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Abstract: In this paper, we study the problem of packing-minimality of 1-dimensional Moran
sets. By using the principle of mass distribution, we obtain that a large class of Moran sets on
the line with packing dimension 1 is quasisymmetrically packing-minimal, which extends a known
result of quasisymmetrically packing-minimality.
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1 Introduction

A homeomorphism mapping f: X — Y, where X and Y are two metric spaces, is said

to be quasisymmetric if there is a homeomorphism 7: [0,00) — [0, 00) such that

£@) - F(@)] _ (lx—a]
\ﬂ@—f@ﬂ§n< )

for all triples a,b,z of distinct points in X. Here we follow the notation in Heinonen [1]

by using |z — y| to denote the distance between the two points  and y in every metric
space. In particular, we also say that f is an n-dimensional quasisymmetric mapping when
X=Y=R".

Definition 1 We call aset E C R"™ quasisymmetrically packing-minimal, if dimp f(E) >
dimp F for any n-dimensional quasisymmetric mapping f.

In this paper, we will show that a large class of Moran sets in R! of packing dimension
1 have quasisymmetric packing-minimality.

Similarly, we call a set E C R™ is quasisymmetrically Hausdorff-minimal, if dimy f(E) >
dimpy F for any n-dimensional quasisymmetric mapping f. Recall some results on the Haus-
dorff dimensions of quasisymmetric images. First, n-dimensional quasisymmetric mappings
are locally Holder continuous [2], so if dimy E = 0, then dimy f(E) = 0 and E is quasisym-
metrically Hausdorff-minimal. In Euclidean space R"™ with n > 2, Gehring [3, 4] obtained

* Received date: 2016-08-15 Accepted date: 2016-11-09
Foundation item: Supported by NSFC (11626069); Guangxi Natural Science Foundation
(2016GXNSFAA380003); Science Foundation of Guangxi University (XJZ150827).
Biography: Li Yanzhe (1986-), male, born at Guilin, Guangxi, lecturer, major in fractal geometry.
Corresponding author: He Qihan.



1126 Journal of Mathematics Vol. 37

that for any subset £ C R"™ of Hausdorff dimension n, its quasisymmetric image also has
Hausdorftf dimension n, so F is quasisymmetrically Hausdorff-minimal. If 0 < dimyg F < 1,
there are 1-dimensional quasisymmetric mappings f. and F. such that dimy f.(E) < ¢ (see
[5]) and dimy F.(E) > 1 — € (see [6]), that is any £ C R! satisfies 0 < dimy E < 1 is not
quasisymmetrically Hausdorff-minimal.

For R', Tukia [7] found an interesting fact, quite different from Gehring’s result for R”
with n > 2, that there exists £ C R! such that dimy F = 1 and dimy f(E) < 1 for some 1-
dimensional quasisymmetric mapping f, so F is not quasisymmetrically Hausdorff-minimal.

There is a question: what kinds of sets in R! are quasisymmetrically Hausdorff-minimal?

For R', many works were devoted to the quasisymmetrically Hausdorff-minimal set, i.e.,
the subset E C R! satisfying dimpy f(E) > dimg E for any 1-dimensional quasisymmetric
mapping f.

Kovalev [5] showed that any quasisymmetrically Hausdorff-minimal set in R! with
dimy £ > 0 has full Hausdorff dimension 1. Hakobyan [8] proved that middle interval Cantor
sets of Hausdorff dimension 1 are all quasisymmetrically Hausdorff-minimal. Hu and Wen
[9] obtained that some uniform Cantor sets of Hausdorff dimension 1 are quasisymmetri-
cally Hausdorff-minimal. Dai, Wen, Xi and Xiong [10] found a large class of Moran sets of
Hausdorff dimension 1 which are quasisymmetrically Hausdorff-minimal.

Compared with quasisymmetric Hausdorff-minimality, there are few results on qua-
sisymmetric packing-minimality.

Kovalev [5] showed that any quasisymmetrically packing-minimal set in R! with dim, £ >
0 has packing dimension 1. Li, Wu and Xi [11] find two classes of Moran sets of packing di-
mension 1 which are quasisymmetrically packing-minimal. Wang and Wen [12] obtained that
the uniform Cantor sets of packing dimension 1 are quasisymmetrically packing-minimal.

In this paper, we will show that a result of [11] is not accidents. In fact, a larger class
of Moran sets on the line with packing dimension 1 is quasisymmetrically packing-minimal
(Theorem 1).

This paper is organized as follows. In Section 2, we state our main results and give
the introduction to the Moran sets. Some preliminaries are given in Section 3, including
quasisymmetric mappings, Moran sets and certain probability measure supported on the
quasisymmetric image. The key of this paper is to get the estimate in Lemma 1 for the

above measure. Section 4 is the proof of Theorem 1.

2 Definition and Main Results
2.1 Definition of Moran Sets

Before the statement of theorems, we introduce the notion of Moran setsin R'. Let

ny

{ni}tr>1 C N and {cg;}1<j<n, C RT be sequences satisfying n, > 2 and ) ¢, ; < 1 for any
j=1

k>1,set Q ={o=01--04: 0;€[l,n;]NNforall 1 <j <k} and Qy = {0} with empty
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word (). Write Q = |J Qi and (01 0x) * 0p11 = 01+ - 0x0ky1- Let I C R be a closed
k>0
interval. Denote by |A| the diameter of A C R". We say that F = {I,: o € Q}, which is

a collection of closed intervals, has Moran structure (I,{ny},{ck;}), if Iy = I and for any
0 € Qy_1, Iyu, -+ Isun,, whose interiors are pairwise disjoint, are subintervals of I, such
that

|I5sjl/| 1] = ci,; for all j. (2.1)

Then a Moran set determined by F is defined by
E(F) = ﬂ U I, (2.2)
k>1 ey,

where any I, in F is called a basic interval of rank k if o € . Denote by M(I, {ns},{cr;})
the class of all Moran sets associated with I, {n;} and {cj ;}.
For the class M(I,{nt},{ck ;}), we write

Dy = max cgj, ¢, =infcy;
1<j<ng k.j
and
s, = liminf s, and s* = limsup sy,
k—o0 k—oo
where s;, is defined by the equation
k ng
Sk —
[[D ()™ =1
i=1 j=1

If 0 € Q_1,k >1,let IE (or IE) be the most left (or the most right) one of I, - -+,
171 11|
ol ? o] }

Lysn, -Write r, = inf min{
oce
Some probability of quasisymmetric mappings and Moran sets can be seen in [13] and
[14].

2.2 Main Results

The main result of paper are stated as follows.
Theorem 1 Suppose E € M(I,{n;},{ck;}), r« > 0 and sup, ny < oo, and there exist

ng

a costant [ > 1 such that > (| Ipw |) > U(| IE |+ | IF]) for any 0 € Qp_y and k > 2 . If
i=1

dimp F = 1, then dimp f(E) = 1 for any 1-dimensional quasisymmetric mappings f.

Izl _ |17

I, — o]

k > 1, the conditions of Theorem 1 implies ¢, and ¢y, is neither too “large” nor too

Remark 1 Without loss of generality, suppose ck,1 and = Cp.p, for o € Qy,

nk—l
“small”, and for 2 < i < ny — 1,¢;,; may be very “small”, even ¢, = 0, but > ¢, is not
i=2
too “small”.
. Remark 2 Notice that the condition “and there exist a costant [ > 1 such that
k

S Iowi |) = U IE |+ | IE|) for any 0 € Qx_; and k > 27 implies ny, > 3 for all k > 1.

i=1
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Notice that If E € M(I,{ns},{ck;}), then E € M(I,{Ny},{Cy,}), where Ny = noy_; -
Nog > 3 and Ck (i—1)ngp_ 145 = Cok—1,i - Cak,j for 1 <@ <ngp_1,1 < j < ngy, so without loss of
generality, we always assume that ny > 3 for all £ > 1 in this paper.

Example 1 Let E € M(I,{ng},{ck;}) with c¢. > 0. If n, > 3 for all £ > 1, then

U2

T > ¢ >0, suppng < oo and > (| Inwi |) > (14 c)(| IL |+ | IE|) for any o € Q)1 and

k > 2; if infy ny = 2, then F € /(/_I%I, {Ni},{Ck,q}), where Ny and Cy , are defined the same
as the above remark (N > 3), it is easy to obtain that £ € M(I,{Ny},{Ck,}) satisfies the
conditions of Theorem 1. Then by Theorem 1, if dimp F = 1, we have dimp f(E) = 1 for
any l-dimensional quasisymmetric mapping f.

Therefore Theorem 1 extends the results of Theorem 2 in [11].

Example 2 Let E be an uniform Cantor set (see [12]) with ¢, > 0. If n; > 3, then

ng

re =c. >0, supyng <ooand > (| Iwi |) > (1 +c)(| IE| + | IF]) for any o € Q1 and
i=1

k > 2; if infy, ny, = 2, then E € M(I,{Ni},{Ckq}), where Ny and Cj , are defined the same

as the above remark (N, > 3), it is easy to obtain that E' € M(I,{N},{Ck,}) satisfies the
conditions of Theorem 1. Then by Theorem 1, if dimp F = 1, we have dimp f(FE) = 1 for
any l-dimensional quasisymmetric mapping f.

Therefore Theorem 1 extends the results of Theorem 1.2 in [12] when ¢, > 0.

3 Preliminaries

Before the proofs of the two theorems, we give some preliminaries.
The following fact on packing dimension can be found in Proposition 2.3 of [15].
Lemma 1 Let F C R” be a Borel set, and p a probability measure supported on E.
If there exists E' C E with u(E’) > 0 and a constant ¢ > 0 such that
(B(z,7))

lim inf H

I - <cforal z € E,
T— T

then dimp E > s.

We need some properties on quasisymmetry. For closed interval I, set pI be a closed
interval with a length of p|I| and with the same center with I.

From [16], it is easy to check the following lemma.

Lemma 2 Suppose f : R! — R! is quasisymmetric, there exist constants A, K, > 0,
g > 1 and p € (0,1] such that

| F(oD) |
7oy < 3.1)

and
LA T .

) < <AG=)P
|1 | (1) | 1|
whenever closed interval I, I’ satisfying I C I’

The following lemma comes from [17].

Lemma 3 Suppose E is a Moran set satisfying the following conditions
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(1) supng < oo;

(2) Ok< ir]if Dy, < s%p Dy < 1.
Then we have dimp F = s*.

It is easy to verify that if for a Moran set £ € M(I,{ns},{ck;}), the conditions of
Theorem 1 hold, then E satisfies sgp ng < oo and 0 < ir]if Dy < sip Dy < 1, by Lemma 3,
dimp F = s*.

The length of o € Q, will be denoted by |o|(= k).

Fix a 1-dimensional quasisymmetric mapping f : R! — R!. Given a Moran set FE and
its basic interval I, of E with rank k, we also call f(I,) a basic interval of f(FE) with rank

k for convenience. Let J, = f(1,).
3.1 The Measure i, Supported on f(F)

Fix d € (0,1). We will define a probability measure pq on f(E) as follows.
Without loss of generality, we set I = [0, 1] the initial interval of E.
Let pqa(f([0,1])) = 1, for every k > 1, and for every basic interval J, of rank k — 1, we

define

| Joujr|*

Nk d
> o
j=1

pa(Jonjr) = pa(Js)

for 1 < j' < ny.
3.2 Estimate of p4(J,)

The next proposition can be found in [11].

Proposition 1 Suppose E is the Moran set satisfying supn; < co and
k

<i<k: - <
klim card{l_z;k D, < a} _

1 (3.3)

for some constant a € (0,1). If s* = 1, then there exists a subsequence {k;}; and a constant
¢ > 0 such that
pa(Jo) < C|Ja|d (34)
for any basic interval J, of f(E) with |o| € {k;}+.
By Proposition 1, we have the corollary below.
Corollary 1  Suppose F is the Moran satisfies the conditions of Theorem 1. If

dimp E = 1, then there exists a subsequence {k;}; and a constant ¢ > 0 such that
pa(Js) < C|J0|d
for any basic interval J, of f(E) with |o| € {k;},.
Proof Since ny > 2, r, >0, we have D, <1 —1r, < 1. Take @« =1 — r,, we have

. card{l <i<k:Dp<1l-r.}
kh—{{.lo k

:1’
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notice that dim, £/ = s* by Lemma 3 and Proposition 1, the corollary follows.

4 Proof of Theorem 1

Let {k;}+ be the subsequence in Proposition 1. Let

B, = {:v € f(E): f(x) € IF U IE for some |o| = k; — 1}

and B= |J () Bt
s=1t>s
Lemma 4 Suppose that n, > 3 and ¢, > 0. Then there exists a constant € > 0 such

that
pa(JE) + pa(JEF)

,ud(Ja)
for all o with |o| =k — 1 and 1 < ji, jo < ny.

<1-—c¢

Proof With out loss of generality, we let JX = J .1, J® = J,.p,, since ng > 3. Take

o

i0(1 < iy < ny) as follows
Case 1 If . | Jowi| # max{|Jss1l, [Joun, |}, Pick i such that max. |JU*Z] | orwig |5

1<5< 1<i<
then 2 <ig < ny — 1 we have

pa(JE) + pa(JF) _ pa(Jos1) + 1a(Josny,) _ FALERY S
/J’d(Ja) /-Ld(Ja) ik: |Ja*i|d
¢ d
< 1o el oy e ! o
Z |J0*i|d (Sup nk)(lgjlax | a*z|) Sllip ng
Ple € = 1 , we have
S‘;Pﬂk
palJy) +mally)
lud(‘]a) - :
Case 2 Iflg}f?; | Jovi| = max{|Jps1, | Josny| }, Pick i such that [I,.;,| = max Louil,
we have - m
pa(JE) + pa(JF) _ pa(Jos1) + ta(Josny,) _ FALERY S
/J’d(JU) /-Ld(JU) ik: |Ja*i|d
|Ja*i ‘d |Jo*i ’d
< _ 797l < 1 _ o .
< - < _
S [l (Sgp ”’c)(lg}fgﬁk | Joei])

Assume [Jy.q| = max|Ja*i|. Since
bupnk|I(,*m\ > Z | Ioui] = Z Howil = Howr] = [Toun,|

2<i<np—1 1<i<ny,

1
z (= Dol + Houn, ) 2 (0= 1)1 + =) Lo

*
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and % > r,, where [ and r, are obtained in Theorem 1, then there exists constants ¢; > 0
and d, > 0, such that % > 01 and |‘II"71| < 5.
- orig

By Lemma 2, we have

|Ia*i | |Ja*i | ‘Ia*i |
M=) < = <A
15| | Jo ] 15|
|Io'*1| |Ja*1| |Ia*1| 52 |Ia*i |
A( )¢ < < 4( )< A=)
1o | | /o] 15| 15|
which imply
|Jo*i ‘ A |Ia*i | — —
ol 5 A (Hoxiolyg—p 5 2 (5 y2-p
AT ARTARENE AL
Therefore
L R d
WD)+ i) Vel
pa(Js) (Sl;pnk)(lJo*ll)
where
A (6,)ta=P)/
€= Sup ng.
4d6§7d 1 kp k
Proposition 2 p4(B) =0 for d € (0,1).
Proof It suffices to prove p4(() Bt) = 0 for any s.
t>s
Let
B, = U J,.
lo|=k,
( ﬂ Bt) ﬂ Ja?fg
t>s
Notice that [ B; = E,and E, .1 C B, C Ex_1 C ---, where
t>s k=1
E
Ha(Er+1) <1. (4.1)
pa(Ex)

For any o, let JL = f(IL), JE = f(IEF). Therefore, for t > s,

B.- U (JUL U Jf) .

lo|=k:—1,
(N BN Jo#2
t>s

By Lemma 4, we have
pa(JE) + pa(JE)

/-‘Ld(Ekt)
— = < sup <1-—g¢, 4.2
Md(Ekt—l) lo|=K¢—1 ,ud(Ja> ( )

it follows from (4.1) and (4.2) that

paBr,) — _ paBr)  pa(Br-r)  HadBea)

pa(Er, ) pa(Er,—1)  pa(Er,—2) pa(Er, )
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which implies

Md(ﬂ By) = lim pa(By,) < lim (1 - €)' *pa(Ex,) = 0.
t>s

Next we finish the proof of Theorem 1.

From the proposition above, we have pq(f(E)\B) =1 > 0. Fix z € (f(E)\B), then we
can pick t, | oo satisfies f~1(z) € I,\(IL |JIZ) with some |o| = k;, — 1.

Notice that g,(«) = |f~*(B(x,a))] is continuous. We can pick r,, such that

‘f_l(B(J,‘,Tn))‘ :min{‘1£|7|jf|}v (43)

notice that r,, — 0 when n — oo.
Since f~(x) € L\(IX U TR) and | £~ (B(z,7,))| = min{|I¥], |17}, we have

Y B(z,ry)) C I,

which implies B(z,r,) C J,.
Let Jowjis Josjor*sJosj, (1 <1 < ny,,. ) be the basic intervals of rank k;, meeting
l/
B(z,ry,). Then (B(z,r,) N f(E)) C U Jowj;-
i=1
Using the conclusion of Corollary 2, we get
pa(B(w,r0)) = pa(Bla,ry) () F(E))

4

4 4
< /J’d(U JU*ji) < Zud(‘]a*jq‘,) < CZ |J0*j7t|d .
=1 1=1

i=1

Since r, > 0, for any i, there exists a constant § > 1,

Louj,| < Smin{|I2], |15} =6 | f " (B(z, 7))

)

hence |1,.;,| C (38)f~1(B(z,ry,)), where 6 > 1. By Lemma 2, we have

|J0'*ji‘ = |f(IU*jL)| S ‘f(('gd)fil(B(xarn)))‘ S K35 |(B(ZL‘,Tn))| = <2K35)Tna

where K35 > 0 is a constant. This together with (4.4) gives
pa(B(z,ry) < [2%(sup ny)e(Kss)?] - i
Let n — oo, then for any = € f(F)\B, there exists a constant C’ > 0, such that

lim inf 7}%(3(:,7“)) <,
r—0 T

it follows from pq(f(E)\B) > 0 and Lemma 1 that dim, f(E) > d. Let d — 1, we have

dim,, f(E) = 1.
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