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1 Introduction

Let H be a bialgebra, A#H a smash product algebra and A × H a smash coproduct
coalgebra. Radford (see [13]) gave a bialgebra structure on A⊗H (named Radford biproduct
by other researchers) via A#H and A × H. Later, Majid made the following conclusion:
to any Hopf algebra A in the braided category of Yetter-Drinfeld modules H

HYD, one can
associate an ordinary Hopf algebra A ? H, there called the bosonization of A (i.e., Radford
biproduct) (see [8]). While Radford biproduct is one of the celebrated objects in the theory
of Hopf algebras, which plays a fundamental role in the classification of finite-dimensional
pointed Hopf algebras (see [1]). Other references related to Radford biproduct see [1, 6–
8, 13, 14].

The algebra of Hom-type can be found in [2] by Hartwig, Larsson and Silvestrov, where
a notion of Hom-Lie algebra in the context of q-deformation theory of Witt and Virasoro
algebras (see [3]) was introduced. There are various settings of Hom-structures such as
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algebras, coalgebras, Hopf algebras, see [6, 10–12] and so on. In [15], Yau introduced and
characterized the concept of module Hom-algebras as a twisted version of usual module
algebras. Based on Yau’s definition of module Hom-algebras, Ma, Li and Yang [6] constructed
smash product Hom-Hopf algebra (A\H, α ⊗ β) generalizing the Molnar’s smash product
(see [13]), and gave the cobraided structure (in the sense of Yau’s definition in [16]) on
(A\H, α⊗ β). Makhlouf and Panaite defined and studied a class of Yetter-Drinfeld modules
over Hom-bialgebras in [9] and derived the constructions of twistors, pseudotwistors, twisted
tensor product and smash product in the setting of Hom-case (see [10]). Li and Ma studied
the Yetter-Drinfeld category of Hom-type via Radford biproduct (see [5]). Recently, Ma,
Liu and Li extend the above results in the monoidal Hom-case.

In this paper, we unify the Makhlouf-Panaite’s smash product in [10] and Ma-Li-Yang’s
in [6], and then extend the Radford biproduct to a more general case. We also construct a
class of braided tensor categories (extending the Yetter-Drinfeld category to the Hom-case),
and provide a solution to the Hom-quantum Yang-Baxter equation.

2 Preliminaries

Throughout this paper, K will be a field, and all vector spaces, tensor products, and
homomorphisms are over K. We use Sweedler’s notation for terminologies on coalgebras.
For a coalgebra C, we write comultiplication ∆(c) = c1 ⊗ c2 for any c ∈ C. And we denote
IdM for the identity map from M to M . Any unexplained definitions and notations can be
found in [4–6, 14]. We now recall some useful definitions.

Definition 2.1 A Hom-algebra is a quadruple (A,µ, 1A, α) (abbr. (A,α)), where A is
a linear space, µ : A ⊗ A −→ A is a linear map, 1A ∈ A and α is an automorphism of A,
such that

(HA1) α(aa′) = α(a)α(a′); α(1A) = 1A,

(HA2) α(a)(a′a′′) = (aa′)α(a′′); a1A = 1Aa = α(a)

are satisfied for a, a′, a′′ ∈ A. Here we use the notation µ(a⊗ a′) = aa′.
Let (A,α) and (B, β) be two Hom-algebras. Then (A ⊗ B,α ⊗ β) is a Hom-algebra

(called tensor product Hom-algebra) with the multiplication (a⊗ b)(a′ ⊗ b′) = aa′ ⊗ bb′ and
unit 1A ⊗ 1B.

Definition 2.2 A Hom-coalgebra is a quadruple (C, ∆, εC , β) (abbr. (C, β)), where C

is a linear space, ∆ : C −→ C⊗C, εC : C −→ K are linear maps, and β is an automorphism
of C, such that

(HC1) β(c)1 ⊗ β(c)2 = β(c1)⊗ β(c2); εC ◦ β = εC ,

(HC2) β(c1)⊗ c21 ⊗ c22 = c11 ⊗ c12 ⊗ β(c2); εC(c1)c2 = c1εC(c2) = β(c)

are satisfied for c ∈ A. Here we use the notation ∆(c) = c1 ⊗ c2 (summation implicitly
understood).
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Let (C, α) and (D, β) be two Hom-coalgebras. Then (C ⊗D, α⊗β) is a Hom-coalgebra
(called tensor product Hom-coalgebra) with the comultiplication ∆(c⊗d) = c1⊗d1⊗ c2⊗d2

and counit εC ⊗ εD.
Definition 2.3 A Hom-bialgebra is a sextuple (H, µ, 1H ,∆, ε, γ) (abbr. (H, γ)), where

(H, µ, 1H , γ) is a Hom-algebra and (H, ∆, ε, γ) is a Hom-coalgebra, such that ∆ and ε are
morphisms of Hom-algebras, i.e., ∆(hh′) = ∆(h)∆(h′); ∆(1H) = 1H⊗1H , ε(hh′) = ε(h)ε(h′);
ε(1H) = 1. Furthermore, if there exists a linear map S : H −→ H such that

S(h1)h2 = h1S(h2) = ε(h)1H and S(γ(h)) = γ(S(h)),

then we call (H, µ, 1H ,∆, ε, γ, S)(abbr. (H, γ, S)) a Hom-Hopf algebra.
Let (H, γ) and (H ′, γ′) be two Hom-bialgebras. The linear map f : H −→ H ′ is called a

Hom-bialgebra map if f ◦ γ = γ′ ◦ f and at the same time f is a bialgebra map in the usual
sense.

Definition 2.4 Let (A, β) be a Hom-algebra. A left (A, β)-Hom-module is a triple
(M, B, α), where M is a linear space, B : A ⊗ M −→ M is a linear map, and α is an
automorphism of M , such that

(HM1) α(a B m) = β(a) B α(m),

(HM2) β(a) B (a′ B m) = (aa′) B α(m); 1A B m = α(m)

are satisfied for a, a′ ∈ A and m ∈ M .
Let (M, BM , αM ) and (N, BN , αN ) be two left (A, β)-Hom-modules. Then a linear

morphism f : M −→ N is called a morphism of left (A, β)-Hom-modules if f(h BM m) =
h BN f(m) and αN ◦ f = f ◦ αM .

Definition 2.5 Let (H, β) be a Hom-bialgebra and (A,α) a Hom-algebra. If (A,B, α)
is a left (H, β)-Hom-module and for all h ∈ H and a, a′ ∈ A,

(HMA1) β2(h) B (aa′) = (h1 B a)(h2 B a′),

(HMA2) h B 1A = εH(h)1A,

then (A,B, α) is called an (H, β)-module Hom-algebra.
Definition 2.6 Let (C, β) be a Hom-coalgebra. A left (C, β)-Hom-comodule is a triple

(M, ρ, α), where M is a linear space, ρ : M −→ C ⊗M (write ρ(m) = m−1 ⊗m0, ∀m ∈ M)
is a linear map, and α is an automorphism of M , such that

(HCM1) α(m)−1 ⊗ α(m)0 = β(m−1)⊗ α(m0),

(HCM2) β(m−1)⊗m0−1 ⊗m00 = m−11 ⊗m−12 ⊗ α(m0); εC(m−1)m0 = α(m)

are satisfied for all m ∈ M .
Let (M, ρM , αM ) and (N, ρN , αN ) be two left (C, β)-Hom-comodules. Then a linear map

f : M −→ N is called a map of left (C, β)-Hom-comodules if f(m)−1⊗f(m)0 = m−1⊗f(m0)
and αN ◦ f = f ◦ αM .
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Definition 2.7 Let (H, β) be a Hom-bialgebra and (C, α) a Hom-coalgebra. If (C, ρ, α)
is a left (H, β)-Hom-comodule and for all c ∈ C,

(HCMC1) β2(c−1)⊗ c01 ⊗ c02 = c1−1c2−1 ⊗ c10 ⊗ c20,

(HCMC2) c−1εC(c0) = 1HεC(c),

then (C, ρ, α) is called an (H, β)-comodule Hom-coalgebra.
Definition 2.8 Let (H, β) be a Hom-bialgebra and (C, α) a Hom-coalgebra. If (C, B, α)

is a left (H, β)-Hom-module and for all h ∈ H and c ∈ A,

(HMC1) (h B c)1 ⊗ (h B c)2 = (h1 B c1)⊗ (h2 B c2),

(HMC2) εC(h B c) = εH(h)εC(c),

then (C, B, α) is called an (H, β)-module Hom-coalgebra.
Definition 2.9 Let (H, β) be a Hom-bialgebra and (A,α) a Hom-algebra. If (A, ρ, α)

is a left (H, β)-Hom-comodule and for all a, a′ ∈ A,

(HCMA1) ρ(aa′) = a−1a
′
−1 ⊗ a0a

′
0,

(HCMA2) ρ(1A) = 1H ⊗ 1A,

then (A, ρ, α) is called an (H, β)-comodule Hom-algebra.

3 Generalized Radford Biproduct Hom-Hopf Algebra

In this section, we first introduce the notions of generalized smash product Hom-algebra
A]mH and generalized Hom-smash coproduct Hom-coalgebra A\nH. Then the necessary and
sufficient conditions for A]mH and A\nH on A ⊗ H to be a Hom-bialgebra structure are
derived.

Proposition 3.1 Let (H, β) be a Hom-bialgebra, (A, ., α) an (H, β)-module Hom-
algebra and m ∈ Z. Then (A]mH, α ⊗ β) (A]mH = A ⊗ H as a linear space) with the
multiplication (a⊗h)(a′⊗h′) = a(βm(h1) .α−1(a′))⊗β−1(h2)h′, where a, a′ ∈ A, h, h′ ∈ H,
and unit 1A ⊗ 1H is a Hom-algebra. In this case, we call (A]mH, α ⊗ β) generalized smash
product Hom-algebra.

Proof It is straightforward by the definition of Hom-algebra.
Remarks (1) Noting that (A]0H, α ⊗ β) is exactly the Ma-Li-Yang’s Hom-smash

product in [5, 6] and (A]−2H, α⊗ β) is exactly the Makhlouf-Panaite’s Hom-smash product
in [10].

(2) If α = IdA and β = IdH in (A]mH, α ⊗ β), then one can obtain the usual smash
product A#H in [13].

(3) Let (H, µH ,∆H) be a bialgebra and (A,α) a left H-module algebra in the usual
sense with action denoted by H ⊗ A → A, h ⊗ a 7→ h · a. Let β : H → H be a bialgebra
endomorphism and α : A → A an algebra endomorphism, such that α(h · a) = β(h) · α(a)
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for all h ∈ H and a ∈ A. If we consider the Hom-bialgebra Hβ = (H, β ◦ µH ,∆H ◦ β, β)
and the Hom-associative algebra Aα = (A,α ◦ µH , α), then (Aα, α) is a left (Hβ, β)-module
Hom-algebra with action Hβ ⊗Aα → Aα, h⊗ a 7→ h . a := α(h · a) = β(h) · α(a).

Proof Straightforward.

Proposition 3.2 Let (H, β) be a Hom-bialgebra, (C, ρ, α) an (H, β)-comodule Hom-
coalgebra and n ∈ Z. Then (C\H,α ⊗ β) (C\H = C ⊗ H as a linear space) with the
comultiplication ∆C\H(c⊗h) = c1⊗βn(c2(−1))β−1(h1)⊗α−1(c2(0))⊗h2, where c ∈ C, h ∈ H,
and counit εC⊗εH is a Hom-coalgebra. In this case, we call (A\nH, α⊗β) generalized smash
coproduct Hom-coalgebra.

Proof Straightforward.

Remarks (1) (A\0H, α⊗ β) is exactly the Li-Ma’s Hom-smash coproduct in [5].

(2) (A\−2H, α ⊗ β) is exactly the dual version of the Makhlouf-Panaite’s Hom-smash
product in [10].

(3) If α = IdA and β = IdH in (A]mH, α ⊗ β), then one can obtain the usual smash
coproduct A×H in [13].

Theorem 3.3 Let (H, β) be a Hom-bialgebra, (A,α) a left (H, β)-module Hom-algebra
with module structure . : H ⊗ A −→ A and a left (H, β)-comodule Hom-coalgebra with
comodule structure ρ : A −→ H ⊗A. Then the following are equivalent:

(i) (A♦m
n H, µA]H , 1A⊗1H ,∆A\H , εA⊗εH , α⊗β) is a Hom-bialgebra, where (A]mH, α⊗

β) is a generalized smash product Hom-algebra and (A\nH, α ⊗ β) is a generalized smash
coproduct Hom-coalgebra.

(ii) The following conditions hold:

(R1) (A, ρ, α) is an (H, β)-comodule Hom-algebra;

(R2) (A, ., α) is an (H, β)-module Hom-coalgebra;

(R3) εA is a Hom-algebra map and ∆A(1A) = 1A ⊗ 1A;

(R4) ∆A(ab) = a1(βm+n+2(a2(−1)) . α−1(b1))⊗ α−1(a2(0))b2;

(R5) βn+1((βm+1(h1) . b)−1)h2 ⊗ (βm+1(h1) . b)0 = h1β
n+2(b(−1))⊗ βm+2(h2) . b(0),

where a, b ∈ B, h ∈ H and m,n ∈ Z. In this case, we call (A♦m
n H, α ⊗ β) generalized

Radford biproduct Hom-bialgebra.

Proof By a tedious computation we can prove it.

Remarks (1) When m = n = 0 in Theorem 3.3, we can get [5, Theorem 3.3].

(2) When α = IdA and β = IdH in Theorem 3.3, then one can obtain [13, Theorem 1].

Proposition 3.4 Let (H, β, SH) be a Hom-Hopf algebra, and (A,α) ba a Hom-algebra
and a Hom-coalgebra. Assume that (A♦m

n H, α ⊗ β) is a generalized Radford biproduct
Hom-bialgebra defined as above, and SA : A → A is a linear map such that SA(a1)a2 =
a1SA(a2) = εA(a)1A and α ◦SA = SA ◦α hold. Then (A♦m

n H, α⊗β, SA♦m
n H) is a Hom-Hopf

algebra, where

SA♦m
n H(a⊗ h) = (βm(SH(βn(a(−1))β−1(h))1) . SA(α−2(a(0))))⊗ β−1(SH(βn(a(−1))β−1(h))2).
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Proof For all a ∈ A, h ∈ H, we have

(SA♦m
n H ∗ IdA♦m

n H)(a⊗ h)

= SA♦m
n H(a1 ⊗ βn(a2(−1))β−1(h1))(α−1(a(0))⊗ h2)

= ((βm(SH(βn(a1(−1))β−1(βn(a2(−1))β−1(h1)))1) . SA(α−2(a1(0))))

⊗β−1(SH(βn(a1(−1))β−1(βn(a2(−1))β−1(h1)))2))(α−1(a2(0))⊗ h2)

= (βm(SH(βn(a1(−1))β−1(βn(a2(−1))β−1(h1)))1) . SA(α−2(a1(0))))

×(βm(β−1(SH(βn(a1(−1))β−1(βn(a2(−1))β−1(h1)))2)1) . α−2(a2(0)))

⊗β−1(β−1(SH(βn(a1(−1))β−1(βn(a2(−1))β−1(h1)))2)2)h2

(HA2)
= (βm(SH(βn−1(a1(−1)a2(−1))β−1(h1))1) . SA(α−2(a1(0))))

×(βm(β−1(SH(βn−1(a1(−1)a2(−1))β−1(h1))2)1) . α−2(a2(0)))

⊗β−1(β−1(SH(βn−1(a1(−1)a2(−1))β−1(h1))2)2)h2

(HCMC1)
= (βm(SH(βn+1(a(−1))β−1(h1))1) . SA(α−2(a(0)1)))(βm(β−1(SH(βn+1(a(−1))

×β−1(h1))2)1) . α−2(a(0)2))⊗ β−1(β−1(SH(βn+1(a(−1))β−1(h1))2)2)h2

(HC1)
= (βm(SH(βn+1(a(−1))β−1(h1))1) . SA(α−2(a(0)1)))(βm−1(SH(βn+1(a(−1))

×β−1(h1))21) . α−2(a(0)2))⊗ β−2(SH(βn+1(a(−1))β−1(h1))22)h2

(HC2)
= (βm−1(SH(βn+1(a(−1))β−1(h1))11) . SA(α−2(a(0)1)))(βm−1(SH(βn+1(a(−1))

×β−1(h1))12) . α−2(a(0)2))⊗ β−1(SH(βn+1(a(−1))β−1(h1))2)h2

(HMA1)
= (βm+1(SH(βn+1(a(−1))β−1(h1))1) . (SA(α−2(a(0)1))α−2(a(0)2))

⊗β−1(SH(βn+1(a(−1))β−1(h1))2)h2

= βm+1(SH(βn+1(a(−1))β−1(h1))1) . 1AεA(a(0))

⊗β−1(SH(βn+1(a(−1))β−1(h1))2)h2

= 1AεA(a(0))⊗ SH(βn+1(a(−1))β−1(h1))h2 = 1AεA(a)⊗ SH(h1)h2

= (1A ⊗ 1H)εA(a)εH(h),

and the rest is direct.

4 Generalized Hom-Yetter-Drinfeld Category

In this section, we construct a class of braided tensor category, which extends the Yetter-
Drinfeld category to the Hom-case. Next we give the concept of Hom-Yetter-Drinfeld module
via generalized Radford biproduct Hom-Hopf algebra defined in Theorem 3.3.

Definition 4.1 Let (H, β) be a Hom-bialgebra, (U, .U , αU ) a left (H, β)-module with
action .U : H ⊗U → U, h⊗u 7→ h.U u and (U, ρU , αU ) a left (H, β)-comodule with coaction
ρU : U → H ⊗ U, u 7→ u(−1) ⊗ u(0). Then we call (U, .U , ρU , αU ) a (left-left) Hom-Yetter-
Drinfeld module over (H, β) if the following condition holds:

h1β
n+2(u(−1))⊗ βm+2(h2) . u(0) = βn+1((βm+1(h1) . u)(−1))h2 ⊗ (βm+1(h1) . u)(0) (HY D)
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for all h ∈ H and u ∈ U .
Proposition 4.2 When (H, β) is a Hom-Hopf algebra, (HY D) is equivalent to

ρ(βm+3(h) . u) = (β−n−3(h11)β−1(u(−1)))S(β−n−1(h2))⊗ βm+2(h12) . u(0) (HY D)′

for all h ∈ H, u ∈ U .
Proof (HY D) =⇒ (HY D)′. We have

(β−n−3(h11)β−1(u(−1)))S(β−n−1(h2))⊗ βm+2(h12) . u(0)

= β−n−1(β−2(h11β
n+2(u(−1)))S(h2))⊗ βm+2(h12) . u(0)

(HY D)
= β−n−1(β−2(βn+1((βm+1(h11) . u)(−1))S(h2)))⊗ (βm+1(h11) . u)(0)

(HA1)
= β−n−1((βn−1((βm+1(h11) . u)(−1))β−2(h12))S(h2))⊗ (βm+1(h11) . u)(0)

(HA2)
= β−n−1(βn((βm+1(h11) . u)(−1))(β−2(h12)S(β−1(h2))))⊗ (βm+1(h11) . u)(0)

(HC1)
= β−n−1(βn((βm+2(h1) . u)(−1))(β−2(h21))S(β−2(h22)))⊗ (βm+2(h1) . u)(0)

= (βm+3(h) . u)(−1) ⊗ (βm+3(h) . u)(0).

(HY D)′ =⇒ (HY D) is proved as follows:

βn+1((βm+1(h1) . u)(−1))h2 ⊗ (βm+1(h1) . u)(0)

= βn+1((βm+3(β−2(h1)) . u)(−1))h2 ⊗ (βm+3(β−2(h1)) . u)(0)
(HY D)′

= ((β−4(h111)βn(u(−1)))S(β−2(h12)))h2 ⊗ βm(h112) . u(0)

(HC2)
= ((β−2(h1)βn(u(−1)))S(β−3(h221)))β−2(h222)⊗ βm+1(h21) . u(0)

(HA2)
= (β−1(h1)βn+1(u(−1)))(S(β−3(h221))β−3(h222))⊗ βm+1(h21) . u(0)

= h1β
n+2(u(−1))⊗ βm+2(h2) . u(0),

finishing the proof.
Definition 4.3 Let (H, β) be a Hom-bialgebra. We denote by H

HYD the category whose
objects are Hom-Yetter-Drinfeld modules (U, .U , ρU , αU ) over (H, β); the morphisms in the
category are morphisms of left (H, β)-modules and left (H, β)-comodules.

In the following, we give a solution to the Hom-quantum Yang-Baxter equation intro-
duced and studied by Yau in [16].

Proposition 4.4 Let (H, β) be a Hom-bialgebra and (U, .U , ρU , αU ), (V, .V , ρV , αV )
∈H

H YD. Define the linear map

τU,V : U ⊗ V → V ⊗ U, u⊗ v 7→ βm+n+3(u(−1)) .V v ⊗ u(0),

where u ∈ U and v ∈ V . Then we have τU,V ◦ (αU ⊗ αV ) = (αV ⊗ αU ) ◦ τU,V , if
(W,.W , ρW , αW ) ∈H

H YD, the map τ , satisfy the Hom-Yang-Baxter equation

(αW ⊗ τU,V ) ◦ (τU,W ⊗ αV ) ◦ (αU ⊗ τV,W ) = (τV,W ⊗ αU ) ◦ (αV ⊗ τU,W ) ◦ (τU,V ⊗ αW ).
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Proof It is easy to prove the first equality, so we only check the second one. For all
u ∈ U, v ∈ V and w ∈ W , we have

(αW ⊗ τU,V ) ◦ (τU,W ⊗ αV ) ◦ (αU ⊗ τV,W )(u⊗ v ⊗ w)

= αW (βm+n+3(αU (u)(−1) .W (βm+n+3(v(−1)) .W w))⊗ βm+n+3(αU (u)(0)(−1)

.V αV (v(0))⊗ αU (u)(0)(0)

= βm+n+5(u(−1)) .W (βm+n+4(v(−1)) .W αW (w))⊗ βm+n+4(u(0)(−1)) .V αV (v(0))

⊗αU (u(0)(0))

= βm+n+4(u(−1)1) .W (βm+n+4(v(−1)) .W αW (w))⊗ βm+n+4(u(−1)2) .V αV (v(0))

⊗α2
U (u(0))

= ((βm+n+3(u(−1)1)βm+n+4(v(−1))) .W α2
W (w))⊗ βm+n+4(u(−1)2) .V αV (v(0))

⊗α2
U (u(0))

= (βm+n+3(u(−1)1αV (v)(−1)) .W α2
W (w))⊗ βm+n+4(u(−1)2) .V αV (v)(0)

⊗α2
U (u(0))

= (βm+1(βn+2(u(−1))1βn+2(αV (v)(−1))) .W α2
W (w))⊗ βm+2(βn+2(u(−1))2)

.V αV (v)(0) ⊗ α2
U (u(0))

= (βm+1(βn+1((βm+1(βn+2(u(−1)1)) .V αV (v))(−1))βn+2(u(−1)2)) .W α2
W (w))

⊗(βm+1(βn+2(u(−1)1)) .V αV (v))(0) ⊗ α2
U (u(0))

(HY D)
= (βm+n+2((βm+n+3(u(−1)1) .V αV (v))(−1))βm+n+3(u(−1)2)) .W α2

W (w)

⊗(βm+n+3(u(−1)1) .V αV (v))(0) ⊗ α2
U (u(0))

= (βm+n+2((βm+n+4(u(−1)) .V αV (v))(−1))βm+n+3(u(0)(−1))) .W α2
W (w))

⊗(βm+n+4(u(−1)) .V αV (v))(0) ⊗ αU (u(0)(0))

= βm+n+3((βm+n+4(u(−1)) .V αV (v))(−1)) .W (βm+n+3(u(0)(−1)) .W α2
W (w))

⊗(βm+n+4(u(−1)) .V αV (v))(0) ⊗ αU (u(0)(0))

= (τV,W ⊗ αU ) ◦ (αV ⊗ τU,W ) ◦ (τU,V ⊗ αW )(u⊗ v ⊗ w).

The proof is completed.
Lemma 4.5 Let (H, β) be a Hom-bialgebra, if (U, .U , ρU , αU ), (V, .V , ρV , αV ) are (left-

left) Hom-Yetter-Drinfeld modules, then (U ⊗ V, .U⊗V , ρU⊗V , αU ⊗ αV ) is a Hom-Yetter-
Drinfeld module with structures

.U⊗V : H ⊗ U ⊗ V → U ⊗ V, h⊗ u⊗ v 7→ (h1 .U u)⊗ (h2 .V v)

and

ρU⊗V : U ⊗ V → H ⊗ U ⊗ V, u⊗ v 7→ β−2(u(−1)v(−1))⊗ u(0) ⊗ v(0)

for all h ∈ H, u ∈ U, v ∈ V .
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Proof It is easy to check that (U ⊗ V, .U⊗V , αU ⊗ αV ) is an (H, β)-Hom module and
(U ⊗ V, ρU⊗V , αU ⊗ αV ) is an (H, β)-Hom comodule. Now we check the condition (HY D).
For all h ∈ H, u ∈ U, v ∈ V , we have

βn+1((βm+1(h1) . (u⊗ v))(−1))h2 ⊗ (βm+1(h1) . (u⊗ v))(0)

= βn+1((βm+1(h11) . u⊗ βm+1(h12) . v)(−1))h2 ⊗ (βm+1(h11) . u

⊗βm+1(h12) . v)(0)

= βn−1((βm+1(h11) . u)(−1)(βm+1(h12) . v)(−1))h2 ⊗ (βm+1(h11) . u)(0)

⊗(βm+1(h12) . v)(0)

= [βn−1((βm+1(h11) . u)(−1))βn−1((βm+1(h12) . v)(−1))]h2 ⊗ (βm+1(h11) . u)(0)

⊗(βm+1(h12) . v)(0)

= βn((βm+1(h11) . u)(−1))[βn−1((βm+1(h12) . v)(−1))β−1(h2)]⊗ (βm+1(h11) . u)(0)

⊗(βm+1(h12) . v)(0)

= βn((βm(h1) . u)(−1))[βn−1((βm+1(h21) . v)(−1))β−2(h22)]⊗ (βm(h1) . u)(0)

⊗(βm+1(h21) . v)(0)

= βn((βm(h1) . u)(−1))β−2[βn+1((βm+1(h21) . v)(−1))h22]⊗ (βm(h1) . u)(0)

⊗(βm+1(h21) . v)(0)
(HY D)

= βn((βm(h1) . u)(−1))β−2(h21β
n+2(v(−1)))⊗ (βm(h1) . u)(0) ⊗ βm+2(h22) . v(0)

= [βn−1((βm(h1) . u)(−1))β−2(h21)]βn+1(v(−1))⊗ (βm(h1) . u)(0) ⊗ βm+2(h22) . v(0)

= [βn−1((βm+1(h11) . u)(−1))β−2(h12)]βn+1(v(−1))⊗ (βm+1(h11) . u)(0)

⊗βm+3(h2) . v(0)

= β−2[βn+1((βm+1(h11) . u)(−1))h12]βn+1(v(−1))⊗ (βm+1(h11) . u)(0)

⊗βm+3(h2) . v(0)

(HY D)
= (β−2(h11)βn(u(−1)))βn+1(v(−1))⊗ βm+2(h12) . u(0) ⊗ βm+3(h2) . v(0)

= (β−1(h1)βn(u(−1)))βn+1(v(−1))⊗ βm+2(h21) . u(0) ⊗ βm+2(h22) . v(0)

= h1(βn(u(−1))βn(v(−1)))⊗ βm+2(h21) . u(0) ⊗ βm+2(h22) . v(0)

= h1β
n(u(−1)v(−1))⊗ βm+2(h2) . (u(0) ⊗ v(0))

= h1β
n+2((u⊗ v)(−1))⊗ βm+2(h2) . (u⊗ v)(0),

finishing the proof.
Lemma 4.6 Let (H, β) be a Hom-bialgebra, and

(U, .U , ρU , αU ), (V, .V , ρV , αV ), (W,.W , ρW , αW ) ∈H
H YD.

With notation as above, define the linear map

aU,V,W : (U ⊗ V )⊗W → U ⊗ (V ⊗W ), (u⊗ v)⊗ w 7→ α−1
U (u)⊗ (v ⊗ αW (w)),
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where u ∈ U, v ∈ V and w ∈ W . Then aU,V,W is an ismorphism of left (H, β)-Hom-modules
and left (H, β)-Hom-comodules.

Proof Same to the proof of [9, Proposition 3.2].
Lemma 4.7 Let (H, β) be a Hom-bialgebra and (U, .U , ρU , αU ), (V, .V , ρV , αV ) ∈ H

HYD.

Define the linear map

cU,V : U ⊗ V → V ⊗ U, u⊗ v 7→ (βm+n+2(u(−1)) .V α−1
V (v))⊗ α−1

U (u(0)),

where u ∈ U and v ∈ V . Then cU,V is a morphism of left (H, β)-Hom-modules and left
(H, β)-Hom-comodules.

Proof For all h ∈ H, u ∈ U and v ∈ V , we have

(αV ⊗ αU ) ◦ cU,V (u⊗ v)

= αV (βm+n+2(u(−1)) .V α−1
V (v))⊗ u(0)

= (βm+n+3(u(−1)) .V v)⊗ u(0)

= βm+n+2(αU (u)(−1)) .V α−1
V (αV (v))⊗ α−1

U (αU (u)(0))

= cU,V ◦ (αU ⊗ αV )(u⊗ v),

cU,V (h .U⊗V (u⊗ v))

= cU,V ((h1 .U u)⊗ (h2 .V v))

= (βm+n+2((h1 .U u)(−1)) .V α−1
V (h2 .V v))⊗ α−1

U ((h1 .U u)(0))

= (βm+n+2((h1 .U u)(−1)) .V (β−1(h2) .V α−1
V (v)))⊗ α−1

U ((h1 .U u)(0))

= ((βm+n+1((h1 .U u)(−1))β−1(h2)) .V v)⊗ α−1
U ((h1 .U u)(0))

(HY D)
= (βm(βn+1((h1 .U u)(−1))β−m−1(h2)) .V v)⊗ α−1

U ((h1 .U u)(0))

= (βm(β−m−1(h1)βn+2(u(−1))) .V v)⊗ α−1
U (βm+2(β−m−1(h2)) .U u(0))

= ((β−1(h1)βm+n+2(u(−1))) .V v)⊗ h2 .U α−1
U (u(0))

= (h1 .V (βm+n+2(u(−1)) .V α−1
V (v)))⊗ h2 .U α−1

U (u(0))

= h .U⊗V ((βm+n+2(u(−1)) .V α−1
V (v))⊗ α−1

U (u(0)))

= h .U⊗V cU,V (u⊗ v)

and

(ρV⊗U ◦ cU,V )(u⊗ v)

= ρV⊗U ((βm+n+2(u(−1)) .V α−1
V (v))⊗ α−1

U (u(0)))

= β−2((βm+n+2(u(−1)) .V α−1
V (v))(−1)α

−1
U (u(0))(−1))

⊗(βm+n+2(u(−1)) .V α−1
V (v))(0) ⊗ α−1

U (u(0))(0)

= β−2((βm+n+2(u(−1)) .V α−1
V (v))(−1)β

−1(u(0)(−1)))⊗ (βm+n+2(u(−1)) .V α−1
V (v))(0)

⊗α−1
U (u(0)(0))

= β−2((βm+n+1(u(−1)1) .V α−1
V (v))(−1)β

−1(u(−1)2))⊗ (βm+n+1(u(−1)1) .V α−1
V (v))(0)

⊗u(0)
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= β−n−3(βn+1((βm+1(βn(u(−1))1) .V α−1
V (v))(−1))βn(u(−1))2)⊗ (βm+1(βn(u(−1))1)

.V α−1
V (v))(0) ⊗ u(0)

(HY D)
= β−n−3(βn(u(−1)1)βn+2(α−1

V (v)(−1)))⊗ βm+2(βn(u(−1)2)) .V α−1
V (v)(0) ⊗ u(0)

= β−3(u(−1)1)β−2(v(−1))⊗ βm+n+2(u(−1)2) .V α−1
V (v(0))⊗ u(0)

= β−2(u(−1)v(−1))⊗ βm+n+2(u(0)(−1)) .V α−1
V (v(0))⊗ α−1

U (u(0)(0))

= (Id⊗ cU,V )(β−2(u(−1)v(−1))⊗ u(0) ⊗ v(0))

= (Id⊗ cU,V ) ◦ ρU⊗V (u⊗ v),

finishing the proof.
Theorem 4.8 Let (H, β) be a Hom-bialgebra. Then the Hom-Yetter-Drinfeld category

H
HYD is a pre-braided tensor category, with tensor product, associativity constraints, and
pre-braiding in Lemmas 4.5, 4.6 and 4.7, respectively, and the unit I = (K, IdK).

Proof The proof of the pentagon axiom for aU,V,W is same to the proof of [9, Theorem
3.4]. Next we prove that the hexagonal relation for cU,V . Let (U, .U , ρU , αU ), (V, .V , ρV , αV ),
(W,.W , ρW , αW ) ∈H

H YD. Then for all u ∈ U, v ∈ V and w ∈ W , we have

((IdV ⊗ cU,W ) ◦ aV,U,W ◦ (cU,V ⊗ IdW ))((u⊗ v)⊗ w)

= ((IdV ⊗ cU,W ) ◦ aV,U,W )((βm+n+2(u(−1)) .V α−1
V (v))⊗ α−1

U (u(0))⊗ w)

= (IdV ⊗ cU,W )(α−1
V (βm+n+2(u(−1)) .V α−1

V (v))⊗ (α−1
U (u(0))⊗ αW (w)))

= α−1
V (βm+n+2(u(−1)) .V α−1

V (v))⊗ βm+n+1(u(0)(−1)) .W w ⊗ α−2
U (u(0)(0))

= α−1
V (βm+n+1(u(−1)1) .V α−1

V (v))⊗ βm+n+1(u(−1)2) .W w ⊗ α−1
U (u(0))

= aV,W,U (βm+n+1(u(−1)1) .V α−1
V (v)⊗ βm+n+1(u(−1)2) .W w ⊗ α−2

U (u(0)))

= aV,W,U (βm+n+2(α−1
U (u)(−1)) .V⊗W (α−1

V (v)⊗ w)⊗ α−1
U (α−1

U (u)(0))

= (aV,W,U ◦ cU,V⊗W )(α−1
U (u)⊗ (v ⊗ αW (w)))

= (aV,W,U ◦ cU,V⊗W ◦ aU,V,W )((u⊗ v)⊗ w)

and

((cU,W ⊗ IdV ) ◦ a−1
U,W,V ◦ (IdU ⊗ cV,W ))(u⊗ (v ⊗ w))

= ((cU,W ⊗ IdV ) ◦ a−1
U,W,V )(u⊗ (βm+n+2(v(−1)) .W α−1

W (w))⊗ α−1
V (v(0)))

= (cU,W ⊗ IdV )(αU (u)⊗ βm+n+2(v(−1)) .W α−1
W (w)⊗ α−2

V (v(0)))

= βm+n+2(αU (u)(−1)) .W α−1
W (βm+n+2(v(−1)) .W α−1

W (w))⊗ α−1
U (αU (u)(0))⊗ α−2

V (v(0))

= βm+n+3(u(−1)) .W (βm+n+1(v(−1)) .W α−2
W (w))⊗ u(0) ⊗ α−2

V (v(0))

= (βm+n+2(u(−1))βm+n+1(v(−1))) .W α−1
W (w)⊗ u(0) ⊗ α−2

V (v(0))

= βm+n+1(αU (u)(−1)v(−1)) .W α−1
W (w)⊗ α−1

U (αU (u)(0))⊗ α−2
V (v(0))

= a−1
W,U,V (βm+n(αU (u)(−1)v(−1)) .W α−2

W (w)⊗ α−1
U (αU (u)(0))⊗ α−1

V (v(0)))

= (a−1
W,U,V ◦ cU⊗V,W )((αU (u)⊗ v)⊗ α−1

W (w))

= (a−1
W,U,V ◦ cU⊗V,W ◦ a−1

U,V,W )(u⊗ (v ⊗ w)),
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and the rest is obvious. These complete the proof.
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广义Radford双积Hom-Hopf代数和相关辫子张量范畴
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(3.新乡学院数学与信息科学学院, 河南新乡 453003)

摘要: 本文研究了Radford双积的Hom-型. 通过把广义smash积Hom-代数和广义smash余积Hom-余

代数相结合, 得到了他们成为Hom-双代数的充分必要条件, 这一结果推广了著名的Radford双积.
关键词: Radford 双积; 量子Yang-Baxter方程; Yetter-Drinfeld范畴
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