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Abstract: In this paper, we investigate the growth order of meromorphic solution of algebraic
differential equations. By using normal family theory, we give an estimation of the growth order
of meromorphic solutions of certain class of second order algebraic differential equations, which
depend on the degrees of rational function coefficients of the equations, and generalize a result by
Liao Liangwen and Yang Chungchun (2001).
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1 Introduction

Let f(z) be a function meromorphic in the complex plane C. We assume that the reader
is familiar with the standard notations and results in Nevanlinna’s value distribution theory
of meromorphic functions (see e.g. [1-3]). We denote the order of f(z) by p(f) .

As one knows, it was one of the important topics to research the algebraic differential
equation of Malmquist type. In 1913, Malmquist [4] gave a result for the first order alge-
braic differential equations. In 1933, Yosida [5] proved the Malmquist’s theorem by using
the Nevanlinna theory. In 1970s, Laine [6], Yang [7] and Hille [8] gave a generalization of
Malmquist’s theorem. Later, Steinmetz [9], Rieth [10] and He-Laine [11] all gave correspond-
ing generalizations of Malmquist’s theorem for the first order algebraic differential equations.
In 1980, Gackstatter and Laine [12] gave a generalized result of Malmquist’s theorem for some
certain type of higher order algebraic differential equations. However, Malmquist type theo-

rem for an arbitrary second order algebraic differential equation remains open. For a second
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order algebraic differential equation

f" =Rz [, 1), (1.1)

where R is a rational function in z, f and f’, a classical and unsolved conjecture is the
following.

Conjecture 1.1 (see [3]) If equation (1.1) has a transcendental meromorphic solution,
then the equation can be reduced into the form

f"=La(z, () + La(z, ) + Lo(2, /), (1.2)

where L;(z, f) (i =0, 1,2) are rational functions in their variables.

In 2011, Gao, Zhang and Li [13] studied the problem of growth order of solutions of a
type of non-linear algebraic differential equations. In 2001, Liao and Yang [14] considered
the finite order of growth of the meromorphic solutions of equation (1.2) and obtained the
following result.

Theorem A Let f be a meromorphic solution of equation (1.2). Further assume that
Ly(z, f) # 0 in equation (1.2) and has the form

Pz, f) _ an()f" +ana() "7 4+ aa(2)f°
Q(zaf) bm(z)fm+bm—1(z)fm_1+"'+br(z)fr7

where a;(2),b;(z) (s <i<mn,r <j <m) are rational functions. If m —n <1lorr—s>1,
then p(f) < oc.

Remark The conditions m —n <1 and r —s > 1 in Theorem A cannot be omitted

LQ(Z, f) =

simultaneously. Liao and Yang [14] gave a simple example to show it.
The paper is organized into 3 sections. After introduction some basic concepts and

lemmas will be given in Section 2. In Section 3, we will give the main results.

2 Preliminaries

Let D be a domain in C. We say that a family F of meromorphic functions in D is
normal, if each sequence {f,} C F contains a subsequence which converges locally uniformly
by spherical distance to a meromorphic function g(z) in D (g(z) is permitted to be identically
infinity). In this paper, we denote the spherical derivative of meromorphic function f(z) by
f*(2), where

f'(z
fﬂ(z) = | ( )| =
1+[£(2)]
and define 1
A= [ [ (PGP
TS Jzlr
For convenience, we still assume that Ly(z, f) = géi;% and rewrite equation (1.2) into

Q(z, /)" =Pz, )(f) + M(z, /) f' + N(z, f), (2.1)
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where M (z, f) = Q(z, f)L1(2, f), N(z, f) = Q(z, f)Lo(z, f), P,Q are defined as in Theorem
A.

Let H(z) = 5 8 be a rational function, where p(z) and ¢(z) are irreducible polynomials

in z. Define the degree at infinity of H(z) by

deg, . (H) = degp(z) — degq(z).

We denote the largest number of the degrees at infinity of all the rational function

coefficients in variable z concerning L(z, f) by deg, ., L(z, f). Denoting

deg, ., a = max{deg,  P(z, f),deg, . Q(z, f),deg, . M(z, f),deg, . N(z, f),0},

where P(z, f),Q(z, f) are two polynomials in f with rational function coefficients, M (z, f)
and N(z, f) are rational functions in variable z and f.

The following lemmas will be needed in the proof of our results. Lemma 2.1 is a result
of Zalcman concerning normal families.

Lemma 2.1 (see [15]) Let F be a family of meromorphic functions on the unit disc, o
is a real number. Then F is not normal on the unit disc if and only if there exist, for each
-1l<a<l,

a) a number r, 0 <r < 1;

b) a sequence points {wy}, |wi| < 73

c¢) a sequence {fitren C F;

d) a positive sequence {py}, pr — 0
such that gx(C) := p§ fr(wi+prC) converges locally uniformly to a nonconstant meromorphic

function ¢g(¢). In particular, we may choose wy and py properly such that

M Fiwr) = f(0).

The next lemma is a generalization of the Lemma 2 in [16] of Yuan et al.

Pr <

Lemma 2.2 Let f(z) be meromorphic in the complex plane, p := p(f) > 2, then for

any positive constants € > 0 and 0 < A < (%)5, there exist points z; — oco(k — o0), such

that
)

k—o0 ‘Zk|>\ - oo

Proof  Suppose that the conclusion of Lemma 2.2 is not true, then there exist a

positive number M > 0, such that for arbitrary z € C, we have
(f}(2)° < M]2|™. (22)

By (2.2) we can get

an =2 [ [ pepan <[ [

Tdedy = O(|t*%).
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Thus we obtain an estimation of Ahlfors-Shimizu characteristic function

Therefore, the order of f(z) can be estimated as p < 2+ 2%, namely, A > (2;%)e. This is a
contradiction with the choice of A.

Lemma 2.3 (see [17]) Let f(z) be holomorphic in the complex plane, o > —1. If
f4(z) = O(r?), then T(r, f) = O(r°*1).

The result of Lemma 2.4 is more sharper than Lemma 2.2 when f(z) is an entire function.

Lemma 2.4 Let f(z) be holomorphic in the complex plane, p := p(f) > 1, then for

any positive constants € > 0 and 0 < A < (p — 1)e, there exist points z;, — 00, as k — o0,

such that ()
len;o W = +o00.
Proof Suppose that the conclusion of Lemma 2.4 is not true, then there exist a
positive number M > 0, such that for arbitrary z € C, we have (f*(2))* < M|z|*, namely,

f4(z) = O(r*). By Lemma 2.3, we have
T(r,f) = 0(=*").

Therefore the order of f(z) can be estimated as p < 1+ 2, namely, A > (p — 1)e. This is a
contradiction with the choice of A.

3 Main Results

We are now giving our main results as follows.

Theorem 3.1 Let f be a meromorphic solution of equation (2.1). Further assume
that ggz;; # 0 in equation (2.1), M (z, f) # 0, N(z, f) # 0 are birational functions and have
following forms

_ ()t (R) €y (2) [T 4 -+ ey (2) [
M(Z7 f) B dqz (Z)fq2 +ooet dt2 (Z)ftz ' Ugy (Z)fq4 T Uy, (Z)ft4 ’

where ¢;, (2) (ty < j1 < q1),dj, (2) (f2 < J2 < @2), €5, (2) (t3 < js < g3) and uy,(2) (f4 < js <
q4) are rational functions, ¢, (2) # 0, di,(2) # 0, ey, (2) # 0 and uy, (2) # 0, then

N(z, f) =

2(14 a)deg,  a
p(f) <2+ —,

«

2
4—1’7,—1"

where 0 < a < min{ —=~—,
lgr—g2—n|’ [gs—q
1} when r — s > 1.

: 1
1} Whenm7n< 1 and0<a<mln{m’
2
|2+S+t4—t3‘ ?

Proof We assume that f is a meromorphic solution of equation (2.1). Next we discuss
into two cases.

Case 1 m —n < 1. We choose a such that 0 < a < min{|q1_q12_n‘, |q3_q42_n_1‘ ,1} and

assume that

2(1 + o) deg,  a

p(f) >2+ -
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By Lemma 2.2 we know that for £~ and 0 < A < (7)ﬁ, there exist points 2z, — 00, as

k — o0, such that

= +oo0. (3.1)

This implies that the family {f(zx 4+ 2)}ren is not normal at z = 0. Then by Lemma 2.1,

there exist a sequence {3} and a positive sequence {py} such that
l2e = Bkl <1, pr —0, (3.2)

and gx(C) = pYf(Br + prC) converges locally uniformly to a nonconstant meromorphic
function g(¢). In particular, we may choose () and py, such that

2

PES F(Br) = f*(21)- (3:3)
fH(B) T
According to (3.1), (3.2) and (3.3), we can get the following conclusion.
For positive constant « and any constant 0 < A < (%)%, we have
Jim Beps = 0. (3.4)
Substituting g + px(¢ for z in (2.1), we have
1"
Q(Br + pi(, (ao)gggfa)
Pk Pk
91(0) (91(9)* 91() | 9:(<) 9(¢)

= (ﬁ +p C) e ) 2(1+a) (6 +p Ca ) T+ +N(ﬂk + pxC,

Q (83
Pl Pr Py k

).

Noting 0 < deg, ., a < (252 )15a, by (3.4), we have

m 1 1
bm (/8147 + pkg)gk (C)g;vl(c) 2+(m+1)a + 0( 2+(m+1)a )
Pk Pk
n 1 1
= an(ﬁk =+ ka)gk (C)g;c(C>2 2(1+a)+no + 0( 2(1+a)+na>
P P
1
ol T )- (3.5)
Pk Pk

Multiplying pk(HaHmm on both sides of (3.5), and noting m —n < 1, 1 + na +
(g2 —q1)ae > 0, and 2(1 +a) + na+ (¢4 — g3)a — a > 0, we can conclude from this, by letting

k — oo, g"g"? = 0. Thus g is a constant, which is a contradiction. Therefore we have

2(1+a)deg, a
a

p(f) <2

Case 2 r — s > 1. We choose a such that 0 < a < min{|1+s+1t2_t1‘, 1} and

2
|2+S+t4—t3|7
assume that

2(1 o) deg, . a

(e

p(f) >2+



930 Journal of Mathematics Vol. 37

Then there exist a sequence {0} and a positive sequence {py} satisfying
|z = Brl <1, pr—0

such that hy(¢) = p, @ f(Br+ prC) converges locally uniformly to a nonconstant meromorphic

function A(¢). By similar argument as in Case 1, we can obtain

h(¢)*h™(¢) = 0.

Hence h is a constant, which is a contradiction. Thus we have completed the proof of
Theorem 3.1.

Similarly, from the proof of Theorem 3.1 and Lemma 2.4, we have

Corollary 3.2 Let f be an entire solution of equation (2.1). Further assume that
PzS) £ in equation (2.1), M(z, f) # 0, N(z, f) # 0 are birational functions and have the

Q(z,f)
forms

€y (2) [T 4 -+ ey (2) f7°
Uqy (Z)fq4 T Uy (z)ft4 ’

g () f1 4+ e (2)
dqz(z)fq2 +ot dtz (Z)ftz '

where ¢;, (2) (t1 < J1 < @1),dj,(2) (B2 < J2 < g2),€5,(2) (I3 < J3 < g3) and g, (2) (ta < js <
q4) are rational functions, ¢;, (2) Z 0, di, (2) Z 0, ey, (2) Z 0, ug, (2) Z 0, then

M(z, f) =

N(z f) =

14+«
p(f) S 1+Tdegz,ooaa

2
4—n—1]?

where 0 < a0 < min{‘ql_;z_m, rre— 1} whenm—n<1land0<a< min{m,
|2+T2t4—t3\’1} when 7 — s > 1.

Remark In Theorem 3.1 and Corollary 3.2, if m—n < 1, M(z, f) = 0 and N(z, f) Z 0,
then for arbitrary 0 < a < Jrnin{‘anQ_n_1|7 1}, the results of Theorem 3.1 and Corollary 3.2
are also true. Similarly, if m —n < 1, M(z, f) # 0 and N(z, f) = 0, then we may choose any
0<a< min{m,l}. Ifr—s>1,M(z,f) =0and N(z, f) # 0, then we may choose
any 0 < a < min{m,l}. Ifr—s>1,M(z f) £ 0 and N(z, f) = 0, then we may
choose any 0 < o < min{m,l}. IfM(z,f)y=N(z,f)=0,m—n<lorr—s>1,
then we may choose any 0 < o < 1.

Example There exists the entire function f(z) = e*" (n > 1) such that it is of order

n and satisfies the following second-order differential equation

P+ f-1
I
where deg, ., a = 2(n — 1) and 0 < a < 1, then the order of any meromorphic solution f
of equation (3.6) can be estimated as p(f) < 2 + % and the order of any entire
solution f of equation (3.6) can be estimated as p(f) <1+ % by Theorem 3.1 and

Corollary 3.2, respectively. In particular, the estimation of growth order of entire solution

i (f)? = nz""ff 4+ n(n—1)2""2f + n2227Y), (3.6)

is sharp when n = 1.
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