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Abstract: In this paper, we perform a further investigation for the polylogarithm function at

negative integral arguments. By applying the generating function methods and Padé approximation

techniques, we establish some new recurrence formulae for this type function and present some

illustrative special cases of main results.
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1 Introduction

Let s and z be complex numbers, the polylogarithm function Lis(z) is defined by means
of the Dirichlet series

Lis(z) =
∞∑

k=1

zk

ks
, (1.1)

which is valid for arbitrary complex order s and for all complex arguments z with |z| < 1
and can be extended to |z| ≥ 1 by the process of analytic continuation.

The polylogarithm function at zero and negative integral arguments are referred to as
the polypseudologarithms (or polypseudologs) of order n by Lee [8]. It is worth noticing
that the values of polypseudologrithms at z = 1 are related to the values of the Riemann
zeta function ζ(s) at negative integers and are expressed in terms of the Bernoulli numbers
Bn, as follows (see, e.g., [4, 8])

Li−n(−1) = (2n+1 − 1)ζ(−n) = (1− 2n+1)
Bn+1

n + 1
(n = 1, 2, · · · ). (1.2)

In [11], Truesdell gave a closed formula for the polypseudologarithms, as follows

Li−n(z) =
n∑

k=1

(−1)n+kk!S(n, k)z
(1− z)k+1

(n = 1, 2, · · · ), (1.3)
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where S(n, k) is the familiar Stirling numbers of the second kind. In [6], Eastham showed
that there is no pure recurrence relation of the form

A0(z)Lin(z) + A1(z)Lin−1(z) + · · ·+ Ar(z)Lin−r(z) = 0, (1.4)

where n is a positive integer, r ≥ n is allowed. The An(z) are algebraic functions of z and
A0(z) is not identically zero. More recently, Cvijović [5] discovered some similar ones for the
polypseudologarithms to formula (1.3), and also established a new type closed formula for
the polypseudologarithms in the following way

Li−n(z) =
1

2n+1

[
(−1)[

n
2−1]T (n, 1) +

n+1∑
k=1

(−1)[
n−k

2 −1]

k
T (n + 1, k)

(
1 + z

1− z

)k]
, (1.5)

where [x] denotes the greatest integer ≤ x and T (n, k) is the tangent numbers (of order k)
or the higher order tangent numbers given by (see, e.g., [3])

tank(t) =
∞∑

n=k

T (n, k)
tn

n!
(k = 1, 2, · · · ). (1.6)

Motivated by the work of Eastham and Cvijović, in this paper we perform a further
investigation for the polylogarithm function at negative integral arguments, and establish
some new recurrence formulae for this type function to state that there exist some explicit
recurrence relations of form (1.4) for the polypseudologarithms by applying the generating
function methods and Padé approximation techniques. And we accordingly consider some
illustrative special cases as well as immediate consequences of the main results.

2 Padé Approximants

We begin by recalling the definition of Padé approximation to general series and their
expression in the case of the exponential function. Let m,n be non-negative integers and let
Pk be the set of all polynomials of degree ≤ k. Given a function f with a Taylor expansion

f(u) =
∞∑

k=0

ckt
k (2.1)

in a neighborhood of the origin, a Padé form of type (m,n) is a pair (P, Q) satisfying that

P =
m∑

k=0

pkt
k ∈ Pm, Q =

n∑
k=0

qkt
k ∈ Pn (Q 6≡ 0) (2.2)

and
Qf − P = O(tm+n+1) as t → 0. (2.3)

It is clear that every Padé form of type (m,n) for f(t) always exists and obeys the same
rational function. The uniquely determined rational function P/Q is called the Padé ap-
proximant of type (m,n) for f(t), and is denoted by [m/n]f (t) or rm,n[f ; t], see for example,
[1, 2].
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The study of Padé approximants to the exponential function was initiated by Hermite
[7] and then continued by Padé [9]. Given a pair (m,n) of nonnegative integers, the Padé
approximant of type (m,n) for et is the unique rational function

Rm,n(t) =
Pm,n(t)
Qm,n(t)

(Pm,n ∈ Pm, Qm,n ∈ Pn, Qm,n(0) = 1) (2.4)

with the property that

et −Rm,n(t) = O(tm+n+1) as t → 0. (2.5)

Unlike Padé approximants to other functions, it is possible to determine explicit formulae
for Pm,n and Qm,n (see, e.g., [10, p.245])

Pm,n(t) =
m∑

k=0

m! · (m + n− k)!
(m + n)! · (m− k)!

· tk

k!
, (2.6)

Qm,n(t) =
n∑

k=0

n! · (m + n− k)!
(m + n)! · (n− k)!

· (−t)k

k!
(2.7)

and

Qm,n(t)et − Pm,n(t) = (−1)n tm+n+1

(m + n)!

∫ 1

0

xn(1− x)mextdx. (2.8)

We here refer respectively to Pm,n(t) and Qm,n(t) as the Padé numerator and denominator
of type (m,n) for et. In next section, we shall use the above Padé approximation to the ex-
ponential function to establish some new recurrence formulae for the polylogarithm function
at zero and negative integral arguments.

3 The Restatements of Results

In [4], Cvijović discovered some similar formulae to (1.3) by making use of the following
generating functions for the polypseudologarithms (see, e.g., [11, 12])

1
1− zet

=
∞∑

n=1

Li−n(z)
tn

n!
,

z

et − z
=

∞∑
n=0

(−1)nLi−n(z)
tn

n!
(3.1)

and

log(et − z) =
∞∑

n=2

(−1)n−1Li−(n−1)(z)
tn

n!
,

1
2
· 1 + zet

1− zet
=

∞∑
n=1

Li−n(z)
tn

n!
. (3.2)

We shall replace the exponential function et not by its Taylor expansion around t = 0 but
by its Padé approximant in the generating function of the polypseudologarithms. We first
rewrite the first formula of (3.1) as follows

(1− zet)
∞∑

j=1

Li−j(z)
tj

j!
= 1. (3.3)
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If we denote the right hand side of (2.8) by Sm,n(t), the Padé approximant for the exponential
function et can be expressed as

et =
Pm,n(t) + Sm,n(t)

Qm,n(t)
. (3.4)

We now apply (3.4) to (3.3) and then obtain

(
Qm,n(t)− zPm,n(t)− zSm,n(t)

) ∞∑
j=1

Li−j(z)
tj

j!
= Qm,n(t). (3.5)

If we apply the exponential series ext =
∞∑

k=0

xktk/k! in the right hand side of (2.8), with the

help of the familiar beta function, we get

Sm,n(t) = (−1)n tm+n+1

(m + n)!

∞∑
k=0

tk

k!

∫ 1

0

xn+k(1− x)mdx

=
∞∑

k=0

(−1)nm! · (n + k)!
(m + n)! · (m + n + k + 1)!

· tm+n+k+1

k!
. (3.6)

For convenience, we consider pm,n;k, qm,n;k and sm,n;k of the coefficients of the polynomials
Pm,n(t), Qm,n(t) and Sm,n(t) such that

Pm,n(t) =
m∑

k=0

pm,n;kt
k, Qm,n(t) =

n∑
k=0

qm,n;kt
k, Sm,n(t) =

∞∑
k=0

sm,n;kt
m+n+k+1. (3.7)

Obviously, the coefficients pm,n;k, qm,n;k and sm,n;k obey

pm,n;k =
m! · (m + n− k)!

(m + n)! · k! · (m− k)!
, qm,n;k =

(−1)kn! · (m + n− k)!
(m + n)! · k! · (n− k)!

(3.8)

and
sm,n;k =

(−1)nm! · (n + k)!
(m + n)! · k! · (m + n + k + 1)!

, (3.9)

respectively. If we apply (3.7) to (3.5), we obtain
( n∑

k=0

qm,n;kt
k

) ∞∑
j=1

Li−j(z)
tj

j!
− z

( m∑
k=0

pm,n;kt
k

) ∞∑
j=1

Li−j(z)
tj

j!

− z

( ∞∑
k=0

sm,n;kt
m+n+k+1

) ∞∑
j=1

Li−j(z)
tj

j!
=

n∑
k=0

qm,n;kt
k (3.10)

from which and the familiar Cauchy product, we discover
∞∑

l=1

tl
∑

k+j=l
k≥0,j≥1

qm,n;k
Li−j(z)

j!
− z

∞∑
l=1

tl
∑

k+j=l
k≥0,j≥1

pm,n;k
Li−j(z)

j!

− z

∞∑
l=1

tl
∑

k+j=l−m−n−1
k≥0,j≥1

sm,n;k
Li−j(z)

j!
=

n∑
k=0

qm,n;kt
k. (3.11)
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Comparing the coefficients of tl in (3.11) gives that for 1 ≤ l ≤ m + n,

∑
k+j=l

k≥0,j≥1

qm,n;k
Li−j(z)

j!
− z

∑
k+j=l

k≥0,j≥1

pm,n;k
Li−j(z)

j!
= qm,n;l, (3.12)

which together with (3.8) yields the following result.
Theorem 3.1 Let l, m, n be non-negative integers. Then for positive integer l with

max(m,n) < l ≤ m + n,

n∑
k=0

(
n

k

)
(−1)k(m + n− k)!

Li−(l−k)(z)
(l − k)!

= z

m∑
k=0

(
m

k

)
(m + n− k)!

Li−(l−k)(z)
(l − k)!

. (3.13)

We next discuss some special cases of Theorem 3.1. Setting l = m + n in Theorem 3.1,
we obtain that for positive integers m,n,

n∑
k=0

(
n

k

)
(−1)n−kLi−(m+k)(z) = z

m∑
k=0

(
m

k

)
Li−(n+k)(z). (3.14)

It is obvious that the case m = 1 in (3.14) gives that for positive integer n,

n∑
k=0

(
n

k

)
(−1)kLi−(n+1−k)(z) = zLi−n(z) + zLi−(n+1)(z) (3.15)

and the case n = 1 in (3.14) arises

z

n∑
k=0

(
n

k

)
Li−(n+1−k)(z) = Li−(n+1)(z)− Li−n(z) (n ≥ 1). (3.16)

If we compare the coefficients of tl in (3.11) for l ≥ m + n + 1, then

∑
k+j=l

k≥0,j≥1

qm,n;k
Li−j(z)

j!
− z

∑
k+j=l

k≥0,j≥1

pm,n;k
Li−j(z)

j!

= z
∑

k+j=l−m−n−1
k≥0,j≥1

sm,n;k
Li−j(z)

j!
. (3.17)

Hence applying (3.8) and (3.9) to (3.17) gives the following result.
Theorem 3.2 Let m,n be non-negative integers. Then for positive integer l with

l ≥ m + n + 1,

n∑
k=0

(
n

k

)
(−1)k(m + n− k)!

Li−(l−k)(z)
(l − k)!

− z

m∑
k=0

(
m

k

)
(m + n− k)!

Li−(l−k)(z)
(l − k)!

= (−1)nz
m! · n!

l!

l−m−n−1∑
k=1

(
l −m− 1− k

n

)(
l

k

)
Li−k(z). (3.18)
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It follows that we show some special cases of Theorem 3.2. Taking l = m + n + 1 in
Theorem 3.2, we obtain that for non-negative integers m,n,

n∑
k=0

(
n

k

)
(−1)n−k Li−(m+k+1)(z)

m + k + 1
− z

m∑
k=0

(
m

k

)
Li−(n+k+1)(z)

n + k + 1
= 0. (3.19)

In particular, the case m = 0 in (3.19) arises

n∑
k=0

(
n

k

)
(−1)n−k Li−(k+1)(z)

k + 1
=

zLi−(n+1)(z)
n + 1

. (3.20)

More generally, by setting m = 0 and l = n+ r in Theorem 3.2, we get that for non-negative
integer n and positive integer r,

n∑
k=0

(
n

k

)
(−1)n−kk!

Li−(k+r)(z)
(k + r)!

− n!
(n + r)!

zLi−(n+r)(z)

= (−1)nz
n!

(n + r)!

r−1∑
k=1

(
n + r − k − 1

n

)(
n + r

k

)
Li−k(z). (3.21)

And the case n = 0 in (3.21) yields another recurrence formula to compute the values of the
polypseudologarithms with Li0(z) = z/(1− z):

(1− z)Li−n(z) = z

n−1∑
k=1

(
n

k

)
Li−k(z) (n ≥ 2). (3.22)

It becomes obvious that formulae (3.15), (3.16) and (3.22) mean that there exists pure
recurrence relations of form (1.4) for the polypseudologarithms, respectively.
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关于polylogarithm函数新的循环公式

何 圆,张家玲

(昆明理工大学理学院,云南昆明 650500)

摘要: 本文对polylogarithm函数在负整数点的情形作了进一步的研究. 利用生成函数方法及Padé估

计技巧, 建立了此类函数的一些新的循环公式, 并给出了主要结果的一些特殊情况.
关键词: polylogarithm函数; 生成函数; Padé估计; 循环公式
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