A \in i^*(\mathcal{C}^{\leq 0})$, $i^*B \in i^*(\mathcal{C}^{\geq 1})$. Since i_* is fully faithful and (i^*, i_*) is an adjoint pair, we have $i^*i_*X' \cong X'$. Therefore, the distinguished triangle $i^*A \to X' \to i^*B \to i^*A[1]$ is the *t*-decomposition of X'. We have condition (t3).

(ii) Similarly, we obtain argument (ii).

(iii) We prove the last statement by three steps.

Step 1 $j_!j^*$ is right t-exact $\Rightarrow i_*i^*$ is right t-exact.

Let $X \in \mathcal{C}^{\leq 0}$, for $Y \in \mathcal{C}^{\geq 1}$. Applying cohomological functor $\operatorname{Hom}_{\mathcal{C}}(-, Y)$ to the distinguished triangle

$$j_!j^*X \xrightarrow{\epsilon_X} X \xrightarrow{\eta_X} i_*i^*X \longrightarrow (j_!j^*X)[1],$$

we get an exact sequence

 $\cdots \to \operatorname{Hom}_{\mathcal{C}}(X[1], Y) \to \operatorname{Hom}_{\mathcal{C}}(j_! j^* X[1], Y) \to \operatorname{Hom}_{\mathcal{C}}(i_* i^* X, Y) \to \operatorname{Hom}_{\mathcal{C}}(X, Y) \to \cdots$

Since $\operatorname{Hom}_{\mathcal{C}}(X,Y) = \operatorname{Hom}_{\mathcal{C}}(X[1],Y) = 0$, we get $\operatorname{Hom}_{\mathcal{C}}(i_*i^*X,Y) \cong \operatorname{Hom}_{\mathcal{C}}(j_!j^*X[1],Y) = 0$. **Step 2** We claim $i_*i^*(\mathcal{C}^{\leq 0}) = i_*\mathcal{C}' \cap \mathcal{C}^{\leq 0}$ and $i_*i^*(\mathcal{C}^{\geq 0}) = i_*\mathcal{C}' \cap \mathcal{C}^{\geq 0}$.

By Step 1 we have i_*i^* is right t-exact, i.e. $i_*i^*(\mathcal{C}^{\leq 0}) \subseteq \mathcal{C}^{\leq 0}$. Therefore, $i_*i^*(\mathcal{C}^{\leq 0}) \subseteq i_*\mathcal{C}' \cap \mathcal{C}^{\leq 0}$. Conversely, for $X \in i_*\mathcal{C}' \cap \mathcal{C}^{\leq 0}$, there exists a distinguished triangle $j_!j^*X \to X \to i_*i^*X \to (j_!j^*X)$ [1]. Since $X \in i_*\mathcal{C}'$, it follows $j_!j^*X = 0$. Since X is in $\mathcal{C}^{\leq 0}$, we have $X \cong i_*i^*X \subseteq i_*i^*(\mathcal{C}^{\leq 0})$.

Similarly we have $i_*i^*(\mathcal{C}^{\geq 0}) = i_*\mathcal{C}' \cap \mathcal{C}^{\geq 0}$.

Therefore, $(i_*\mathcal{C}' \cap \mathcal{C}^{\leq 0}, i_*\mathcal{C}' \cap \mathcal{C}^{\geq 0}) = (i_*i^*(\mathcal{C}^{\leq 0}), i_*i^*(\mathcal{C}^{\geq 0})).$

Step 3 Assume that $(i^*(\mathcal{C}^{\leq 0}), i^*(\mathcal{C}^{\geq 0}))$ is a stable *t*-structure on \mathcal{C}' . Since i_* is fully faithful, $(i_*i^*(\mathcal{C}^{\leq 0}), i_*i^*(\mathcal{C}^{\geq 0}))$ is a stable *t*-structure on $i_*\mathcal{C}'$. By Step 2, $(i_*\mathcal{C}' \cap \mathcal{C}^{\leq 0}, i_*\mathcal{C}' \cap \mathcal{C}^{\geq 0})$ is a stable *t*-structure on $i_*\mathcal{C}'$. Hence $(Q(\mathcal{C}^{\leq 0}), Q(\mathcal{C}^{\geq 0}))$ is a stable *t*-structure on $\mathcal{C}/i_*\mathcal{C}'$ by Lemma 2.4. There exists a triangle-equivalence $\tilde{j}^* : \mathcal{C}/i_*\mathcal{C}' \cong \mathcal{C}''$ such that $j^* = \tilde{j}^*Q$, so $(j^*(\mathcal{C}^{\leq 0}), j^*(\mathcal{C}^{\geq 0}))$ is a stable *t*-structure on \mathcal{C}'' .

By the similar argument we have statements for lower recollements.

Corollary 3.7 Let \mathcal{C}' , \mathcal{C} and \mathcal{C}'' be triangulated categories, let diagram (2.3) be a lower recollement of \mathcal{C} relative to \mathcal{C}' and \mathcal{C}'' , and let $(\mathcal{C}^{\leq 0}, \mathcal{C}^{\geq 0})$ a *t*-structure on \mathcal{C} . If $i_*i^!$ is right *t*-exact and j_*j^* is left *t*-exact, then

(i) $(i^!(\mathcal{C}^{\leq 0}), i^!(\mathcal{C}^{\geq 0}))$ is a *t*-structure on \mathcal{C}' ;

(ii) $(j^*(\mathcal{C}^{\leq 0}), j^*(\mathcal{C}^{\geq 0}))$ is a *t*-structure on \mathcal{C}'' ;

(iii) If $(\mathcal{C}^{\leq 0}, \mathcal{C}^{\geq 0})$ and $(i^!(\mathcal{C}^{\leq 0}), i^!(\mathcal{C}^{\geq 0}))$ are stable *t*-structures on \mathcal{C} and \mathcal{C}' , respectively, then $(j^*(\mathcal{C}^{\leq 0}), j^*(\mathcal{C}^{\geq 0}))$ is a stable *t*-structure on \mathcal{C}'' .

References

- [1] Beilinson A, Bernstein J, Deligne P. Faisceaux pervers[J]. Astérisque, 1982, 100: 5–171.
- [2] Cline E, Parshall B, Scott L. Algebraic stratification in representation categories[J]. J. Alg., 1988, 117: 504–521.
- [3] Cline E, Parshall B, Scott L. Finite dimensional algebras and highest weight categories[J]. J. Reine Angew. Math., 1988, 391: 85–99.
- [4] Jørgensen P. Recollement for differential graded algebras[J]. J. Alg., 2006, 299: 589–601.
- [5] König S. Tilting complexes, perpendicular categories and recollements of derived module categories of rings[J]. J. Pure Appl. Alg., 1991, 73: 211–232.
- [6] Lin Zengqiang. t-structure and recollement of hearts[J]. J. Huaqiao Univ. (Nat. Sci.), 2010, 31(3): 356–360.
- [7] Chen Jianmin. Cotorsion pairs in a recollement of triangulated categories[J]. Comm. Alg., 2013, 41: 2903–2915.
- [8] Wiedemann A. On stratifications of derived module categories[J]. Canad. Math. Bull., 1991, 34(2): 275–280.
- [9] Happel D. Reduction techniques for homological conjectures [J]. Tsukuba J. Math., 1993, 17(1): 115–130.
- [10] Han Yang. Recollement and Hochschild theory [J]. J. Alg., 2014, 197: 535–547.
- [11] Lin Ji, Yao Yunfei. Torsion theory of triangulated categories and abelian categories[J]. J. Math., 2014, 34(6): 1134–1140.
- [12] Beilinson A, Ginsburg V, Schechtman V. Koszul duality[J]. J. Geom. Phys., 1998, 5(3): 317–350.
- [13] Parshall B. Finite dimensional algebras and algebraic groups[J]. Contemp. Math., 1989, 82: 97–114.
- [14] Zhang P. Triangulated categories and derived categories[M]. Beijing: Science press, 2015.
- [15] Iyama O, Kato K, Miyachi J. Recollement on homotopy categories and Cohen-Macaulay modules[J].
 J. K-Theory, 2011, 8(3): 507–542.

半粘合诱导的t-结构

尹幼奇

(上海交通大学数学系,上海 200240)

(绍兴文理学院数学系,浙江 绍兴 312000)

摘要: 本文研究了对于给定的一个三角范畴的上(下)粘合(C', C, C"),如何由C的一个t-结构诱导C'和C"的t-结构的问题.利用左(右)t-正合函子的概念,给出了由C的一个t-结构可诱导出C'和C"的t-结构的充分条件.将粘合的一些相关结果推广到了上(下)粘合的情形.

关键词: 三角范畴; 上(下)粘合; 稳定 t-结构 MR(2010)主题分类号: 18A40; 18E35; 18E30 中图分类号: O153.3