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Abstract: In this paper, we study the problem of packing-minimality of 1-dimensional Moran

sets. By using the principle of mass distribution, we obtain that a large class of Moran sets on

the line with packing dimension 1 is quasisymmetrically packing-minimal, which extends a known

result of quasisymmetrically packing-minimality.
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1 Introduction

A homeomorphism mapping f : X → Y , where X and Y are two metric spaces, is said
to be quasisymmetric if there is a homeomorphism η : [0,∞) → [0,∞) such that

∣∣f(x)− f(a)
∣∣

∣∣f(x)− f(b)
∣∣ ≤ η

( |x− a|
|x− b|

)

for all triples a, b, x of distinct points in X. Here we follow the notation in Heinonen [1]
by using |x − y| to denote the distance between the two points x and y in every metric
space. In particular, we also say that f is an n-dimensional quasisymmetric mapping when
X = Y = Rn.

Definition 1 We call a set E ⊂ Rn quasisymmetrically packing-minimal, if dimP f(E) ≥
dimP E for any n-dimensional quasisymmetric mapping f .

In this paper, we will show that a large class of Moran sets in R1 of packing dimension
1 have quasisymmetric packing-minimality.

Similarly, we call a set E ⊂ Rn is quasisymmetrically Hausdorff-minimal, if dimH f(E) ≥
dimH E for any n-dimensional quasisymmetric mapping f . Recall some results on the Haus-
dorff dimensions of quasisymmetric images. First, n-dimensional quasisymmetric mappings
are locally Hölder continuous [2], so if dimH E = 0, then dimH f(E) = 0 and E is quasisym-
metrically Hausdorff-minimal. In Euclidean space Rn with n ≥ 2, Gehring [3, 4] obtained
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that for any subset E ⊂ Rn of Hausdorff dimension n, its quasisymmetric image also has
Hausdorff dimension n, so E is quasisymmetrically Hausdorff-minimal. If 0 < dimH E < 1,
there are 1-dimensional quasisymmetric mappings fε and Fε such that dimH fε(E) < ε (see
[5]) and dimH Fε(E) > 1 − ε (see [6]), that is any E ⊂ R1 satisfies 0 < dimH E < 1 is not
quasisymmetrically Hausdorff-minimal.

For R1, Tukia [7] found an interesting fact, quite different from Gehring’s result for Rn

with n ≥ 2, that there exists E ⊂ R1 such that dimH E = 1 and dimH f(E) < 1 for some 1-
dimensional quasisymmetric mapping f , so E is not quasisymmetrically Hausdorff-minimal.

There is a question: what kinds of sets in R1 are quasisymmetrically Hausdorff-minimal?

For R1, many works were devoted to the quasisymmetrically Hausdorff-minimal set, i.e.,
the subset E ⊂ R1 satisfying dimH f(E) ≥ dimH E for any 1-dimensional quasisymmetric
mapping f .

Kovalev [5] showed that any quasisymmetrically Hausdorff-minimal set in R1 with
dimH E > 0 has full Hausdorff dimension 1. Hakobyan [8] proved that middle interval Cantor
sets of Hausdorff dimension 1 are all quasisymmetrically Hausdorff-minimal. Hu and Wen
[9] obtained that some uniform Cantor sets of Hausdorff dimension 1 are quasisymmetri-
cally Hausdorff-minimal. Dai, Wen, Xi and Xiong [10] found a large class of Moran sets of
Hausdorff dimension 1 which are quasisymmetrically Hausdorff-minimal.

Compared with quasisymmetric Hausdorff-minimality, there are few results on qua-
sisymmetric packing-minimality.

Kovalev [5] showed that any quasisymmetrically packing-minimal set in R1 with dimp E >

0 has packing dimension 1. Li, Wu and Xi [11] find two classes of Moran sets of packing di-
mension 1 which are quasisymmetrically packing-minimal. Wang and Wen [12] obtained that
the uniform Cantor sets of packing dimension 1 are quasisymmetrically packing-minimal.

In this paper, we will show that a result of [11] is not accidents. In fact, a larger class
of Moran sets on the line with packing dimension 1 is quasisymmetrically packing-minimal
(Theorem 1).

This paper is organized as follows. In Section 2, we state our main results and give
the introduction to the Moran sets. Some preliminaries are given in Section 3, including
quasisymmetric mappings, Moran sets and certain probability measure supported on the
quasisymmetric image. The key of this paper is to get the estimate in Lemma 1 for the
above measure. Section 4 is the proof of Theorem 1.

2 Definition and Main Results

2.1 Definition of Moran Sets

Before the statement of theorems, we introduce the notion of Moran setsin R1. Let

{nk}k≥1 ⊂ N and {ck,j}1≤j≤nk
⊂ R+ be sequences satisfying nk ≥ 2 and

nk∑
j=1

ck,j < 1 for any

k ≥ 1, set Ωk =
{
σ = σ1 · · ·σk : σj ∈ [1, nj ]∩N for all 1 ≤ j ≤ k

}
and Ω0 = {∅} with empty
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word ∅. Write Ω =
⋃

k≥0

Ωk and (σ1 · · ·σk) ∗ σk+1 = σ1 · · ·σkσk+1. Let I ⊂ R1 be a closed

interval. Denote by |A| the diameter of A ⊂ Rn. We say that F = {Iσ : σ ∈ Ω}, which is
a collection of closed intervals, has Moran structure (I, {nk}, {ck,j}), if I∅ = I and for any
σ ∈ Ωk−1, Iσ∗1,· · · ,Iσ∗nk

, whose interiors are pairwise disjoint, are subintervals of Iσ such
that

|Iσ∗j |/|Iσ| = ck,j for all j. (2.1)

Then a Moran set determined by F is defined by

E(F) =
⋂
k≥1

⋃
σ∈Ωk

Iσ, (2.2)

where any Iσ in F is called a basic interval of rank k if σ ∈ Ωk. Denote by M(I, {nk}, {ck,j})
the class of all Moran sets associated with I, {nk} and {ck,j}.

For the class M(I, {nk}, {ck,j}), we write

Dk = max
1≤j≤nk

ck,j , c∗ = inf
k,j

ck,j

and
s∗ = lim inf

k→∞
sk and s∗ = lim sup

k→∞
sk,

where sk is defined by the equation

k∏
i=1

ni∑
j=1

(ci,j)sk = 1.

If σ ∈ Ωk−1, k ≥ 1, let IL
σ (or IR

σ ) be the most left (or the most right) one of Iσ∗1, · · · ,
Iσ∗nk

.Write r∗ = inf
σ∈Ω

min
{ |IL

σ |
|Iσ| ,

|IR
σ |
|Iσ|

}
.

Some probability of quasisymmetric mappings and Moran sets can be seen in [13] and
[14].

2.2 Main Results

The main result of paper are stated as follows.
Theorem 1 Suppose E ∈M(I, {nk}, {ck,j}), r∗ > 0 and supk nk < ∞, and there exist

a costant l > 1 such that
nk∑
i=1

(| Iσ∗i |) ≥ l(| IL
σ | + | IR

σ |) for any σ ∈ Ωk−1 and k ≥ 2 . If

dimP E = 1, then dimP f(E) = 1 for any 1-dimensional quasisymmetric mappings f .
Remark 1 Without loss of generality, suppose |IL

σ |
|Iσ| = ck,1 and |IR

σ |
|Iσ| = ck,nk

for σ ∈ Ωk,
k ≥ 1, the conditions of Theorem 1 implies ck,1 and ck,nk

is neither too “large” nor too

“small”, and for 2 ≤ i ≤ nk − 1, ck,i may be very “small”, even c∗ = 0, but
nk−1∑
i=2

ck,i is not

too “small”.
Remark 2 Notice that the condition “and there exist a costant l > 1 such that

nk∑
i=1

(| Iσ∗i |) ≥ l(| IL
σ | + | IR

σ |) for any σ ∈ Ωk−1 and k ≥ 2” implies nk ≥ 3 for all k ≥ 1.
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Notice that If E ∈ M(I, {nk}, {ck,j}), then E ∈ M(I, {Nk}, {Ck,q}), where Nk = n2k−1 ·
n2k ≥ 3 and Ck,(i−1)n2k−1+j = c2k−1,i · c2k,j for 1 ≤ i ≤ n2k−1, 1 ≤ j ≤ n2k, so without loss of
generality, we always assume that nk ≥ 3 for all k ≥ 1 in this paper.

Example 1 Let E ∈ M(I, {nk}, {ck,j}) with c∗ > 0. If nk ≥ 3 for all k ≥ 1, then

r∗ ≥ c∗ > 0, supk nk < ∞ and
nk∑
i=1

(| Iσ∗i |) ≥ (1 + c∗)(| IL
σ | + | IR

σ |) for any σ ∈ Ωk−1 and

k ≥ 2; if infk nk = 2, then E ∈M(I, {Nk}, {Ck,q}), where Nk and Ck,q are defined the same
as the above remark (Nk ≥ 3), it is easy to obtain that E ∈M(I, {Nk}, {Ck,q}) satisfies the
conditions of Theorem 1. Then by Theorem 1, if dimP E = 1, we have dimP f(E) = 1 for
any 1-dimensional quasisymmetric mapping f .

Therefore Theorem 1 extends the results of Theorem 2 in [11].
Example 2 Let E be an uniform Cantor set (see [12]) with c∗ > 0. If nk ≥ 3, then

r∗ = c∗ > 0, supk nk < ∞ and
nk∑
i=1

(| Iσ∗i |) ≥ (1 + c∗)(| IL
σ | + | IR

σ |) for any σ ∈ Ωk−1 and

k ≥ 2; if infk nk = 2, then E ∈M(I, {Nk}, {Ck,q}), where Nk and Ck,q are defined the same
as the above remark(Nk ≥ 3), it is easy to obtain that E ∈M(I, {Nk}, {Ck,q}) satisfies the
conditions of Theorem 1. Then by Theorem 1, if dimP E = 1, we have dimP f(E) = 1 for
any 1-dimensional quasisymmetric mapping f .

Therefore Theorem 1 extends the results of Theorem 1.2 in [12] when c∗ > 0.

3 Preliminaries

Before the proofs of the two theorems, we give some preliminaries.
The following fact on packing dimension can be found in Proposition 2.3 of [15].
Lemma 1 Let E ⊂ Rn be a Borel set, and µ a probability measure supported on E.

If there exists E′ ⊂ E with µ(E′) > 0 and a constant c > 0 such that

lim inf
r→0

µ(B(x, r))
rs

≤ c for all x ∈ E′,

then dimP E ≥ s.
We need some properties on quasisymmetry. For closed interval I, set ρI be a closed

interval with a length of ρ|I| and with the same center with I.
From [16], it is easy to check the following lemma.
Lemma 2 Suppose f : R1 → R1 is quasisymmetric, there exist constants λ, Kρ > 0,

q ≥ 1 and p ∈ (0, 1] such that
| f(ρI) |
| f(I) | ≤ Kρ (3.1)

and
λ(
| I |
| I ′ |)

q ≤ | f(I) |
| f(I ′) | ≤ 4(

| I |
| I ′ |)

p, (3.2)

whenever closed interval I, I ′ satisfying I ⊂ I ′

The following lemma comes from [17].
Lemma 3 Suppose E is a Moran set satisfying the following conditions
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(1) sup
k

nk < ∞;

(2) 0 < inf
k

Dk ≤ sup
k

Dk < 1.

Then we have dimP E = s∗.

It is easy to verify that if for a Moran set E ∈ M(I, {nk}, {ck,j}), the conditions of
Theorem 1 hold, then E satisfies sup

k
nk < ∞ and 0 < inf

k
Dk ≤ sup

k
Dk < 1, by Lemma 3,

dimP E = s∗.
The length of σ ∈ Ωk will be denoted by |σ|(= k).
Fix a 1-dimensional quasisymmetric mapping f : R1 → R1. Given a Moran set E and

its basic interval Iσ of E with rank k, we also call f(Iσ) a basic interval of f(E) with rank
k for convenience. Let Jσ = f(Iσ).

3.1 The Measure µd Supported on f(E)

Fix d ∈ (0, 1). We will define a probability measure µd on f(E) as follows.
Without loss of generality, we set I = [0, 1] the initial interval of E.
Let µd(f([0, 1])) = 1, for every k ≥ 1, and for every basic interval Jσ of rank k − 1, we

define

µd(Jσ∗j′) =
|Jσ∗j′ |d

nk∑
j=1

|Jσ∗j |d
µd(Jσ)

for 1 ≤ j′ ≤ nk.

3.2 Estimate of µd(Jσ)

The next proposition can be found in [11].
Proposition 1 Suppose E is the Moran set satisfying sup

k
nk < ∞ and

lim
k→∞

card{1 ≤ i ≤ k : Di ≤ α}
k

= 1 (3.3)

for some constant α ∈ (0, 1). If s∗ = 1, then there exists a subsequence {kt}t and a constant
c > 0 such that

µd(Jσ) ≤ c |Jσ|d (3.4)

for any basic interval Jσ of f(E) with |σ| ∈ {kt}t.
By Proposition 1, we have the corollary below.
Corollary 1 Suppose E is the Moran satisfies the conditions of Theorem 1. If

dimP E = 1, then there exists a subsequence {kt}t and a constant c > 0 such that

µd(Jσ) ≤ c |Jσ|d

for any basic interval Jσ of f(E) with |σ| ∈ {kt}t.
Proof Since nk ≥ 2, r∗ > 0, we have Dk ≤ 1− r∗ < 1. Take α = 1− r∗, we have

lim
k→∞

card{1 ≤ i ≤ k : Dk ≤ 1− r∗}
k

= 1,
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notice that dimp E = s∗ by Lemma 3 and Proposition 1, the corollary follows.

4 Proof of Theorem 1

Let {kt}t be the subsequence in Proposition 1. Let

Bt =
{

x ∈ f(E) : f−1(x) ∈ IL
σ ∪ IR

σ for some |σ| = kt − 1
}

and B =
∞⋃

s=1

⋂
t≥s

Bt.

Lemma 4 Suppose that nk ≥ 3 and c∗ > 0. Then there exists a constant ε > 0 such
that

µd(JL
σ ) + µd(JR

σ )
µd(Jσ)

≤ 1− ε

for all σ with |σ| = k − 1 and 1 ≤ j1, j2 ≤ nk.
Proof With out loss of generality, we let JL

σ = Jσ∗1, JR
σ = Jσ∗nk

, since nk ≥ 3. Take
i0(1 ≤ i0 ≤ nk) as follows

Case 1 If max
1≤j≤nk

|Jσ∗i| 6= max
{|Jσ∗1|, |Jσ∗nk

|}, pick i0 such that max
1≤i≤nk

|Jσ∗i| = |Jσ∗i0 |,
then 2 ≤ i0 ≤ nk − 1, we have

µd(JL
σ ) + µd(JR

σ )
µd(Jσ)

=
µd(Jσ∗1) + µd(Jσ∗nk

)
µd(Jσ)

=
|Jσ∗1|d + |Jσ∗nk

|d
nk∑
i=1

|Jσ∗i|d

≤ 1− |Jσ∗i0 |d
nk∑
i=1

|Jσ∗i|d
≤ 1− |Jσ∗i0 |d

(sup
k

nk)( max
1≤j≤nk

|Jσ∗i|)d
= 1− 1

sup
k

nk

.

Pick ε = 1
sup

k
nk

, we have

µd(JL
σ ) + µd(JR

σ )
µd(Jσ)

≤ 1− ε.

Case 2 If max
1≤j≤nk

|Jσ∗i| = max
{|Jσ∗1|, |Jσ∗nk

|}, pick i0 such that |Iσ∗i0 | = max
2≤i≤nk−1

|Iσ∗i|,
we have

µd(JL
σ ) + µd(JR

σ )
µd(Jσ)

=
µd(Jσ∗1) + µd(Jσ∗nk

)
µd(Jσ)

=
|Jσ∗1|d + |Jσ∗nk

|d
nk∑
i=1

|Jσ∗i|d

≤ 1− |Jσ∗i0 |d
nk∑
i=1

|Jσ∗i|d
≤ 1− |Jσ∗i0 |d

(sup
k

nk)( max
1≤j≤nk

|Jσ∗i|)d
.

Assume |Jσ∗1| = max
i
|Jσ∗i|. Since

sup
k

nk|Iσ∗i0 | ≥
∑

2≤i≤nk−1

|Iσ∗i| =
∑

1≤i≤nk

|Iσ∗i| − |Iσ∗1| − |Iσ∗nk
|

≥ (l − 1)(|Iσ∗1|+ |Iσ∗nk
|) ≥ (l − 1)(1 +

1
r∗

)|Iσ∗1|
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and |Iσ∗1|
|Iσ| ≥ r∗, where l and r∗ are obtained in Theorem 1, then there exists constants δ1 > 0

and δ2 > 0 , such that |Iσ∗i0 |
|Iσ| ≥ δ1 and |Iσ∗1|

|Iσ∗i0 |
≤ δ2.

By Lemma 2, we have

λ(
|Iσ∗i0 |
|Iσ| )q ≤ |Jσ∗i0 |

|Jσ| ≤ 4(
|Iσ∗i0 |
|Iσ| )p,

λ(
|Iσ∗1|
|Iσ| )q ≤ |Jσ∗1|

|Jσ| ≤ 4(
|Iσ∗1|
|Iσ| )p ≤ 4(

δ2 |Iσ∗i0 |
|Iσ| )p,

which imply
|Jσ∗i0 |
|Jσ∗1| ≥

λ

4δp
2

(
|Iσ∗i0 |
|Iσ| )q−p ≥ λ

4δp
2

(δ1)q−p.

Therefore

µd(JL
σ ) + µd(JR

σ )
µd(Jσ)

≤ 1− |Jσ∗i0 |d
(sup

k
nk)(|Jσ∗1|)d

≤ 1− ε,

where

ε =
λd

4dδpd
2

(δ1)(q−p)d/ sup
k

nk.

Proposition 2 µd(B) = 0 for d ∈ (0, 1).
Proof It suffices to prove µd(

⋂
t≥s

Bt) = 0 for any s.

Let
Ek =

⋃

|σ|=k,
(

⋂
t≥s

Bt)
⋂

Jσ 6=∅

Jσ.

Notice that
⋂
t≥s

Bt =
∞⋂

k=1

Ek and Ek+1 ⊂ Ek ⊂ Ek−1 ⊂ · · · , where

µd(Ek+1)
µd(Ek)

≤ 1. (4.1)

For any σ, let JL
σ = f(IL

σ ), JR
σ = f(IR

σ ). Therefore, for t ≥ s,

Ekt
=

⋃

|σ|=kt−1,
(

⋂
t≥s

Bt)
⋂

Jσ 6=∅

(
JL

σ

⋃
JR

σ

)
.

By Lemma 4, we have

µd(Ekt
)

µd(Ekt−1)
≤ sup
|σ|=Kt−1

µd(JL
σ ) + µd(JR

σ )
µd(Jσ)

≤ 1− ε, (4.2)

it follows from (4.1) and (4.2) that

µd(Ekt
)

µd(Ekt−1)
=

µd(Ekt
)

µd(Ekt−1)
· µd(Ekt−1)
µd(Ekt−2)

· · · µd(Ekt−1+1)
µd(Ekt−1)

≤ 1− ε,
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which implies
µd(

⋂
t≥s

Bt) = lim
t→∞

µd(Ekt
) ≤ lim

t→∞
(1− ε)t−sµd(Eks

) = 0.

Next we finish the proof of Theorem 1.
From the proposition above, we have µd(f(E)\B) = 1 > 0. Fix x ∈ (f(E)\B), then we

can pick tn ↑ ∞ satisfies f−1(x) ∈ Iσ\(IL
σ

⋃
IR
σ ) with some |σ| = ktn

− 1.
Notice that gx(α) = |f−1(B(x, α))| is continuous. We can pick rn such that

∣∣f−1(B(x, rn))
∣∣ = min

{|IL
σ |, |IR

σ |
}
, (4.3)

notice that rn → 0 when n →∞.
Since f−1(x) ∈ Iσ\(IL

σ

⋃
IR
σ ) and |f−1(B(x, rn))| = min

{|IL
σ |, |IR

σ |
}
, we have

f−1(B(x, rn)) ⊂ Iσ,

which implies B(x, rn) ⊂ Jσ.
Let Jσ∗j1 , Jσ∗j2 ,· · · ,Jσ∗jl′ (1 ≤ l′ ≤ nktn

) be the basic intervals of rank ktn
meeting

B(x, rn). Then (B(x, rn)
⋂

f(E)) ⊂
l′⋃

i=1

Jσ∗ji
.

Using the conclusion of Corollary 2, we get

µd(B(x, rn)) = µd(B(x, rn)
⋂

f(E))

≤ µd(
l′⋃

i=1

Jσ∗ji
) ≤

l′∑
i=1

µd(Jσ∗ji
) ≤ c

l′∑
i=1

|Jσ∗ji
|d .

Since r∗ > 0, for any i, there exists a constant δ ≥ 1,

|Iσ∗ji
| ≤ δ min

{|IL
σ |, |IR

σ |
}

= δ
∣∣f−1(B(x, rn))

∣∣ ,

hence |Iσ∗ji
| ⊂ (3δ)f−1(B(x, rn)), where δ ≥ 1. By Lemma 2, we have

|Jσ∗ji
| = |f(Iσ∗ji

)| ≤
∣∣f((3δ)f−1(B(x, rn)))

∣∣ ≤ K3δ |(B(x, rn))| = (2K3δ)rn,

where K3δ > 0 is a constant. This together with (4.4) gives

µd(B(x, rn) ≤ [2d(sup
i

ni)c(K3δ)d] · rd
n.

Let n →∞, then for any x ∈ f(E)\B, there exists a constant C ′ > 0, such that

lim inf
r→0

µd(B(x, r))
rd

≤ C ′,

it follows from µd(f(E)\B) > 0 and Lemma 1 that dimp f(E) ≥ d. Let d → 1, we have

dimp f(E) = 1.
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拟对称packing极小Moran集

李彦哲, 何其涵

(广西大学数学与信息科学学院,广西南宁 530004)

摘要: 本文研究了一维Moran集的拟对称packing极小性的问题. 利用质量分布原理的方法, 获得

了直线上一类packing维数为1的Moran集为拟对称packing极小集的结果, 推广了参考文献中关于拟对

称packing极小性的已知结果.
关键词: 拟对称映射; packing维数; Moran集
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