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Abstract: Denote the sum of k-power of all distances between all pairs of vertices in G by

Sk(G). In this paper, by applying the vertex partition method, sharp bound of all connected n-

vertex bipartite graphs of diameter d on the Sk(G) is obtained, and the extremal graphs with the

minimal Sk(G) are also characterized.
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1 Introduction

In this paper, we only consider connected, simple and undirected graphs and assume that
all graphs are connected, and refer to Bondy and Murty [2] for notation and terminologies
used but not defined here.

Let G = (VG, EG) be a graph with vertex set VG and edge set EG. G− v, G−uv denote
the graph obtained from G by deleting vertex v ∈ VG or edge uv ∈ EG, respectively (this
notation is naturally extended if more than one vertex or edge is deleted). Similarly, G+uv

is obtained from G by adding an edge uv /∈ EG. For v ∈ VG, let NG(v)(N(v) for short)
denote the set of all the adjacent vertices of v in G and d(v) = |NG(v)|, the degree of v in
G.

A bipartite graph G is a simple graph, whose vertex set VG can be partitioned into two
disjoint subsets V1 and V2 such that every edge of G joins a vertex of V1 with a vertex of V2.
A bipartite graph in which every two vertices from different partition classes are adjacent is
called complete, which is denoted by Km,n, where m = |V1|, n = |V2|.

The distance d(u, v) between vertices u and v in G is defined as the length of a shortest
path between them. The diameter of G is the maximal distance between any two vertices of
G. Let Bd

n be the class of all bipartite graphs of order n with diameter d.
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Let Sk = Sk(G) be the sum of k-power of distances between all pairs of vertices of G,
which is denoted by

Sk = Sk(G) =
∑

u,v∈VG

dk
G(u, v) =

1
2

∑
v∈VG

HG(v),

where HG(v) is the sum of k-power of all diatances from v in G.
When k = 1, Sk is Wiener index. The Wiener index is popular in chemical literatures.

This quantity was introduced by Mustapha Aouchich and Pierre Hansen in [1] and was
extensively studied in the monograph. Recently, S2(G) is applied to the research of distance
spectral radius. Zhou and Trinajstić [19] proved an upper bound using the order n in
addition to the sum of the squares of the distances S2(G), see [18, 20]. They also proved a
lower bound on the distance spectral radius of a graph using only S2(G). As a continuance of
it, in this paper, we determine the extremal graphs with the minimal Sk(G) for the class of all
connected n-vertex bipartite graphs of diameter d. For surveys and some up-to-date papers
related to Wiener index of trees and line graphs, see [7, 9, 11–15, 17] and [3, 6, 8, 10, 16],
respectively.

In this paper we study the quantity Sk in the case of n-vertex bipartite graphs, which
is an important class of graphs in graph theory. Based on the structure of bipartite graphs,
sharp bounds on Sk among Bd

n are determined. The corresponding extremal graph is also
identified.

Further on we need the following lemma, which is the direct consequence of the definition
of Sk.

Lemma 1.1 Let G be a connected graph of order n and not isomorphic to Kn. Then
for each edge e ∈ G,Sk(G) > Sk(G + e).

2 The Graph with Minimum Sk among Bd
n

Let G be a graph in Bd
n. Clearly there exists a partition V0, V1, · · · , Vd of VG such that

|V0| = 1 and d(u, v) = i for each vertex v ∈ Vi and u ∈ V0 (i = 0, 1, · · · , d). We call Vi a
block of VG. Two blocks Vi, Vj of VG are adjacent if |i− j| = 1. For convenience, let |Vi| = li

throughout this section.
Lemma 2.1 [15] For any graph G ∈ Bd

n with the above partition of VG, G[Vi] induces
an empty graph (i.e., containing no edge) for each i ∈ (i = 0, 1, · · · , d).

Given a complete bipartite graph Kbn−d+3
2 c,dn−d+3

2 e with bipartition (X, Y ) satisfying
|Y | = dn−d+3

2
e and |X| = bn−d+3

2
c ≥ 2, choose a vertex x (resp. y) in X (resp. Y ) and let

G′ = Kbn−d+3
2 c,dn−d+3

2 e− xy, where G′ is depicted in Figure 1. Let G∗ be the graph obtained
from G′ by attaching paths P d−3

2
and P d−3

2
at x and y, respectively. It is routine to check

that Ĝ[p, q] ∈ Bd
n for odd d.

Given a complete bipartite graph Kp,q with bipartition (X, Y ) satisfying |X| = p ≥
3, |Y | = q ≥ 2, and p + q = n− d + 4, choose two different vertices, say x, y in X and let

G′′ = Kp,q − {xw : w ∈ V ′ ( Y } − {yw′ : w′ ∈ Y \V ′},



No. 6 On the sum of k-power of all distances in bipartite graphs 1113

where G′′ is depicted in Figure 1. Let Ĝ[p, q] be the graph obtained from G′′ by attaching
paths P d−4

2
and P d−4

2
at x and y, respectively. It is routine to check that Ĝ[p, q] ∈ Bd

n for

even d. Set B = {Ĝ[p, q] : p + q = n− d + 4, |(p− 2)− q| ≤ 1}.

W U

MW MU

MU

MW

\ MW
W MW\\ MU

\U MU

G' G''=Kq,n-q

Figure 1: Graphs G′ and G′′

Theorem 2.2 Let G be in Bd
n with the minimum Sk(G).

(i) If d = 2, then G ∼= Kbn
2 c,dn

2 e.
(ii) If d ≥ 3, then G ∼= G∗ for odd d and G ∈ B for even d, where G∗ and B are defined

as above.
Proof Choose G ∈ Bd

n with bipartition (X, Y ) such that Sk(G) is as small as possible.
(i) If d = 2, then by Lemma 1.1, G ∼= Kn−t,t, where t ≥ 2 or n − t ≥ 2. Let |X| =

n− t, |Y | = t. Then it is routine to check that, for all x (resp. y) in X (resp. Y ), one has

HG(x) = 2kn− (2k − 1)t− 2k,HG(y) = (2k − 1)t + n− 2k,

which gives

Sk(Kn−t,t) =
1
2

(∑
x∈X

HG(x) +
∑
y∈Y

HG(y)

)

=
1
2
(n− t)(2kn− (2k − 1)t− 2k) +

1
2
t((2k − 1)t + n− 2k)

=
1
2

(
2kn2 + 2(2k − 1)t2 − 2(2k − 1)nt− 2kn

)
.

= 2k−1n2 + (2k − 1)t2 − (2k − 1)nt− 2k−1n.

If n is odd, then Sk(Kn−t,t) ≥ 2k+1
4

n2 − 2k−1n + 2k−1
4

with equality if and only if t = n−1
2

,
or t = n+1

2
, i.e. G ∼= Kbn

2 c,dn
2 e; And if n is even, then Sk(Kn−t,t) ≥ 2k+1

4
n2 − 2k−1n with

equality if and only if t = n
2
, i.e., G ∼= Kn

2 , n
2
, as desired.

(ii) First we show the following facts.
Fact 1 G[Vi−1, Vi] induces a complete bipartite subgraph for each i ∈ (0, 1, · · · d), and

|Vd| = 1 for d ≥ 3.
Proof of Fact 1 The first part follows directly from Lemmas 1.1 and 2.1. So in what

follows, we prove the second part.
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Let d ≥ 3, z ∈ Vd and w ∈ Vd−3. If |Vd| > 2, then G+zw ∈ Bd
n and V0∪V1∪

(
Vd−3\{w}

)∪
Vd−2∪

(
Vd−1 ∪ {w}

) ∪ Vd is a partition of VG+zw. By Lemma 1.1 Sk(G + zw) < Sk(G), a
contradiction.

This completes the proof of Fact 1.
Fact 2 Consider the vertex partition VG = V0 ∪ V1 ∪ · · · ∪ Vd of G.
(i) If d is odd, then

|V0| = |V1| = · · · =
∣∣∣V d−1

2 −1

∣∣∣ =
∣∣∣V d−1

2 +2

∣∣∣ = · · · = |Vd−1| = |Vd| = 1,
∣∣∣|V d−1

2
| − |V d−1

2 +1|
∣∣∣ ≤ 1.

(ii) If d is even, then

|V0| = |V1| = · · · =
∣∣∣V d

2−2

∣∣∣ =
∣∣∣V d

2 +2

∣∣∣ = · · · = |Vd−1| = |Vd| = 1,
∣∣∣|V d

2
| − (|V d

2−1|+ |V d
2 +1|)

∣∣∣ ≤ 1.

Proof of Fact 2 (i) Note that |V0| = |Vd| = 1, here we only show that |V1| = 1 holds.
Similarly, we can also show |V2| = · · · =

∣∣∣V d−1
2 −1

∣∣∣ =
∣∣∣V d−1

2 +2

∣∣∣ = · · · = |Vd−1| = 1, we omit
the procedure here.

In fact, if d = 3, our result is trivial. So we consider that d ≥ 5. If |V1| ≥ 2, then
choose u ∈ V1 and let G′ = G − v0u + {ux : x ∈ V4}. In fact, the vertex partition of G′ is
V0 ∪

(
V1\{u}

) ∪ V2 ∪
(
V3 ∪{u}

) ∪ V4 ∪ · · · ∪ Vd, in view of Fact 1 and the choice of G, any
two of adjacent blocks of VG′ induce a complete bipartite subgraph and |Vd| = 1 for d ≥ 5.

Note that
d∑

i=4

(
(i− 1)k − (i− 3)k

)
li ≥

d∑
i=4

(
(i− 1)k − (i− 3)k

)
> (3k − 1),

HG(u) = HG′(u) +
d∑

i=4

(
(i− 1)k − (i− 3)k)

)
li − (3k − 1);

HG(v) = HG′(v)− (3k − 1), ∀v ∈ V0;

HG(v) = HG′(v), ∀v ∈ (
V1\{u}

) ∪ V2 ∪ V3;

HG(v) = HG′(v) + (i− 1)k − (i− 3)k, ∀v ∈ V4 ∪ V5 ∪ · · · ∪ Vd.

This gives

Sk(G)− Sk(G′) =
1
2


 ∑

v∈VG

HG(v)−
∑

v∈VG′

HG′(v)




=
1
2

(∑
v∈V0

(HG(v)−HG′(v)) + HG(u)−HG′(u)

)
+

d∑
i=4

∑
v∈Vi

(HG(v)−HG′(v))

=
1
2

[
− 2(3k − 1) + 2

d∑
i=4

(
(i− 1)k − (i− 3)k

)
li

]

=
[
− (3k − 1) +

d∑
i=4

(
(i− 1)k − (i− 3)k

)
li

]
> 0,

i.e., Sk(G) > Sk(G′), a contradiction to the choice of G. Hence, |V1| = 1.
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Next we show that if d is odd, then
∣∣∣|V d−1

2
| − |V d−1

2 +1|
∣∣∣ ≤ 1. Without loss of generality,

we assume that
∣∣∣V d−1

2

∣∣∣ ≥
∣∣∣V d−1

2 +1

∣∣∣. Then it suffices to show that
∣∣∣V d−1

2

∣∣∣ −
∣∣∣V d−1

2 +1

∣∣∣ ≤ 1. If
this is not true, then |V d−1

2
| − |V d−1

2 +1| ≥ 2. Choose w ∈ V d−1
2

, let

G′ = G−
{

ux : x ∈ V d−3
2
∪ V d+1

2

}
+

{
wy : y ∈ V d−1

2
∪ V d+3

2

}
,

then the vertex partition of G′ is

V0 ∪ V1 ∪ · · · ∪ V d−3
2
∪

(
V d−1

2
\{w}

)
∪

(
V d+1

2
∪ {w}

)
∪ V d+3

2
∪ · · · ∪ Vd

and each of the two adjacent blocks of VG′ induces a complete bipartite graph. By direct
calculation, we have

Sk(G′)− Sk(G) =
[
(|V d−1

2
| − 1) + 2k|V d+1

2
|
]
−

[
2k(|V d−1

2
| − 1) + |V d+1

2
|
]

= −(2k − 1)
(
|V d−1

2
| − |V d+1

2
| − 1

)
≤ −(2k − 1) < 0,

a contradiction to the choice of G.
(ii) By the same discussion as the proof of the first part of (i) as above, we can show

that |V0| = |V1| = · · · =
∣∣∣V d

2−2

∣∣∣ =
∣∣∣V d

2 +2

∣∣∣ = · · · = |Vd−1| = |Vd| = 1, we omit the procedure
here.

Now, we show that if d is even, then
∣∣∣|V d

2
| − (|V d

2−1|+ |V d
2 +1|)

∣∣∣ ≤ 1. Without loss of

generality, we assume that
∣∣∣V d

2

∣∣∣ <
∣∣∣V d

2−1

∣∣∣ +
∣∣∣V d

2 +1

∣∣∣. Then it suffices to show that

∣∣∣V d
2−1

∣∣∣ +
∣∣∣V d

2 +1

∣∣∣−
∣∣∣V d

2

∣∣∣ ≤ 1.

If this is not true, then
∣∣∣V d

2−1

∣∣∣+
∣∣∣V d

2 +1

∣∣∣−
∣∣∣V d

2

∣∣∣ ≥ 2. It is routine to check that at least one of
V d

2−1 and V d
2 +1 contains at least two vertices. Hence, we assume without loss of generality

that
∣∣∣V d

2−1

∣∣∣ ≥ 2. Choose w ∈ V d
2−1 and let

G∗ = G−
{

wx : x ∈ V d
2−2 ∪ V d

2

}
+

{
wy : y ∈ V d

2−1 ∪ V d
2 +1

}
,

then the vertex partition of G∗ is

V0 ∪ V1 ∪ · · · ∪ V d−3
2
∪

(
V d

2−1\{w}
)
∪

(
V d

2
∪ {w}

)
∪ V d

2 +1 ∪ · · · ∪ Vd

and each of the two adjacent blocks of VG∗ induces a complete bipartite graph. By direct
calculation, we have

Sk(G∗)− Sk(G) =
[
(|V d

2−1|+ |V d
2 +1| − 1) + 2k|V d

2
|
]
−

[
2k(|V d

2−1|+ |V d
2 +1| − 1) + |V d

2
|
]

= −(2k − 1)
[
|V d

2−1|+ |V d
2 +1| − (|V d

2
|+ 1)

]
≤ −(2k − 1) < 0,

a contradiction to the choice of G.
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This completes the proof of Fact 2.
Now we come back to show the second part of Theorem 2.2. In view of Fact 2(i), if d

is odd, note that |V d−1
2
| + |V d−1

2 +1| = n − d + 1, together with
∣∣∣|V d−1

2
| − |V d−1

2 +1|
∣∣∣ ≤ 1, we

obtain that G ∼= G∗, as desired.
In view of Fact 2(ii), if d is even, note that |V d

2
|+ |V d

2−1|+ |V d
2 +1| = n− d + 2, together

with
∣∣∣|V d

2
| − (|V d

2−1| − |V d
2 +1|)

∣∣∣ ≤ 1, we obtain that G ∈ B. Furthermore,

B =
{
Ĝ[p, q] : p + q = n− d + 4, p =

n− d + 6
2

}

for even n and B =
{
Ĝ[p, q] : p + q = n− d + 4, p = n−d+7

2

}
for odd n.

This completes the proof.
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二部图的距离k次方和问题

耿显亚1, 赵红锦1, 徐李立2

(1.安徽理工大学数学与大数据学院, 安徽淮南 232001)

(2.华中师范大学数学与统计学院, 湖北武汉 430079)

摘要: 本文定义 Sk(G)为 G中所有点对之间距离的 k 次方之和. 利用顶点划分的方法得到了直径为

d的 n顶点连通二部图 Sk(G)的下界, 并确定了达到下界所对应的的极图.
关键词: 二部图;直径;极图
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