T－STRUCTURES INDUCED BY HALF RECOLLEMENTS

YIN You－qi
（Department of Mathematics，Shanghai Jiao Tong University，Shanghai 200240，China） （Department of Mathematics，Shaoxing College of Arts and Sciences，Shaoxing 312000，China）

Abstract

Let $\mathcal{C}^{\prime}, \mathcal{C}$ and $\mathcal{C}^{\prime \prime}$ be triangulated categories．In this paper，we consider how to induce t－structures on \mathcal{C}^{\prime} and $\mathcal{C}^{\prime \prime}$ from a t－structure on \mathcal{C} given an upper（resp．lower）recollement of \mathcal{C} relative to \mathcal{C}^{\prime} and $\mathcal{C}^{\prime \prime}$ ．By the concept of left（right）t－exact，we give a sufficient condition such that a t－structure on \mathcal{C} may induce t－structures on \mathcal{C}^{\prime} and $\mathcal{C}^{\prime \prime}$ ，which generalizes some results concerning recollements to upper（resp．lower）recollements．

Keywords：triangulated category；upper（lower）recollement；stable t－structure
2010 MR Subject Classification：18A40；18E35；18E30
Document code：A Article ID：0255－7797（2017）06－1215－05

1 Introduction

Recollements of triangulated categories play an important role in algebraic geometry（see ［1］），representation theory（see $[2-5])$ ，etc．A recollement $\left(\mathcal{C}^{\prime}, \mathcal{C}, \mathcal{C}^{\prime \prime}\right)$ of triangulated categories provides a platform for various questions concerning the three terms in a recollement．For examples，given a recollement of a triangulated category \mathcal{C} relative to \mathcal{C}^{\prime} and $\mathcal{C}^{\prime \prime}, t$－structures $\left(\mathcal{C}^{\prime} \leq 0, \mathcal{C}^{\prime \geq 0}\right)$ and $\left(\mathcal{C}^{\prime \prime} \leq 0, \mathcal{C}^{\prime \prime \geq 0}\right)$ of \mathcal{C}^{\prime} and $\mathcal{C}^{\prime \prime}$ ，respectively，Beilinson，Bernstein and Deligne［1］ proved that \mathcal{C} also has a t－structure $\left(\mathcal{C}^{\leq 0}, \mathcal{C}^{\geq 0}\right)$ ，where

$$
\begin{aligned}
& \mathcal{C}^{\leq 0}:=\left\{A \in \mathcal{C} \mid j^{*} A \in \mathcal{C}^{\prime \prime} \leq 0, \quad i^{*} A \in \mathcal{C}^{\prime \leq 0}\right\}, \\
& \mathcal{C}^{\geq 0}:=\left\{B \in \mathcal{C} \mid j^{*} B \in \mathcal{C}^{\prime \prime \geq 0}, \quad i^{!} B \in \mathcal{C}^{\prime} \geq 0\right\} .
\end{aligned}
$$

On the other hand，Lin［6］proved that certain t－structure on \mathcal{C} may induce t－structures on \mathcal{C}^{\prime} and $\mathcal{C}^{\prime \prime}$ ．Chen［7］studied the relationship of cotorsion pairs among three triangulated categories in a recollement．She proved the following results：cotorsion pairs on \mathcal{C} may be obtained from cotorsion pairs on \mathcal{C}^{\prime} and $\mathcal{C}^{\prime \prime}$ and certain cotorsion pairs on \mathcal{C} may induce cotorsion pairs on \mathcal{C}^{\prime} and $\mathcal{C}^{\prime \prime}$ ．More relevant results can be seen in［8－11］，etc．

In a viewpoint of Beilinson，Ginsburg and Schechtman（see［12］），upper and lower recollements are more fundamental than a recollement（upper and lower recollements are

[^0]called steps in [8]). For a given upper (lower) recollement of \mathcal{C} relative to \mathcal{C}^{\prime} and $\mathcal{C}^{\prime \prime}$, a sufficient condition that t-structures on \mathcal{C}^{\prime} and $\mathcal{C}^{\prime \prime}$ may be induced by a t-structure on \mathcal{C} is given in this paper.

2 Preliminaries

Recall the following definitions.
Definition 2.1 Let $\mathcal{C}^{\prime}, \mathcal{C}$ and $\mathcal{C}^{\prime \prime}$ be triangulated categories.
(1) [1] A recollement of \mathcal{C} relative to \mathcal{C}^{\prime} and $\mathcal{C}^{\prime \prime}$ is a diagram of triangle functors

$$
\begin{equation*}
\mathcal{C}^{\prime} \stackrel{i^{*}}{\stackrel{i_{*}}{\leftrightarrows}} \mathcal{C} \underset{i^{!}}{\stackrel{j_{1}}{j_{*}^{*}}} \mathcal{C}^{\prime \prime} \tag{2.1}
\end{equation*}
$$

such that
(R1) $\left(i^{*}, i_{*}\right),\left(i_{*}, i^{\text {l }}\right),\left(j_{!}, j^{*}\right)$ and $\left(j^{*}, j_{*}\right)$ are adjoint pairs;
(R2) $i_{*}, j_{!}$and j_{*} are fully faithful;
(R3) $j^{*} i_{*}=0$;
(R4) for each $X \in \mathcal{C}$, there are distinguished triangles

$$
\begin{aligned}
& j_{!} j^{*} X \xrightarrow{\epsilon_{X}} X \xrightarrow{\eta_{X}} i_{*} i^{*} X \longrightarrow\left(j_{!} j^{*} X\right)[1], \\
& i_{*} i^{\prime} X \xrightarrow{\omega_{X}} X \xrightarrow{\zeta_{X}} j_{*} j^{*} X \longrightarrow\left(i_{*} i^{\prime} X\right)[1],
\end{aligned}
$$

where ϵ_{X} is the counit of $\left(j_{!}, j^{*}\right), \eta_{X}$ is the unit of $\left(i^{*}, i_{*}\right), \omega_{X}$ is the counit of $\left(i_{*}, i^{!}\right)$, and ζ_{X} is the unit of $\left(j^{*}, j_{*}\right)$.
(2) $[5,12,13]$ Let $\mathcal{C}^{\prime}, \mathcal{C}$ and $\mathcal{C}^{\prime \prime}$ be triangulated categories. An upper recollement of \mathcal{C} relative to \mathcal{C}^{\prime} and $\mathcal{C}^{\prime \prime}$ is a diagram of triangle functors

$$
\begin{equation*}
\mathcal{C}^{\prime} \xrightarrow{\stackrel{i^{*}}{i_{*}}} \mathcal{C} \xrightarrow{\stackrel{j_{1}^{*}}{j^{*}}} \mathcal{C}^{\prime \prime} \tag{2.2}
\end{equation*}
$$

such that the conditions involved $i^{*}, i_{*}, j_{!}, j^{*}$ in (1) are satisfied.
(3) [5, 12, 13] Let $\mathcal{C}^{\prime}, \mathcal{C}$ and $\mathcal{C}^{\prime \prime}$ be triangulated categories. An lower recollement of \mathcal{C} relative to \mathcal{C}^{\prime} and $\mathcal{C}^{\prime \prime}$ is a diagram of triangle functors
such that the conditions involved $i_{*}, i^{1}, j^{*}, j_{*}$ in (1) are satisfied.
For short, we denote respectively the recollement (2.1), upper recollement (2.2) and lower recollement (2.3) by ($\left.\mathcal{C}^{\prime}, \mathcal{C}, \mathcal{C}^{\prime \prime}, i^{*}, i_{*}, i^{!}, j_{!}, j^{*}, j_{*}\right),\left(\mathcal{C}^{\prime}, \mathcal{C}, \mathcal{C}^{\prime \prime}, i^{*}, i_{*}, j_{!}, j^{*}\right)$ and $\left(\mathcal{C}^{\prime}, \mathcal{C}, \mathcal{C}^{\prime \prime}, i_{*}, i^{!}, j^{*}, j_{*}\right)$, or uniformly by $\left(\mathcal{C}^{\prime}, \mathcal{C}, \mathcal{C}^{\prime \prime}\right)$.

We need the following fact.
Lemma 2.2 (see [14]) Let $\left(\mathcal{C}^{\prime}, \mathcal{C}, \mathcal{C}^{\prime \prime}\right)$ be an upper recollement. Then there exists a triangle-equivalence $\widetilde{j^{*}}: \mathcal{C} / i_{*} \mathcal{C}^{\prime} \cong \mathcal{C}^{\prime \prime}$ such that $\widetilde{j^{*} V}=j^{*}$, where $V: \mathcal{C} \rightarrow \mathcal{C} / i_{*} \mathcal{C}^{\prime}$ is the Verdier functor.

The subcategories in this section are full subcategories closed under isomorphisms.
Definition 2.3 [1] Let \mathcal{C} be a triangulated category with the shift functor [1]. A t structure on \mathcal{D} is a pair of full subcategories ($\mathcal{D}^{\leq 0}, \mathcal{D}^{\geq 0}$) with the following properties:

If we put $\mathcal{D}^{\leq n}:=\mathcal{D}^{\leq 0}[-n]$ and $\mathcal{D}^{\geq n}:=\mathcal{D}^{\geq 0}[-n], \forall n \in \mathbb{Z}$, we have
(t1) $\operatorname{Hom}_{\mathcal{D}}(X, Y)=0, \forall X \in \mathcal{D}^{\leq 0}, Y \in \mathcal{D}^{\geq 1}$;
(t2) $\mathcal{D}^{\leq 0} \subseteq \mathcal{D}^{\leq 1}$ and $\mathcal{D}^{\geq 1} \subseteq \mathcal{D}^{\geq 0}$;
(t3) For each $X \in \mathcal{D}$, there is a distinguished triangle

$$
A \longrightarrow X \longrightarrow B \longrightarrow A[1],
$$

where $A \in \mathcal{D}^{\leq 0}, \quad B \in \mathcal{D}^{\geq 1}$.
Let $(\mathcal{U}, \mathcal{V})$ be a t-structure on \mathcal{C}. We call $(\mathcal{U}, \mathcal{V})$ a stable t-structure, if \mathcal{U} and \mathcal{V} are triangulated subcategories of \mathcal{C} (see [15, Definition 0.2]).

Here are basic properties of stable t-structures.
Lemma 2.4 (see [15]) Let \mathcal{D} be a triangulated category, \mathcal{C} a thick subcategory of \mathcal{D}, and $Q: \mathcal{D} \rightarrow \mathcal{D} / \mathcal{C}$ the canonical quotient. For a stable t-structure $(\mathcal{U}, \mathcal{V})$ on \mathcal{D}, the following are equivalent.
(i) $(Q(\mathcal{U}), Q(\mathcal{V}))$ is a stable t-structure on $\mathcal{D} / \mathcal{C}$, where $Q(\mathcal{U})$ (resp. $Q(\mathcal{V})$) is the full subcategory of $\mathcal{D} / \mathcal{C}$ consisting of objects $Q(\mathcal{X})$ for $X \in \mathcal{U}$ (resp. $Q(\mathcal{Y})$ for $Y \in \mathcal{V}$);
(ii) $(\mathcal{U} \cap \mathcal{C}, \mathcal{V} \cap \mathcal{C})$ is a stable t-structure on \mathcal{C}.

Definition 2.5 [1] Let \mathcal{C} and \mathcal{D} be two triangulated categories with t-structures $\left(\mathcal{C} \leq 0, \mathcal{C}^{\geq 0}\right)$ and $\left(\mathcal{D}^{\leq 0}, \mathcal{D}^{\geq 0}\right)$. An triangle functor $F: \mathcal{C} \longrightarrow \mathcal{D}$ is
(i) left t-exact if $F\left(\mathcal{C}^{\geq 0}\right) \subset \mathcal{D}^{\geq 0}$;
(ii) right t-exact if $F\left(\mathcal{C}^{\leq 0}\right) \subset \mathcal{D}^{\leq 0}$.

$3 t$-Structure Induced by Upper Recollement

This section aims to prove the main result of this paper. Let $\mathcal{C}^{\prime}, \mathcal{C}$ and $\mathcal{C}^{\prime \prime}$ be triangulated categories. Given a upper recollement of \mathcal{C} relative to \mathcal{C}^{\prime} and $\mathcal{C}^{\prime \prime}$, a t-structure on \mathcal{C} induces t-structures on \mathcal{C}^{\prime} and $\mathcal{C}^{\prime \prime}$ under some conditions.

Proposition 3.6 Let $\mathcal{C}^{\prime}, \mathcal{C}$ and $\mathcal{C}^{\prime \prime}$ be triangulated categories, let diagram (2.2) be an upper recollement of \mathcal{C} relative to \mathcal{C}^{\prime} and $\mathcal{C}^{\prime \prime}$, and let $\left(\mathcal{C} \leq 0, \mathcal{C}^{\geq 0}\right)$ be a t-structure on \mathcal{C}. If $i_{*} i^{*}$ is left t-exact and $j!j^{*}$ is right t-exact, then
(i) $\left(i^{*}\left(\mathcal{C}^{\leq 0}\right), i^{*}\left(\mathcal{C}^{\geq 0}\right)\right)$ is a t-structure on \mathcal{C}^{\prime};
(ii) $\left(j^{*}\left(\mathcal{C}^{\leq 0}\right), j^{*}\left(\mathcal{C}^{\geq 0}\right)\right)$ is a t-structure on $\mathcal{C}^{\prime \prime}$;
(iii) If $\left(\mathcal{C}^{\leq 0}, \mathcal{C}^{\geq 0}\right)$ and $\left(i^{*}\left(\mathcal{C}^{\leq 0}\right), i^{*}\left(\mathcal{C}^{\geq 0}\right)\right)$ are stable t-structures on \mathcal{C} and \mathcal{C}^{\prime}, respectively, then $\left(j^{*}\left(\mathcal{C}^{\leq 0}\right), j^{*}\left(\mathcal{C}^{\geq 0}\right)\right)$ is a stable t-structure on $\mathcal{C}^{\prime \prime}$.

Proof (i) For $X \in \mathcal{C}^{\leq 0}, Y \in \mathcal{C}^{\geq 1}$, since $\left(i^{*}, i_{*}\right)$ is an adjoint pair and $i_{*} i^{*}$ is left t-exact, we have $\operatorname{Hom}_{\mathcal{C}^{\prime}}\left(i^{*} X, i^{*} Y\right) \cong \operatorname{Hom}_{\mathcal{C}}\left(X, i_{*} i^{*} Y\right)=0$. Thus (t1) hold.

Condition (t2) follows from the closure of $\mathcal{C} \leq 0$ and $\mathcal{C} \geq 0$ under the shifts [1] and [-1], respectively.

Let $X^{\prime} \in \mathcal{C}^{\prime}$. There is a distinguished triangle $A \rightarrow i_{*} X^{\prime} \rightarrow B \rightarrow A[1]$ in \mathcal{C}, where $A \in \mathcal{C}{ }^{\leq 0}, B \in \mathcal{C}^{\geq 1}$. Applying i^{*} to this triangle, we have $i^{*} A \rightarrow i^{*} i_{*} X^{\prime} \rightarrow i^{*} B \rightarrow i^{*} A[1]$, where $i^{*} A \in i^{*}\left(\mathcal{C}^{\leq 0}\right), i^{*} B \in i^{*}\left(\mathcal{C}^{\geq 1}\right)$. Since i_{*} is fully faithful and $\left(i^{*}, i_{*}\right)$ is an adjoint pair, we have $i^{*} i_{*} X^{\prime} \cong X^{\prime}$. Therefore, the distinguished triangle $i^{*} A \rightarrow X^{\prime} \rightarrow i^{*} B \rightarrow i^{*} A[1]$ is the t-decomposition of X^{\prime}. We have condition (t 3).
(ii) Similarly, we obtain argument (ii).
(iii) We prove the last statement by three steps.

Step $1 j!j^{*}$ is right t-exact $\Rightarrow i_{*} i^{*}$ is right t-exact.
Let $X \in \mathcal{C}^{\leq 0}$, for $Y \in \mathcal{C}^{\geq 1}$. Applying cohomological functor $\operatorname{Hom}_{\mathcal{C}}(-, Y)$ to the distinguished triangle

$$
j_{!} j^{*} X \xrightarrow{\epsilon_{X}} X \xrightarrow{\eta_{X}} i_{*} i^{*} X \longrightarrow\left(j_{!} j^{*} X\right)[1],
$$

we get an exact sequence

$$
\cdots \rightarrow \operatorname{Hom}_{\mathcal{C}}(X[1], Y) \rightarrow \operatorname{Hom}_{\mathcal{C}}\left(j!j^{*} X[1], Y\right) \rightarrow \operatorname{Hom}_{\mathcal{C}}\left(i_{*} i^{*} X, Y\right) \rightarrow \operatorname{Hom}_{\mathcal{C}}(X, Y) \rightarrow \cdots
$$

Since $\operatorname{Hom}_{\mathcal{C}}(X, Y)=\operatorname{Hom}_{\mathcal{C}}(X[1], Y)=0$, we get $\operatorname{Hom}_{\mathcal{C}}\left(i_{*} i^{*} X, Y\right) \cong \operatorname{Hom}_{\mathcal{C}}\left(j!j^{*} X[1], Y\right)=0$.
Step 2 We claim $i_{*} i^{*}\left(\mathcal{C}^{\leq 0}\right)=i_{*} \mathcal{C}^{\prime} \cap \mathcal{C} \mathcal{C}^{\leq 0}$ and $i_{*} i^{*}(\mathcal{C} \geq 0)=i_{*} \mathcal{C}^{\prime} \cap \mathcal{C} \geq 0$.
By Step 1 we have $i_{*} i^{*}$ is right t-exact, i.e. $i_{*} i^{*}\left(\mathcal{C}{ }^{\leq 0}\right) \subseteq \mathcal{C} \leq 0$. Therefore, $i_{*} i^{*}(\mathcal{C} \leq 0) \subseteq$ $i_{*} \mathcal{C}^{\prime} \cap \mathcal{C} \leq 0$. Conversely, for $X \in i_{*} \mathcal{C}^{\prime} \cap \mathcal{C} \leq 0$, there exists a distinguished triangle $j_{!} j^{*} X \rightarrow$ $X \rightarrow i_{*} i^{*} X \rightarrow\left(j!j^{*} X\right)[1]$. Since $X \in i_{*} \mathcal{C}^{\prime}$, it follows $j!j^{*} X=0$. Since X is in $\mathcal{C}^{\leq 0}$, we have $X \cong i_{*} i^{*} X \subseteq i_{*} i^{*}(\mathcal{C} \leq 0)$.

Similarly we have $i_{*} i^{*}\left(\mathcal{C}^{\geq 0}\right)=i_{*} \mathcal{C}^{\prime} \cap \mathcal{C}{ }^{\geq 0}$.
Therefore, $\left(i_{*} \mathcal{C}^{\prime} \cap \mathcal{C} \leq 0, i_{*} \mathcal{C}^{\prime} \cap \mathcal{C}^{\geq 0}\right)=\left(i_{*} i^{*}(\mathcal{C} \leq 0), i_{*} i^{*}\left(\mathcal{C}^{\geq 0}\right)\right)$.
Step 3 Assume that $\left(i^{*}\left(\mathcal{C}^{\leq 0}\right), i^{*}\left(\mathcal{C}^{\geq 0}\right)\right)$ is a stable t-structure on \mathcal{C}^{\prime}. Since i_{*} is fully faithful, $\left(i_{*} i^{*}(\mathcal{C} \leq 0), i_{*} i^{*}\left(\mathcal{C}^{\geq 0}\right)\right)$ is a stable t-structure on $i_{*} \mathcal{C}^{\prime}$. By Step $2,\left(i_{*} \mathcal{C}^{\prime} \cap \mathcal{C} \leq 0, i_{*} \mathcal{C}^{\prime} \cap \mathcal{C}^{\geq 0}\right)$ is a stable t-structure on $i_{*} \mathcal{C}^{\prime}$. Hence $\left(Q\left(\mathcal{C}^{\leq 0}\right), Q\left(\mathcal{C}^{\geq 0}\right)\right)$ is a stable t-structure on $\mathcal{C} / i_{*} \mathcal{C}^{\prime}$ by Lemma 2.4. There exists a triangle-equivalence $\widetilde{j^{*}}: \mathcal{C} / i_{*} \mathcal{C}^{\prime} \cong \mathcal{C}^{\prime \prime}$ such that $j^{*}=\widetilde{j^{*}} Q$, so $\left(j^{*}\left(\mathcal{C}^{\leq 0}\right), j^{*}\left(\mathcal{C}^{\geq 0}\right)\right)$ is a stable t-structure on $\mathcal{C}^{\prime \prime}$. The proof is completed.

By the similar argument we have statements for lower recollements.
Corollary 3.7 Let $\mathcal{C}^{\prime}, \mathcal{C}$ and $\mathcal{C}^{\prime \prime}$ be triangulated categories, let diagram (2.3) be a lower recollement of \mathcal{C} relative to \mathcal{C}^{\prime} and $\mathcal{C}^{\prime \prime}$, and let $\left(\mathcal{C} \leq 0, \mathcal{C}^{\geq 0}\right)$ a t-structure on \mathcal{C}. If $i_{*} i^{!}$is right t-exact and $j_{*} j^{*}$ is left t-exact, then
(i) $\left(i^{!}\left(\mathcal{C}^{\leq 0}\right), i^{!}\left(\mathcal{C}^{\geq 0}\right)\right)$ is a t-structure on \mathcal{C}^{\prime};
(ii) $\left(j^{*}\left(\mathcal{C}^{\leq 0}\right), j^{*}\left(\mathcal{C}^{\geq 0}\right)\right)$ is a t-structure on $\mathcal{C}^{\prime \prime}$;
(iii) If $\left(\mathcal{C}^{\leq 0}, \mathcal{C} \geq^{0}\right)$ and $\left(i^{!}\left(\mathcal{C}^{\leq 0}\right), i^{!}\left(\mathcal{C}^{\geq 0}\right)\right)$ are stable t-structures on \mathcal{C} and \mathcal{C}^{\prime}, respectively, then $\left(j^{*}\left(\mathcal{C}^{\leq 0}\right), j^{*}\left(\mathcal{C}^{\geq 0}\right)\right)$ is a stable t-structure on $\mathcal{C}^{\prime \prime}$.

References

［1］Beilinson A，Bernstein J，Deligne P．Faisceaux pervers［J］．Astérisque，1982，100：5－171．
［2］Cline E，Parshall B，Scott L．Algebraic stratification in representation categories［J］．J．Alg．，1988， 117：504－521．
［3］Cline E，Parshall B，Scott L．Finite dimensional algebras and highest weight categories［J］．J．Reine Angew．Math．，1988，391：85－99．
［4］J ϕ rgensen P．Recollement for differential graded algebras［J］．J．Alg．，2006，299：589－601．
［5］König S．Tilting complexes，perpendicular categories and recollements of derived module categories of rings［J］．J．Pure Appl．Alg．，1991，73：211－232．
［6］Lin Zengqiang．t－structure and recollement of hearts［J］．J．Huaqiao Univ．（Nat．Sci．），2010，31（3）： 356－360．
［7］Chen Jianmin．Cotorsion pairs in a recollement of triangulated categories［J］．Comm．Alg．，2013，41： 2903－2915．
［8］Wiedemann A．On stratifications of derived module categories［J］．Canad．Math．Bull．，1991，34（2）： 275－280．
［9］Happel D．Reduction techniques for homological conjectures［J］．Tsukuba J．Math．，1993，17（1）： 115－130．
［10］Han Yang．Recollement and Hochschild theory［J］．J．Alg．，2014，197：535－547．
［11］Lin Ji，Yao Yunfei．Torsion theory of triangulated categories and abelian categories［J］．J．Math．， 2014，34（6）：1134－1140．
［12］Beilinson A，Ginsburg V，Schechtman V．Koszul duality［J］．J．Geom．Phys．，1998，5（3）：317－350．
［13］Parshall B．Finite dimensional algebras and algebraic groups［J］．Contemp．Math．，1989，82：97－114．
［14］Zhang P．Triangulated categories and derived categories［M］．Beijing：Science press， 2015.
［15］Iyama O，Kato K，Miyachi J．Recollement on homotopy categories and Cohen－Macaulay modules［J］． J．K－Theory，2011，8（3）：507－542．

半粘合诱导的 t－结构

尹幼奇
（上海交通大学数学系，上海 200240）
（绍兴文理学院数学系，浙江绍兴312000）

摘要：本文研究了对于给定的一个三角范畴的上（下）粘合 $\left(\mathcal{C}^{\prime}, \mathcal{C}, \mathcal{C}^{\prime \prime}\right)$ ，如何由 \mathcal{C} 的一个 t－结构诱导 \mathcal{C}^{\prime}和 $\mathcal{C}^{\prime \prime}$ 的 t－结构的问题。利用左（右）t－正合函子的概念，给出了由 \mathcal{C} 的一个 t－结构可诱导出 \mathcal{C}^{\prime} 和 $\mathcal{C}^{\prime \prime}$ 的 t－结构的充分条件．将粘合的一些相关结果推广到了上（下）粘合的情形。

关键词：三角范畴；上（下）粘合；稳定 t－结构
$\mathrm{MR}(2010)$ 主题分类号：18A40；18E35；18E30 中图分类号：O153．3

[^0]: ＊Received date：2015－11－11 Accepted date：2016－02－18
 Foundation item：Supported by National Natural Science Foundation of China（11271251； 11431010；11571239）；Zhejiang Provincial Natural Science Foundation（LY14A010006）．

 Biography：Yin Youqi（1979－），female，born at Shengzhou，Zhejiang，lecturer，major in represent theory of algebras．

