ON THE SUM OF *k*-POWER OF ALL DISTANCES IN BIPARTITE GRAPHS

GENG Xian-ya¹, ZHAO Hong-jin¹, XU Li-li²

(1.School of Mathematics and Big Data, Anhui University of Science and Technology, Huainan 232001, China)

(2. School of Mathematics and Statistics, Central China Normal University, Wuhan 430079, China)

Abstract: Denote the sum of k-power of all distances between all pairs of vertices in G by $S_k(G)$. In this paper, by applying the vertex partition method, sharp bound of all connected *n*-vertex bipartite graphs of diameter d on the $S_k(G)$ is obtained, and the extremal graphs with the minimal $S_k(G)$ are also characterized.

Keywords:bipartite graph; diameter; extremal graph2010 MR Subject Classification:05C50; 05C35Document code:AArticle ID:0255-7797(2017)06-1111-07

1 Introduction

In this paper, we only consider connected, simple and undirected graphs and assume that all graphs are connected, and refer to Bondy and Murty [2] for notation and terminologies used but not defined here.

Let $G = (V_G, E_G)$ be a graph with vertex set V_G and edge set E_G . G - v, G - uv denote the graph obtained from G by deleting vertex $v \in V_G$ or edge $uv \in E_G$, respectively (this notation is naturally extended if more than one vertex or edge is deleted). Similarly, G + uvis obtained from G by adding an edge $uv \notin E_G$. For $v \in V_G$, let $N_G(v)(N(v))$ for short) denote the set of all the adjacent vertices of v in G and $d(v) = |N_G(v)|$, the degree of v in G.

A bipartite graph G is a simple graph, whose vertex set V_G can be partitioned into two disjoint subsets V_1 and V_2 such that every edge of G joins a vertex of V_1 with a vertex of V_2 . A bipartite graph in which every two vertices from different partition classes are adjacent is called complete, which is denoted by $K_{m,n}$, where $m = |V_1|, n = |V_2|$.

The distance d(u, v) between vertices u and v in G is defined as the length of a shortest path between them. The diameter of G is the maximal distance between any two vertices of G. Let B_n^d be the class of all bipartite graphs of order n with diameter d.

Received date: 2017-01-08 Accepted date: 2017-04-01

Foundation item: Supported by National Natural Science Foundation of China (11401008; 61672001; 61572035; 61402011) and China Postdoctoral Science Foundation (2016M592030).

Biography: Geng Xianya (1981–), male, born at Fuyang, Anhui, associate professor, major in graph theory and its application.

Let $S_k = S_k(G)$ be the sum of k-power of distances between all pairs of vertices of G, which is denoted by

$$S_k = S_k(G) = \sum_{u,v \in V_G} d_G^k(u,v) = \frac{1}{2} \sum_{v \in V_G} H_G(v),$$

where $H_G(v)$ is the sum of k-power of all diatances from v in G.

When k = 1, S_k is Wiener index. The Wiener index is popular in chemical literatures. This quantity was introduced by Mustapha Aouchich and Pierre Hansen in [1] and was extensively studied in the monograph. Recently, $S_2(G)$ is applied to the research of distance spectral radius. Zhou and Trinajstić [19] proved an upper bound using the order n in addition to the sum of the squares of the distances $S_2(G)$, see [18, 20]. They also proved a lower bound on the distance spectral radius of a graph using only $S_2(G)$. As a continuance of it, in this paper, we determine the extremal graphs with the minimal $S_k(G)$ for the class of all connected n-vertex bipartite graphs of diameter d. For surveys and some up-to-date papers related to Wiener index of trees and line graphs, see [7, 9, 11–15, 17] and [3, 6, 8, 10, 16], respectively.

In this paper we study the quantity S_k in the case of *n*-vertex bipartite graphs, which is an important class of graphs in graph theory. Based on the structure of bipartite graphs, sharp bounds on S_k among B_n^d are determined. The corresponding extremal graph is also identified.

Further on we need the following lemma, which is the direct consequence of the definition of S_k .

Lemma 1.1 Let G be a connected graph of order n and not isomorphic to K_n . Then for each edge $e \in \overline{G}, S_k(G) > S_k(G+e)$.

2 The Graph with Minimum S_k among B_n^d

Let G be a graph in B_n^d . Clearly there exists a partition V_0, V_1, \dots, V_d of V_G such that $|V_0| = 1$ and d(u, v) = i for each vertex $v \in V_i$ and $u \in V_0$ $(i = 0, 1, \dots, d)$. We call V_i a block of V_G . Two blocks V_i, V_j of V_G are adjacent if |i - j| = 1. For convenience, let $|V_i| = l_i$ throughout this section.

Lemma 2.1 [15] For any graph $G \in B_n^d$ with the above partition of V_G , $G[V_i]$ induces an empty graph (i.e., containing no edge) for each $i \in (i = 0, 1, \dots, d)$.

Given a complete bipartite graph $K_{\lfloor \frac{n-d+3}{2} \rfloor, \lceil \frac{n-d+3}{2} \rceil}$ with bipartition (X, Y) satisfying $|Y| = \lceil \frac{n-d+3}{2} \rceil$ and $|X| = \lfloor \frac{n-d+3}{2} \rfloor \ge 2$, choose a vertex x (resp. y) in X (resp. Y) and let $G' = K_{\lfloor \frac{n-d+3}{2} \rfloor, \lceil \frac{n-d+3}{2} \rceil} - xy$, where G' is depicted in Figure 1. Let G^* be the graph obtained from G' by attaching paths $P_{\frac{d-3}{2}}$ and $P_{\frac{d-3}{2}}$ at x and y, respectively. It is routine to check that $\hat{G}[p,q] \in B_n^d$ for odd d.

Given a complete bipartite graph $K_{p,q}$ with bipartition (X, Y) satisfying $|X| = p \ge 3$, $|Y| = q \ge 2$, and p + q = n - d + 4, choose two different vertices, say x, y in X and let

$$G'' = K_{p,q} - \{xw : w \in V' \subsetneq Y\} - \{yw' : w' \in Y \setminus V'\},\$$

where G'' is depicted in Figure 1. Let $\hat{G}[p,q]$ be the graph obtained from G'' by attaching paths $P_{\frac{d-4}{2}}$ and $P_{\frac{d-4}{2}}$ at x and y, respectively. It is routine to check that $\hat{G}[p,q] \in B_n^d$ for even d. Set $\mathbb{B} = \{\hat{G}[p,q] : p+q = n-d+4, |(p-2)-q| \leq 1\}.$

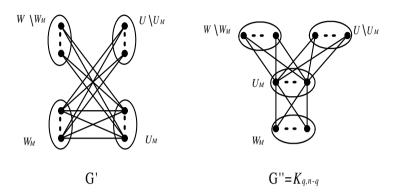


Figure 1: Graphs G' and G''

Theorem 2.2 Let G be in B_n^d with the minimum $S_k(G)$.

(i) If d = 2, then $G \cong K_{\lfloor \frac{n}{2} \rfloor, \lfloor \frac{n}{2} \rfloor}$.

(ii) If $d \ge 3$, then $G \cong G^*$ for odd d and $G \in \mathbb{B}$ for even d, where G^* and \mathbb{B} are defined as above.

Proof Choose $G \in B_n^d$ with bipartition (X, Y) such that $S_k(G)$ is as small as possible.

(i) If d = 2, then by Lemma 1.1, $G \cong K_{n-t,t}$, where $t \ge 2$ or $n-t \ge 2$. Let |X| = n-t, |Y| = t. Then it is routine to check that, for all x (resp. y) in X (resp. Y), one has

$$H_G(x) = 2^k n - (2^k - 1)t - 2^k, H_G(y) = (2^k - 1)t + n - 2^k,$$

which gives

$$S_k(K_{n-t,t}) = \frac{1}{2} \left(\sum_{x \in X} H_G(x) + \sum_{y \in Y} H_G(y) \right)$$

= $\frac{1}{2} (n-t)(2^k n - (2^k - 1)t - 2^k) + \frac{1}{2} t((2^k - 1)t + n - 2^k)$
= $\frac{1}{2} (2^k n^2 + 2(2^k - 1)t^2 - 2(2^k - 1)nt - 2^k n).$
= $2^{k-1} n^2 + (2^k - 1)t^2 - (2^k - 1)nt - 2^{k-1}n.$

If n is odd, then $S_k(K_{n-t,t}) \geq \frac{2^k+1}{4}n^2 - 2^{k-1}n + \frac{2^k-1}{4}$ with equality if and only if $t = \frac{n-1}{2}$, or $t = \frac{n+1}{2}$, i.e. $G \cong K_{\lfloor \frac{n}{2} \rfloor, \lceil \frac{n}{2} \rceil}$; And if n is even, then $S_k(K_{n-t,t}) \geq \frac{2^k+1}{4}n^2 - 2^{k-1}n$ with equality if and only if $t = \frac{n}{2}$, i.e., $G \cong K_{\frac{n}{2},\frac{n}{2}}$, as desired.

(ii) First we show the following facts.

Fact 1 $G[V_{i-1}, V_i]$ induces a complete bipartite subgraph for each $i \in (0, 1, \dots, d)$, and $|V_d| = 1$ for $d \ge 3$.

Proof of Fact 1 The first part follows directly from Lemmas 1.1 and 2.1. So in what follows, we prove the second part.

Let $d \geq 3$, $z \in V_d$ and $w \in V_{d-3}$. If $|V_d| > 2$, then $G + zw \in B_n^d$ and $V_0 \cup V_1 \cup (V_{d-3} \setminus \{w\}) \cup V_{d-2} \cup (V_{d-1} \cup \{w\}) \cup V_d$ is a partition of V_{G+zw} . By Lemma 1.1 $S_k(G + zw) < S_k(G)$, a contradiction.

This completes the proof of Fact 1.

Fact 2 Consider the vertex partition $V_G = V_0 \cup V_1 \cup \cdots \cup V_d$ of G.

(i) If d is odd, then

$$|V_0| = |V_1| = \dots = \left| V_{\frac{d-1}{2}-1} \right| = \left| V_{\frac{d-1}{2}+2} \right| = \dots = |V_{d-1}| = |V_d| = 1, \left| |V_{\frac{d-1}{2}}| - |V_{\frac{d-1}{2}+1}| \right| \le 1.$$

(ii) If d is even, then

$$|V_0| = |V_1| = \dots = \left| V_{\frac{d}{2}-2} \right| = \left| V_{\frac{d}{2}+2} \right| = \dots = |V_{d-1}| = |V_d| = 1, \left| |V_{\frac{d}{2}}| - (|V_{\frac{d}{2}-1}| + |V_{\frac{d}{2}+1}|) \right| \le 1.$$

Proof of Fact 2 (i) Note that $|V_0| = |V_d| = 1$, here we only show that $|V_1| = 1$ holds. Similarly, we can also show $|V_2| = \cdots = \left|V_{\frac{d-1}{2}-1}\right| = \left|V_{\frac{d-1}{2}+2}\right| = \cdots = |V_{d-1}| = 1$, we omit the procedure here.

In fact, if d = 3, our result is trivial. So we consider that $d \ge 5$. If $|V_1| \ge 2$, then choose $u \in V_1$ and let $G' = G - v_0 u + \{ux : x \in V_4\}$. In fact, the vertex partition of G' is $V_0 \cup (V_1 \setminus \{u\}) \cup V_2 \cup (V_3 \cup \{u\}) \cup V_4 \cup \cdots \cup V_d$, in view of Fact 1 and the choice of G, any two of adjacent blocks of $V_{G'}$ induce a complete bipartite subgraph and $|V_d| = 1$ for $d \ge 5$.

Note that
$$\sum_{i=4}^{d} \left((i-1)^{k} - (i-3)^{k} \right) l_{i} \geq \sum_{i=4}^{d} \left((i-1)^{k} - (i-3)^{k} \right) > (3^{k}-1),$$
$$H_{G}(u) = H_{G'}(u) + \sum_{i=4}^{d} \left((i-1)^{k} - (i-3)^{k} \right) \right) l_{i} - (3^{k}-1);$$
$$H_{G}(v) = H_{G'}(v) - (3^{k}-1), \quad \forall v \in V_{0};$$
$$H_{G}(v) = H_{G'}(v), \quad \forall v \in (V_{1} \setminus \{u\}) \cup V_{2} \cup V_{3};$$
$$H_{G}(v) = H_{G'}(v) + (i-1)^{k} - (i-3)^{k}, \quad \forall v \in V_{4} \cup V_{5} \cup \dots \cup V_{d}.$$

This gives

$$S_{k}(G) - S_{k}(G') = \frac{1}{2} \left(\sum_{v \in V_{G}} H_{G}(v) - \sum_{v \in V_{G'}} H_{G'}(v) \right)$$

$$= \frac{1}{2} \left(\sum_{v \in V_{0}} (H_{G}(v) - H_{G'}(v)) + H_{G}(u) - H_{G'}(u) \right) + \sum_{i=4}^{d} \sum_{v \in V_{i}} (H_{G}(v) - H_{G'}(v))$$

$$= \frac{1}{2} \left[-2(3^{k} - 1) + 2\sum_{i=4}^{d} \left((i - 1)^{k} - (i - 3)^{k} \right) l_{i} \right]$$

$$= \left[-(3^{k} - 1) + \sum_{i=4}^{d} \left((i - 1)^{k} - (i - 3)^{k} \right) l_{i} \right] > 0,$$

i.e., $S_k(G) > S_k(G')$, a contradiction to the choice of G. Hence, $|V_1| = 1$.

Next we show that if d is odd, then $\left| |V_{\frac{d-1}{2}}| - |V_{\frac{d-1}{2}+1}| \right| \leq 1$. Without loss of generality, we assume that $\left| V_{\frac{d-1}{2}} \right| \geq \left| V_{\frac{d-1}{2}+1} \right|$. Then it suffices to show that $\left| V_{\frac{d-1}{2}} \right| - \left| V_{\frac{d-1}{2}+1} \right| \leq 1$. If this is not true, then $\left| V_{\frac{d-1}{2}} \right| - \left| V_{\frac{d-1}{2}+1} \right| \geq 2$. Choose $w \in V_{\frac{d-1}{2}}$, let

$$G' = G - \left\{ ux : x \in V_{\frac{d-3}{2}} \cup V_{\frac{d+1}{2}} \right\} + \left\{ wy : y \in V_{\frac{d-1}{2}} \cup V_{\frac{d+3}{2}} \right\},$$

then the vertex partition of G' is

$$V_0 \cup V_1 \cup \dots \cup V_{\frac{d-3}{2}} \cup \left(V_{\frac{d-1}{2}} \setminus \{w\}\right) \cup \left(V_{\frac{d+1}{2}} \cup \{w\}\right) \cup V_{\frac{d+3}{2}} \cup \dots \cup V_d$$

and each of the two adjacent blocks of $V_{G'}$ induces a complete bipartite graph. By direct calculation, we have

$$\begin{aligned} S_k(G') - S_k(G) &= \left[\left(|V_{\frac{d-1}{2}}| - 1 \right) + 2^k |V_{\frac{d+1}{2}}| \right] - \left[2^k \left(|V_{\frac{d-1}{2}}| - 1 \right) + |V_{\frac{d+1}{2}}| \right] \\ &= -(2^k - 1) \left(|V_{\frac{d-1}{2}}| - |V_{\frac{d+1}{2}}| - 1 \right) \le -(2^k - 1) < 0, \end{aligned}$$

a contradiction to the choice of G.

(ii) By the same discussion as the proof of the first part of (i) as above, we can show that $|V_0| = |V_1| = \cdots = |V_{\frac{d}{2}-2}| = |V_{\frac{d}{2}+2}| = \cdots = |V_{d-1}| = |V_d| = 1$, we omit the procedure here.

Now, we show that if d is even, then $\left| |V_{\frac{d}{2}}| - (|V_{\frac{d}{2}-1}| + |V_{\frac{d}{2}+1}|) \right| \leq 1$. Without loss of generality, we assume that $\left| V_{\frac{d}{2}} \right| < \left| V_{\frac{d}{2}-1} \right| + \left| V_{\frac{d}{2}+1} \right|$. Then it suffices to show that

$$\left| V_{\frac{d}{2}-1} \right| + \left| V_{\frac{d}{2}+1} \right| - \left| V_{\frac{d}{2}} \right| \le 1.$$

If this is not true, then $\left|V_{\frac{d}{2}-1}\right| + \left|V_{\frac{d}{2}+1}\right| - \left|V_{\frac{d}{2}}\right| \ge 2$. It is routine to check that at least one of $V_{\frac{d}{2}-1}$ and $V_{\frac{d}{2}+1}$ contains at least two vertices. Hence, we assume without loss of generality that $\left|V_{\frac{d}{2}-1}\right| \ge 2$. Choose $w \in V_{\frac{d}{2}-1}$ and let

$$G^* = G - \left\{ wx : x \in V_{\frac{d}{2}-2} \cup V_{\frac{d}{2}} \right\} + \left\{ wy : y \in V_{\frac{d}{2}-1} \cup V_{\frac{d}{2}+1} \right\},$$

then the vertex partition of G^* is

$$V_0 \cup V_1 \cup \dots \cup V_{\frac{d-3}{2}} \cup \left(V_{\frac{d}{2}-1} \setminus \{w\}\right) \cup \left(V_{\frac{d}{2}} \cup \{w\}\right) \cup V_{\frac{d}{2}+1} \cup \dots \cup V_d$$

and each of the two adjacent blocks of V_{G^*} induces a complete bipartite graph. By direct calculation, we have

$$S_{k}(G^{*}) - S_{k}(G) = \left[\left(|V_{\frac{d}{2}-1}| + |V_{\frac{d}{2}+1}| - 1 \right) + 2^{k} |V_{\frac{d}{2}}| \right] - \left[2^{k} \left(|V_{\frac{d}{2}-1}| + |V_{\frac{d}{2}+1}| - 1 \right) + |V_{\frac{d}{2}}| \right] \\ = -(2^{k} - 1) \left[|V_{\frac{d}{2}-1}| + |V_{\frac{d}{2}+1}| - \left(|V_{\frac{d}{2}}| + 1 \right) \right] \le -(2^{k} - 1) < 0,$$

a contradiction to the choice of G.

Now we come back to show the second part of Theorem 2.2. In view of Fact 2(i), if d is odd, note that $|V_{\frac{d-1}{2}}| + |V_{\frac{d-1}{2}+1}| = n - d + 1$, together with $||V_{\frac{d-1}{2}}| - |V_{\frac{d-1}{2}+1}|| \le 1$, we obtain that $G \cong G^*$, as desired.

In view of Fact 2(ii), if d is even, note that $|V_{\frac{d}{2}}| + |V_{\frac{d}{2}-1}| + |V_{\frac{d}{2}+1}| = n - d + 2$, together with $\left||V_{\frac{d}{2}}| - (|V_{\frac{d}{2}-1}| - |V_{\frac{d}{2}+1}|)\right| \leq 1$, we obtain that $G \in \mathbb{B}$. Furthermore,

$$\mathbb{B} = \left\{ \widehat{G}[p,q] : p+q = n-d+4, p = \frac{n-d+6}{2} \right\}$$

for even n and $\mathbb{B} = \left\{ \widehat{G}[p,q] : p+q = n-d+4, p = \frac{n-d+7}{2} \right\}$ for odd n. This completes the proof.

References

- Mustapha Aouchiche, Pierre Hansen. Distance spectra of graphs: a survey[J]. Lin. Alg. Appl., 2014, 458: 301–386.
- [2] Bondy J A, Murty U S R. Graph theory[M]. GTM, Vol. 224, American: Springer, 2008.
- [3] Cohen N, Dimitrov D, Krakovski R, et al. On Wiener index of graphs and their line graphs[J]. MATCH Commun. Math. Comput. Chem., 2010, 64: 683–698.
- [4] Wang T, Wu L X. Decomposition of planar graphs without 5-cycles or K_4 [J]. J. Math., 2016, 36(2): 223–233.
- [5] Zhang X E, Jiang W. Complements of distance-regular graphs[J]. J. Math., 2016, 36: 234–238.
- [6] Dankelmann P, Gutman I, Mukwembi S, et al. The edge-Wiener index of a graph[J]. Disc. Math., 2009, 309: 3452–3457.
- [7] Dobrynin A, Entringer R, Gutman I. Wiener index of trees: theory and applications[J]. Acta Appl. Math., 2001, 66: 211–249.
- [8] Don Y, Bian Y, Gao H, et al. The polyphenyl chains with extremal edge-Wiener indices[J]. Match Commun. Math. Comput. Chem., 2010, 64: 757–766.
- [9] Gutman I, Klavžar S, Mohar B, et al. Fifty years of the Wiener index[J]. Match Commun. Math. Comput. Chem., 1997, 3: 51–259.
- [10] Iranmanesh A, Kafrani A S. Computation of the first edge-Wiener index of TUC₄C₈(S) nanotube[J]. Match Commun. Math. Comput. Chem., 2009, 62: 311–352.
- [11] Li S C, Song Y B. On the sum of all distances in bipartite graphs[J]. Disc. Appl. Math., 2014, 169: 176–185.
- [12] Liu M, Liu B. On the variable Wiener indices of trees with given maximum degree[J]. Math. Comput. Model., 2010, 52: 1651–1659.
- [13] Luo W, Zhou B. On ordinary and reverse Wiener indices of non-caterpillars[J]. Math. Comput. Model., 2009, 50: 188–193.
- [14] Merris R. An edge version of the matrix-tree theorem and the Wiener index[J]. Lin. Multi. Alg., 1988, 25: 291–296.
- [15] Pisanski T, Žerovnik J. Edge-contributions of some topological indices and arboreality of molecular graphs[J]. Ars. Math. Contemp., 2009, 2: 49–58.

- [16] Wu B. Wiener index of line graphs[J]. Match Commun. Math. Comput. Chem., 2010, 64: 699–706.
- [17] Zhang X D, Liu T, Han M X. Maximum Wiener index of trees with given degree sequence[J]. Match Commun. Math. Comput. Chem., 2010, 64: 661–682.
- [18] Zhou B, Trinajstić N. Mathematical properties of molecular descriptors based on distances[J]. Croat. Chem. Acta, 2010, 83: 227–242.
- [19] Zhou B, Trinajstić N. On the largest eigenvalue of the distance matrix of a connected graph[J]. Chem. Phys. Lett., 2007, 447: 384–387.
- [20] Zhou B, Trinajstić N. Further results on the largest eigenvalues of the distance matrix and some distance based matrices of connected (molecular) graphs[J]. Intern. Elec. J. Mol. Des., 2007, 6: 375–384.
- [21] Zhang H H, Li S C, Zhao L F. On the further relation between the (revised) Szeged index and the Wiener index of graphs[J]. Discr. Appl. Math., 2016, 206: 152–164.

二部图的距离k次方和问题

耿显亚1,赵红锦1,徐李立2

(1.安徽理工大学数学与大数据学院,安徽淮南 232001)

(2.华中师范大学数学与统计学院,湖北武汉 430079)

摘要: 本文定义 *S_k(G)* 为 *G* 中所有点对之间距离的 *k* 次方之和.利用顶点划分的方法得到了直径为 *d* 的 *n* 顶点连通二部图 *S_k(G)* 的下界,并确定了达到下界所对应的的极图. **关键词:** 二部图; 直径; 极图

MR(2010)主题分类号: 05C50; 05C35 中图分类号: O157.6