
Vol. 37 (2017)
No. 5

数 学 杂 志
J. of Math. (PRC)

A MATRIX COMPLETION ALGORITHM USING

RANDOMIZED SVD

XU Xue-min, XIANG Hua
(School of Mathematics and Statistics, Wuhan University, Wuhan 430072, China)

Abstract: In this paper, we investigate the large low-rank matrix completion problem. By

using randomized singular value decomposition (RSVD) algorithm, we compute singular values of

sparse matrix. Compared to the Lanczos method, the computational time is greatly reduced with

the same error. The algorithm also can be used to solve the relatively low rank matrix.

Keywords: matrix completion; singular value thresholding; unclear norm minimization;

randomized singular value decomposition

2010 MR Subject Classification: 65F30

Document code: A Article ID: 0255-7797(2017)05-0969-08

1 Introduction

In many situations we need to recover a matrix which has low rank or approximately low
rank. The problem requires that we randomly select m entries from an n×n matrix M and
find out the missing or unknown values based on the sampled entries. Such problems arise
from many areas, such as multi-task learning [3], control [10], machine learning [1, 2], image
processing, dimensionality reduction or recommender systems in e-commerce, and so on. A
well known method for reconstructing low-rank matrices is based on convex optimization of
the nuclear norm.

Let M ∈ Rn×n be an unknown matrix with rank r satisfying r ¿ min{m,n}, and suppose
that one has available m sampled entries {Mij : (i ,j) ∈ Ω}, where Ω is a random subset of
cardinality m, and Ω ⊂ {1, 2, · · · ,n} × {1, 2, · · · ,n}. The authors in [4] showed that most
low rank matrices M can be perfectly recovered by solving the optimization problem

minimize ||X||∗,
subject to Xij = Mij , (i,j) ∈ Ω

(1.1)

provided that the number of samples obeys m ≥ Cn6/5r log n for some positive numerical
constant C, here the functional ‖ · ‖∗ stands for the nuclear norm of the matrix M, i.e.,
the summation of all singular values. The optimization problem (1.1) is convex and can be

∗ Received date: 2014-12-19 Accepted date: 2015-04-21

Foundation item: Supported by National Natural Science Foundation of China (10901125;

11471253).

Biography: Xu Xuemin (1991–), female, born at Nanyang, Henan, master, major in numerical

algebra.

970 Journal of Mathematics Vol. 37

recast as a semidefinite programming [6, 7]. If there were only one low-rank object fitting
the data, this would recover M. This is unfortunately of little practical usage because this
optimization problem is NP-hard, and all known algorithms which provide exact solutions
require time doubly exponential in the dimension n of the matrix in both theory and practice.
Some solvers based on interior-point methods can deal with this problem, but they can only
solve problems of size at most hundreds by hundreds on a moderate PC. Since the nuclear
ball {X : ‖X‖∗ ≤ 1} is the convex hull of the set of rank-one matrices with spectral norm
bounded by one, the nuclear norm minimization problem can be approximated by the rank
minimization problem as its convex relaxation

minimize rank(X),
subject to Xij = Mij , (i,j) ∈ Ω.

(1.2)

2 Algorithms for Completing Matrix

2.1 The Singular Value Thresholding (SVT) Algorithm

Problem (1.1) is extended in [4] as follows

minimize ||X||∗,
subject to PΩ(X) = PΩ(M),

(2.1)

where X is an optimization variable. We can use a gradient ascent algorithm applied to
the problem with a large parameter τ and scalar step sizes {δk}k≥1. That is, starting with
Y 0 = 0 ∈ Rn×n, the singular value thresholding iteration is

{
Xk = Dτ (Y k−1),
Y k = Y k−1 + δkPΩ(M −Xk),

(2.2)

where Dτ (·) uses a soft-thresholding rule at lever τ to the singular values of the input matrix.
Consider the singular value decomposition (SVD) of a matrix Z ∈ Rn×n, and the rank of it
is r. That is,

Z = UΣV ∗, Σ = diag({σi}1≤i≤r).

The definition of Dτ (Z) is given as follows:

Dτ (Z) := U

(σ1 − τ)+
. . .

(σs − τ)+

V ∗,

where (σs − τ)+ =

{
σi − τ, σi − τ > 0,

0, otherwise.
(2.3)

The most important property of (2.2) is that the sequence {Xk} converges to the solution of
the optimization problem (2.1) when the values of τ is large. We get the shrinkage iterations

No. 5 A matrix completion algorithm using randomized SVD 971

with fixed τ > 0 and scalar step sizes {δk}k≥1. Starting with Y0, we define for k = 1, 2, · · · ,

until the stopping criterion is satisfied.

The parameters in the iterations are needed to be given. Let τ = 5n and p = m/n2. In
general, we use constant step sizes δ = 1.2p−1 [4], and set the stopping criterion

||PΩ(Xk −M ||F /||PΩM ||F < ε2. (2.4)

Since the initial condition is Y0 = 0, we need to have a big τ to make sure that the opti-
mization problem has a close solution. Now we let k0 be an integer and have the following
condition

τ
δ‖PΩ(M)‖2 ∈ (k0 − 1, k0]. (2.5)

Because Y 0 = 0 , we needn’t compute the first several steps [4]. It’s easy to know that
Xk = 0 and Y k = kδPΩ(M) when k ≤ k0. To reduce the computing time, we begin the
iteration at the k0 step.

2.2 The Randomized Algorithm

In SVT, we need to compute [Uk−1,Σk−1, V k−1]sk
, where Uk−1,Σk−1, V k−1 are the

SVD factors of Y k−1 and sk is the parameter of Lanczos process. The SVT algorithm
uses the Lanczos method via the package PROPACK [9] to compute the singular value
decomposition of a huge matrix. The main disadvantage of the classical singular value
thresholding algorithm is that we need to compute the SVD of a large matrix at each stage
by using a Krylov subspace method such Lanczos or Arnoldi to compute the rank-k SVD.
As we know, the efficiency of Krylov subspace depends on the spectrum of the matrix, and
only BLAS-2 operations are applied. When the rank of the matrix is not very low, it will
take a lot of time to achieve the SVD approximation.

Algorithm 1 (RSVD): Given M ∈ Rm×n(m < n) and l < m, compute an approximate
rank-l SVD: M ≈ UΣV T with U ∈ Rm×l, Σ ∈ Rl×l and V ∈ Rn×l.

1: Generate an l ×m Gaussian random matrix Ω .
2: Compute the l × n matrix Y = ΩM .
3: Compute the n× l orthogonal matrix Q via QR factorization Y T = QR.
4: Form the m× l matrix B = MQ.
5: Compute the SVD of a small matrix B: B = UΣW T .
6: Form the n× l matrix V = QW , then M ≈ UΣV T .

We use the randomized algorithm [8] instead of the Lanczos method to compute the
SVD. The Lanczos method is one of Krylov subspace method and can be unstable, while the
randomized is robust and simply to be implemented. It is not dependent on the spectrum
of the sampled matrix. What’s more, the randomized algorithm is easy to be parallelized.

972 Journal of Mathematics Vol. 37

The idea of the randomized algorithm is that we project the matrix onto a smaller matrix
which preserves most of the important information and ignore the less important information.
The pseudo-codes of the randomized algorithm are given as follows (see Algorithm 1) [11].

Algorithm 2 : The R-SVT algorithm
Input: sampled entries P(M) and sampled set Ω , the limit value of error ε1, the step
size δ, the thresholding value τ , constant l, the maximum iteration numbers kmax.
Output: X

Goal: Get a matrix X with low-rank, and recover of the sampled entries
Pseudo-code :

1: let Y0 = k0δPΩ(M) , the definition of k0 is given in (7)
2: let r0 = 0
3: for k = 1 to kmax

4: use RSVD algorithm to Compute [Uk−1,Σk−1, V k−1]sk

5: let Xk =
∑r

j=1(σ
k−1
j > τ)uk−1

j vk−1
j

∗

6: if ‖PΩ(Xk −M)‖F /‖PΩM‖F ≤ ε1 then break
7: end for k

8: let X = Xk

2.3 The SVT Algorithm Using RSVD

In SVT iterations, the SVD is needed in each step. Since the classical methods for SVD
approximation are costly. We use the randomized SVD, i.e., Algorithm 1, to replace the
classical one, and obtain the R-SVT algorithm (see Algorithm 2). We can clearly see that
in Step 4 of the pseudo-code of Algorithm 2, RSVD is used instead, while the classical SVT
algorithm uses Lanczos method to find the singular values. At the beginning of computing,
we don’t know the number of the singular values, so we have to spend much time to find
this number, and it could be very slow.

On the other hand, in the randomized algorithm, we just preserves the important infor-
mation and ignore the less important information, so the relatively error of our result can be
larger than the SVT algorithm. To obtain a small relatively error at low cost, we combine
the two algorithms together, and have the algorithm R-SVT∗ (see Algorithm 3). At the first
stage we use SVT based on RSVD until the error is smaller than ε1, for example 0.1. Then
we switch to the classical SVT based on PROPACK, until the error is smaller than ε2, for
example 1e− 4. The pseudo-codes of R-SVT∗ algorithm are given as follows.

The classical methods use the PROPACK to compute the approximate SVD, based on
Lanczos process. In the algorithm R-SVT∗, we use RSVD instead to perform SVT, and later
switch to the classical SVT. Lanczos procedure needs to access the coefficient matrix several
times, and use the BLAS-2 operations. In RSVD, the large matrix is accessed by less times,
and the BLAS-3 operations are used. So we can expect that the randomized algorithm can

No. 5 A matrix completion algorithm using randomized SVD 973

be much faster than Lanczos process for SVD approximation. Note that our work is different
from that in [5]. Here we use a different randomized algorithm, i.e., algorithm from [11], and
we also apply the strategy of switching to the classical SVT in our algorithm R-SVT∗.

Algorithm 3 : The R-SVT∗ algorithm
Input: sampled entries P(M) and sampled set Ω , the limit value of error ε1 and ε2, the
step size δ, the thresholding value τ , constant l , the maximum iteration numbers kmax.
Output: X

Goal: Get a matrix X with low-rank, and recover of the sampled entries
Pseudo-code :

1: let Y0 = k0δPΩ(M) , the definition of k0 is given in (7)
2: let r0 = 0
3: while ‖PΩ(Xk −M)‖F /‖PΩM‖F > ε1

4: use R-SVD to compute [Uk−1,Σk−1, V k−1]sk

5: let Xk =
r∑

j=1
(σk−1

j > τ)uk−1
j vk−1

j

∗

6: k = k + 1
7: end for while
8: for k = k + 1 to kmax

9: let sk = rk−1 + 1
10: repeat
11: use SVT algorithm Compute [Uk−1,Σk−1, V k−1]sk

12: Let sk = sk + l

13: until σk−1
sk−l ≤ τ

14: let rk = max{j : σk−1
j > τ}

15: let Xk =
rk∑

j=1
(σk−1

j > τ)uk−1
j vk−1

j

∗

16: if ‖PΩ(Xk −M)‖F /‖PΩM‖F ≤ ε2 then break
17: end for k

18: let X = Xk

3 Numerical Results

In our numerical tests, we use Matlab to implement the R-SVT algorithm, and all the
results in this paper are obtained by a computer with 2.13 GHz CPU and 2 GB RAM. At
first, we generate an n×n random matrix. Then, we generate a random data array with the
length m. Next, we sample the entries of the matrix by the data array. We use the sampled
matrix to complete the random matrix we generate.

First, setting the tolerance ε is 0.1, we compare the R-SVT with the SVT based on

974 Journal of Mathematics Vol. 37

PROPACK to complete the matrix. In Table 1, the matrices of size 500× 500, 1000× 1000,
2000 × 2000 are tested. We compare the computational time and solution accuracy of the
classical SVT and our R-SVT. In Table 1, the notations T, iter, RE stand for the computa-
tional time, outer iteration number, and relative error, respectively. And in Table 1 we find
that both our R-SVT and the classical SVT can achieve the final relative errors of almost
the same order with almost the same number of iterations. According to the computational
time, we also find that our R-SVT is faster than the SVT based on PROPACK, and the
time difference becomes more obvious when the matrix is larger. For example, when the size
of matrix is 2000× 2000 with the rank of 400, the computational time of SVT is almost five
times of that of R-SVT.

Second, we set the relative error as small as to be 10−4. Based on the former algorithm
R-SVT, we just make a small modification. We use the R-SVT until the error is 0.1, and
then switch to the SVT based on PROPACK until the error is smaller than 10−4. The
computational result are shown in Table 2. We compare the results and can draw the
similar conclusions as the first algorithm.

Table 1 Comparisons of SVT and R-SVT
SVT (tol=0.1) R-SVT (tol=0.1)

size rank T(s) iter RE T(s) iter RE
50 3.133 5 5.87E-02 2.435(k=250) 5 8.63E-02

500× 500 100 9.550 7 8.08E-02 3.310(k=250) 7 9.41E-02
150 21.05 9 7.60E-02 6.923(k=300) 9 9.35E-02
100 23.92 5 5.58E-02 16.73(k=500) 5 8.48E-02

1000× 1000 200 90.34 7 8.58E-02 21.39(k=500) 7 9.94E-02
300 201.3 9 7.95E-02 43.99(k=600) 9 9.87E-02
200 260.5 6 5.61E-02 182.6(k=1000) 6 8.59E-02

2000× 2000 300 544.2 6 8.76E-02 175.8(k=1000) 6 9.54E-02
400 1092 7 8.26E-02 208.0(k=1000) 7 9.74E-02

4 Conclusion

In this paper, we consider the randomized SVT for matrix completion problems. When
we nearly finish our work, we notice the work in [5]. But here we use a different randomized
algorithm, i.e., the algorithm from [11], and we also apply the strategy of switching to
the classical SVT in our algorithm R-SVT∗. We use the random matrices to test our new
algorithm. We can draw the conclusions as follows.

1. The computational time of our randomized-SVT algorithm is less than the classical
SVT algorithm. And this advantage becomes more obvious when the rank of the matrix
becomes larger. The amazing is that the our R-SVT algorithm works well for the matrix

No. 5 A matrix completion algorithm using randomized SVD 975

Table 2 Comparisons of SVT and R-SVT∗.
SVT (tol=1e-4) R-SVT∗ (tol=1e-4)

size rank T(s) iter RE T(s) iter RE
50 15.81 54 9.55E-05 12.12(k=250) 55 9.55E-05

500× 500 100 45.94 64 9.98E-05 32.56(k=250) 65 9.99E-05
150 105.4 92 9.59E-05 86.94(k=300) 93 9.59E-05
100 87.59 53 9.18E-05 66.05(k=500) 54 9.18E-05

1000× 1000 200 266.0 64 9.52E-05 187.8(k=500) 65 9.52E-05
300 947.2 91 9.70E-05 609.7(k=600) 92 9.71E-05
200 702.0 53 9.48E-05 460.8(k=1000) 54 9.49E-05

2000× 2000 300 1337 53 9.42E-05 806.7(k=1000) 54 9.43E-05
400 2608 63 9.99E-05 1511(k=1000) 64 1.00E-04

whose rank is not very low, and this is a great improvement for matrix completion.
2. When the tolerance is very small, then the computational time of R-SVT will increase,

but this can be overcome when we make a switch in R-SVT∗. That is, when the tolerance
is very small we switch from the R-SVT algorithm to SVT algorithm. Using this strategy
in R-SVT∗, the advantages of the R-SVT are still kept.

References

[1] Amit Y, Fink M, Srebro N, Ullman S. Uncovering shared structures in multiclass classification[A].

Proceedings of the 24th International Conference on Machine Learning[C]. Providence, RI: ACM,

2007: 17–24.

[2] Argyriou A, Evgeniou T, Pontil M. Multi-task feature learning[J]. Adv. Neural Inform. Proc. Syst.,

2007: 41–48.

[3] Argyriou A, Evgeniou T, Pontil M. Convex multi-task feature learning[J]. Machine Learning, 2008,

73(3): 243–272.

[4] Cai Jianfeng, Candes J Ammanuel, Shen Zuowei. A singular value thresholding algorithm for matrix

completion[J]. Soc. Indust. Appl. Math., 2010, 20(4): 1956–1982.

[5] Dhanjal Charanpal, Clemencon Stephan, Gaudel Romaric. Online matrix completion through nu-

clear norm regularisation[EB/OL]. http://arxiv.org/pdf/1401.2451.pdf. hal-00926605, Ver. 1, 9 Jan.

2014.

[6] Fazel M. Matrix rank minimization with applications[D]. Stanford, CA: Stanford University, 2002.

[7] Fazel M, Hindi H, Boyd S P. Log-det heuristic for matrix rank minimization with applications to

Hankel and Euclidean distance matrices[J]. Proc. Amer. Control Conf., 2003, 3: 2156–2162.

[8] Halko N, Martinsson P G, Troop J A. Finding structure with randomness: Probabilistic algorithms

for constructing approximate matrix decompositions [J]. SIAM Review, 2011, 53(2), 217–288.

[9] Larsen R M. PROPACK-software for large and sparse SVD calculations[OL]. http://sun. stan-

ford.edu/ rmunk/PROPACK/.

976 Journal of Mathematics Vol. 37

[10] Mesbahi M, Papavassilopoulos G P. On the rank minimization problem over a positive semidefinite-

linear matrix inequality[J]. IEEE Trans Automat Control, 1997, 42(2): 239–243.

[11] Xiang Hua, Zou Jun. Regularization with randomized SVD for large-scale discrete inverse prob-

lems[J/EB]. Inverse Problem, 2013, 29(8): http://iopscience.iop.org/0266-5611/29/8/085008/.

[12] Guo Wei. Singular value decomposition and algorithm of o-symmetric matrix[J]. J. Math., 2009,

29(3): 346–350.

用随机奇异值分解算法求解矩阵恢复问题

许雪敏,向 华

(武汉大学数学与统计学院,湖北武汉 430072)

摘要: 本文研究了大型低秩矩阵恢复问题. 利用随机奇异值分解(RSVD)算法, 对稀疏矩阵做奇异值

分解. 该算法与Lanczos方法相比, 在误差精度一致的同时运算时间大大降低, 且该算法对相对低秩矩阵也有

效.
关键词: 矩阵恢复; 奇异值阈值; 核范数最小化; 随机奇异值分解

MR(2010)主题分类号: 65F30 中图分类号: O241.6

