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Abstract: In this paper, we investigate the relationships among the convergence concepts
on quasi-probability space. By using analogy method, some new convergence concepts for quasi-
random variables are proposed on quasi-probability space and the relationships among the con-
vergence concepts are discussed. Convergence theory about fuzzy measure is obtained, and all
conclusions are natural extensions of the classical convergence concepts to the case where the mea-
sure tool is fuzzy.
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1 Introduction

Convergence theory was well developed based on classical measure theory, and some
applications can be found in [1-3]. As for convergence theory in fuzzy environments, in-
formation and data are usually vague or imprecise which is essentially different from the
classical measure case [4-6]. Therefore, it is more reasonable to utilize quasi-probability
measure, which is an important extension of probability measure [1-2] to deal with fuzzi-
ness, to study such convergence theory. Quasi-probability measure was introduced by Wang
[6], which offered an efficient tool to deal with fuzzy information fusion, subjective judge-
ment, decision making, and so forth [7-11].

Convergence concepts play an important role in classical measure theory. Some math-
ematics workers explored them for fuzzy (or non-additive) measures such as Liu [12-13],
Wang [14], Zhang [4-5], Gianluca [15], and so on. While the measure tool is non-additive,
the convergence concepts are very different from additive case. In order to investigate quasi-
probability theory deeper, we will propose in the present paper some new convergence con-

cepts on quasi-probability space, and discuss the relationships among the convergence con-
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cepts. Our work helps to build important theoretical foundations for the development of
quasi-probability measure theory.

The paper is outlined as follows: Section 1 is for introduction. In Section 2, some
preliminaries are given. In Section 3, we study convergence concepts of ¢g-random variables

sequence and, ultimately, Section 4 is for conclusions.

2 Quasi-Probability Measure

In this paper, let X be a nonempty set and (X, F) be a measurable space, here F is a
o-algebra of X. If A, B € F, then the notation A C B means that A is a subset of B, and
the complement of A is denoted by A°.

Definition 2.1 [6] Let a € (0,400], an extended real function is called a T-function iff
0 : [0,a] — [0, +00] is continuous, strictly increasing, and such that (0) =0, 671 ({oo}) =0
or {oo}, according to a being finite or not.

Let a € (0,+00], an extended real function 6 : [0,a] — [0,+oc] is called a regular
function, if @ is continuous, strictly increasing, and 6(0) = 0,6(1) = 1 [10].

Obviously, if € is a regular function, then #~ is also a regular function.

Definition 2.2 [6] u is called quasi-additive iff there exists a T-function #, whose
domain of definition contains the range of y , such that the set function 6 o u defined on F
by (fop)(E) =0 [u(E)] (VE € F), is additive; p is called a quasi-measure iff there exists
a T-function 6 such that 6 o i is a classical measure on F. The T-function 6 is called the
proper T-function of pu.

Definition 2.3 If 0 is a regular T-function of u, then pu is called a quasi-probability.
The triplet (X, F, u) is called a quasi-probability space.

From Definition 2.3, we know probability is a quasi-probability with 8(z) = x as its
T-function.

Example 2.1 Suppose that X = {1,2,--- ,n}, p(X) is the power set of X. If

u(m) = (22

n

where |E| is the number of those points that belong to E, then u is a quasi-probability with
0(x) = v/, = €[0,1] as its T-function [6].

Definition 2.4 Let (X, F,u) be a quasi-probability space, and { = {(w),w € X, be
a real set function on X. For any given real number z, if {w| {(w) < x} € F, then £ is
called a quasi-random variable, denoted by g-random variable. The distribution function of
g-random variable £ is defined by F),(z) = p{w € X| {(w) < z}.

Let £ and 7 be two g-random variables. For any given real numbers z, y, if

pE<zm<y)=0"Oou) (<) (Bop)(n<y),

then ¢ and 7 are independent g-random variables [10].
Theorem 2.1 Let u be a quasi-probability on F. Then there exists a regular T-function
6, such that 6 o u is a probability on F [4].



No. 5 Convergence theory on quasi-probability measure 1001

Theorem 2.2 If y is a quasi-probability, then u is continuous and w(0) = 0 [4].

Theorem 2.3 Let i be a quasi-probability on F, A, B € F, then we have

(1) if A C B, then u(A) < u(B);

(2) if u(A) =0, then p(A°) =1;

(3) n(AUB) < 071[(0 0 u)(A) + (6 0 p)(B)].

Proof (1) Since A C B, and there exists a T-function € such that 6oy is a probability,
we have (0o u)(A) < (6o p)(B), 8 is continuous, strictly increasing, it is clear that p(A) <

w(B).
(2)Since 6 o p is a probability, one can have

1= (00 u)(X) = (00 ) (A JA%) = (00 1)(A) + (0 0 p)(A°),
which implies that
(60 m)(A%) =1 — (0 )(A) = 1 — B(u(A)) = 1 - 6(0) = 1,

namely, 0(u(A°)) = 1. It follows from the regularity of 6 that u(A°) = 1.
(3) 6o is a probability, we have

(0o u) (A B) < (00 p)(A)+ (00 p)(B),

that is,
(A B) < 071(0 0 ) (A) + (0 0 ) (B)].

3 Convergence Concepts of g¢-Random Variables Sequence

In the section, we introduce some new convergence concepts such as convergence almost
surely, convergence in distribution, fundamental convergence almost everywhere, fundamen-
tal convergence in quasi-probability, etc., and we will investigate the relationships among
the convergence concepts.

Definition 3.1 [4] Suppose that &, &, &, -+, &, -+ are g-random variables defined
on the quasi-probability space (X, F, u). If

pi lim &, =&} =1,
then we say that {&,} converges almost surely to £. Denoted by

lim &, =¢ (b —a.s.).

n—

Definition 3.2 Suppose that &, &, &, ---, &,, -+ are g-random variables defined on
the quasi-probability space (X, F,u). If there exists E € F with u(E) = 0 such that {£,}

converges to £ on E¢, then we say {,} converges to & almost everywhere. Denoted by

&n — & (a.e.).
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Definition 3.3 Suppose that &, &, -+, &,, --- are g-random variables defined on
the quasi-probability space (X, F, u). If there exists F € F with u(E) = 0 such that for any
z € E°

lim (& () — &m(2)) =0,

n, m—oo

then we say {,} is fundamentally convergent almost everywhere.
Definition 3.4 [4] Suppose that &, &, -+, &,, - is a sequence of g-random variables.

If there exists a g-random variable £, such that Ve > 0,
lim p{] &, =€ |> e} =0,

namely,
lim p{[ & =& f<e} =1,

then we say that {&,} converges in quasi-probability to &. Denoted by

En— & (n):

Definition 3.5 Suppose that &, &, ---, &,, -+ are g-random variables. If for any

given € > 0,
n, m—oo

then we say {,} fundamentally converges in quasi-probability.

Definition 3.6 Suppose that F),(z), F;(x) F(z)--- are the distribution functions of
g-random variables &, &, &, -, respectively. The sequence {§,} is said to be convergent
in distribution to & if

lim F(x) = F,(2)

n—oo

at any continuity point of F),(x).

Theorem 3.1 If {£,} converges in quasi-probability to &, then {&,} fundamentally
converges in quasi-probability.

Proof Suppose that {¢,} converges in quasi-probability to &, then for any given ¢ > 0,

we have
Tim pf| & —€]= 5} =0.
According to [2],
{160 = &ml 2 e} € {len — & 2 S} JHlgm €1 2 S}
It follows from Theorem 2.3 that
60— Eml 2 2} < wl{l€n — €1 2 SHUHIEm — €1 2 SN
< 07@0 16— €l = S} + B0 wlgm — &l 2 2.
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And 0, 67! are strictly increasing and continuous,

Jdim pflé =€l 22} < Tim 0700 {1 — €l 2 H+ (B0 mlEn — €l 2 S

= 070 lim p{lg, — €] > %}) +0( lim p{ln — €] > %})]
= 07[0(0) +0(0)] = 07'(0) = 0.

This means that {,,} fundamentally converges in quasi-probability.
Lemma 3.1 [2] Suppose that &,, £ € F, and for any given &, > 0, lim &, = 0, then

we have o = o . o o
W (& —~9=NU Nle-ze=0 0 A le-e<ak
(2) {|€n - £m| - 0} = Fjo Ejl F.jl{‘fn-i-v gnl < 5} = kﬁl fjl ﬁ {|§n+v §n| < ak}'
Theorem 3.2 Suppose that f;, &, -, &, -+ are q—randor_n variables, then
&, — €& (a.e.)

if and only if

M(ﬂ U{|§n+v—€| >el=0, Ve>0

n=1v=1

if and only if
T}Lrgou(U{lfnﬂ —¢{=2¢e})=0, Ve>0.
v=1

Proof If &, — £ a.e., then Ve > 0. According to Lemma 3.1,

w(() U & =€l = e < u(lJ ) Ugnso — €l 2 e} = n({&n — €} =

n=1v=1 e>0n=1v=1

On the other hand, if

p(() ULlenso — €l = e} =0, Ve,

n=1v=1

then for any given ¢, > 0, klim er = 0, it follows from Theorems 2.1 and 2.3 that

oo oo oo

p{n — &) = p(lJ N U&= €l 2 &)

k=1n=1v=1
0o oo o0

= 070w ) Ullgnrn — &l = &r})]

k=1n=1v=1

Zeou ﬂU{|§n+u £l > er})]

<
k=1 n=1v=1

= 000 () Ul — €] > )] =67 (0) =0,
k=1 n=1v=1
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that is &, — & a.e.. And since
Ao — €l = ¢}
v=1

is decreasing for n, it follows from the continuity of u that

i) U6 — 8 2 e} = tim ({60 — 612 <.
n=1v=1 v=1
Now the theorem is proved.
Theorem 3.3 [4] Suppose that &, &, &, -+, &, -+ are ¢g-random variables defined
on the quasi-probability space (X, F,u). If {£,} converges almost surely to £, then {¢,}

converges in quasi-probability to &.

Example 3.1 [4] Suppose that &, &, -+, &,, -+ are independent g-random variables
defined on the quasi-probability space (X, F, u). If
1 1 1
n — :1**7 n = 1 = :1727"'7
&=~} o & =ntlp=—, o0

then {&,} converges in quasi-probability to 0. However, {{,} does not converges almost
surely to 0.

Theorem 3.3 shows that convergence almost surely implies convergence in quasi-probability.
Example 3.1 shows that convergence in quasi-probability does not imply convergence almost
surely. But for independent g-random series, convergence almost surely is equivalent to

convergence in quasi-probability.

Theorem 3.4 [4] If {,} is a sequence of independent g-random variables, then »_ &,

n=1
converges almost surely if and only if Y &, converges in quasi-probability.

Theorem 3.5 Suppose that &, 5?,_152, <o+ &,, -+ are g-random variables defined on
the quasi-probability space (X, F, u). If {£,} converges in quasi-probability to &, then {&,}
converges in distribution to £.

Proof Assume that F(z), Fj,(7) are the distribution functions of &,,§, respectively.
Let z,y, z be the given continuity points of the distribution function F,(x).

On the one hand, for any y < x, we have

fe<pp =<z <yt > o e <yy e <ol — €l 22—y
It follows from Theorem 2.3 that
ple <y} < pl{en <o J16 — ¢l = 2 -y}
< 0700w < at+ (Oopi{lén — €l =z -y}l
Since {£,} converges in quasi-probability to &, and 6, #~! are continuous, we have
p€ <y <07 0(lim S, < 2}) +0( lim p{lgn — & > 2 — y})]
= 7B lim {6, < o))+ 0(0)] = 676 lim ji{€, < )],
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which implies that
Fuly) < lim Fi(a)

n—oo

for any y < z.

Let y — x, we obtain

F,(z) < lim F}'(x).

n—oo

On the other hand, for any z > x, we have

{G<ay={& <z ¢< o <o ¢> 2 c{e <6 — ¢l 2 2 —a}

Since p{|é, — €| > 2z —x} — 0asn — oo, and 0, 6~ are continuous, we get

Tim p{&, <} <O7HO(lim p{€ < 2}) +0( lim_ p{|€, — €] > 2 — 2})]
= 0710 lim p{g < 2}) +60(0)] = 0710( lim p{¢ < 2})] = p{€ < 2}

It means that

lim F(z) < F,(2)

n—oo

for any z > x. Let z — x, we get

lim F(z) < F,(z).

n—oo K

Finally, one can see that

lim () = Fy(x),
that is to say {&,} converges in distribution to &.

According to Theorems 3.3 and 3.5, we conclude that convergence almost surely implies
convergence in quasi-probability; convergence in quasi-probability implies convergence in
distribution.

4 Conclusions

This paper proposed some new convergence concepts for quasi-random variables. Firstly,
the properties of quasi-probability measure were further discussed. Secondly, the concepts
of convergence in quasi-probability, convergence almost surely, convergence in distribution
and convergence almost everywhere were introduced on quasi-probability space. Finally,
the relationships among the convergence concepts were investigated in detail. All investiga-
tions helped to lay important theoretical foundations for the systematic and comprehensive

development of quasi-probability measure theory.
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