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Abstract: In this paper, we investigate the complementary-dual (1− 2v)-constacyclic codes

over the ring Fp +vFp(v
2 = v), where p is a prime. Using the decomposition C = vC1−v⊕(1−v)Cv

of a (1−2v)-constacyclic code over Fp+vFp, we obtain generator polynomial of the complementary-

dual (1−2v)-constacyclic code C. Then by means of the Gray map from Fp+vFp to F2
p, we show that

Gray images of complementary-dual (1− 2v)-constacyclic codes over Fp + vFp are complementary-

dual cyclic codes over Fp.
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1 Introduction

A linear code with a complementary-dual (an LCD code) was defined in [3] to be a linear
code C whose dual code C⊥ satisfies C ∩C⊥ = {0}. It was shown in [3] that asymptotically
good LCD codes exist and those LCD codes have certain other attractive properties. Yang
and Massy showed that the necessary and sufficient condition for a cyclic code of length
n to be an LCD code is that the generator polynomial g(x) is self-reciprocal and all the
monic irreducible factors of g(x) have the same multiplicity in g(x) and in xn − 1 (see [4]).
In [9], Sendrier indicated that linear code with complementary-duals meet the asymptotic
Gilbert-Varshamov bound. Emaeili and Yari discussed in [8] the complementary-dual QC
codes, and provided a sufficient condition for an ρ-generator QC code C to be an LCD code,
and a necessary and sufficient condition under which a given maximal 1-generator index-2
QC code C is LCD.

In recent years, Dinh established the algebrac structure in terms of polynomial gener-
ators of all repeated-root constacyclic codes of length 3ps, 4ps, 6ps over Fpm . Using these
structures, LCD codes were identified among them (see [5–7]).
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The purpose of this paper is to give the algebraic structure in terms of generator poly-
nomials of all complementary-dual (1 − 2v)-constacyclic codes of length n over Fp + vFp.
The necessary background materials on constacyclic codes and a Gray map are given in
Section 2. In Section 3, we give the generator polynomials of the complementary-dual cyclic
and negacyclic codes of length n = ptm over Fp, and show an enumeration formula for the
complementary-dual cyclic and negacyclic codes of length n over Fp. In Section 4, Theorem
4.5 provides a necessary and sufficient condition under which a given (1 − 2v)-constacyclic
code C of length n over Fp + vFp is an LCD. The generator polynomials and enumeration
of (1− 2v)-constacyclic codes length n over Fp + vFp are given by Theorem 4.7 under which
C is an LCD code of length n over Fp + vFp.

2 Preliminaries

Throughout this paper, p is an odd prime, Fp is a finite field with p elements. Let R be
the commutative ring Fp + vFp = {a + vb|a, b ∈ Fp} with v2 = v. The ring R is a semi-local
ring, it has two maximal ideals 〈v〉 = {av|a ∈ Fp} and 〈1− v〉 = {b(1− v)|b ∈ Fp}. It is easy
to see that both R

〈v〉 and R
〈1−v〉 are isomorphic to Fp. From Chinese remainder theorem, we

have R = 〈v〉 ⊕ 〈1 − v〉. We denote 1 − 2v by µ for simplicity. The following notations for
codes over R are also valid for codes over Fp. A code of length n over R is a nonempty subset
of Rn, and a code is linear over R if it is an R-submodule of Rn . Let x = (x0, x1, · · · , xn−1)
and y = (y0, y1, · · · , yn−1) be any two elements of Rn, we define an inner product over R by
x · y = x0y0 + · · ·+ xn−1yn−1. If x · y = 0, we say x and y are orthogonal.

The dual code C⊥ of C is defined by C⊥ = {x ∈ Rn|x · y = 0 for all y ∈ C}. It is easy
to verify that C⊥ is always a linear code over R for any code C code over R.

Let C be a code of length n over R (or Fp) and P (C) be its polynomial representation,
i.e.,

P (C) = {
n−1∑
i=0

cix
i|(c0, c1, · · · , cn−1) ∈ C}.

Let σ and γ be maps from Rn( or F n
p ) to Rn (or F n

p ) given by σ(c0, c1, · · · cn−1) =
(cn−1, c0, · · · , cn−2), and γ(c0, c1, · · · cn−1) = (−cn−1, c0, · · · , cn−2), respectively. Then a code
C is said to be cyclic if σ(C) = C, negacyclic if γ(C) = C.

Let τ be map from Rn to Rn given by τ(c0, c1, · · · cn−1) = (µcn−1, c0, · · · , cn−2). Then
code C is said to be µ-constacyclic if τ(C) = C.

It is well known that a code C of length n over R (or Fp) is cyclic if and only if P (C) is
an ideal of R[x]

〈xn−1〉 (or Fp[x]

〈xn−1〉), a code C of length n over R (or Fp) is negacyclic if and only if

P (C) is an ideal of R[x]
〈xn+1〉 (or Fp[x]

〈xn+1〉), a code C of length n over R is µ−constacyclic if and

only if P (C) is an ideal of R[x]
〈xn−µ〉 .

Now we give the definition of the Gray map on Rn. Observe that any element c ∈ R

can be expressed as c = a + vb, where a, b ∈ Fp. The Gray map Φ : R → F 2
p is given by
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Φ(c) = (−b, 2a + b). This map can be extended to Rn in a natrual way:

Φ : Rn → F 2n
p ,

(c0, c1, · · · , cn−1) 7→ (−b0,−b1, · · · ,−bn−1, 2a0 + b0, 2a1 + b1, · · · , 2an−1 + bn−1),

where ci = ai + vbi, 0 ≤ i ≤ n− 1.
A code C is a complementary-dual cyclic (or negacyclic) code of length n over R (or

Fp) if it is a cyclic (or negacyclic) and LCD code of length n over R (or Fp), and a code C

is a complementary-dual µ-constacyclic code of length n over R if it is a µ-constacyclic and
LCD code of length n over R .

3 Generator Polynomials of the Complementary-Dual Cyclic Codes over

Fp

We begin with two concepts.
Given a ring R̃, for a nonempty subset S of R̃, the annihilator of S, denoted by ann(S),

is the set ann(S) = {f |fg = 0 for all g ∈ S}. If, in addition, S is an ideal of R̃, then ann(S)
is also an ideal of R̃.

For any polynomial f(x) =
k∑

i=0

aix
i of degree k (ak 6= 0) over Fp, let f∗(x) denote the

reciprocal polynomial of f(x) given by f∗(x) = xkf( 1
x
) =

k∑
i=0

ak−ix
i. Note that (f∗)∗ = f if

and only if the constant term of f is nonzero, if and only if deg(f)=deg(f∗). Furthermore,
by definition, it is easy to see that (fg)∗ = f∗g∗. We denote A∗ = {f∗(x)|f(x) ∈ A}. It is
easy to see that if A is an ideal, then A∗ is also an ideal. Hereafter, we will use ann∗(C) to
denote (ann(C))∗. The following proposition can be found in [2, 10].

Proposition 3.1 If C is a cyclic (or negacyclic) code of length n over Fp, then the
dual C⊥ of C is ann∗(C).

Suppose that f(x) is a monic (i.e., leading coefficient 1) polynomial of degree k with
f(0) = c 6= 0. Then by monic reciprocal polynomial of f(x) we mean the polynomial f̃(x) =
c−1f∗(x). We recall a result about LCD codes which can be found in [5].

Proposition 3.2 If g1(x) is the generator polynomial of a cyclic code C of length n

over Fp, then C is an LCD code if and only if g1(x) is self-reciprocal (i.e., g̃1(x) = g1(x)) and
all the monic irreducible factors of g1(x) have the same multiplicity in g1(x) and in xn − 1.

Similar to the discussions in [5], we have the following proposition.
Proposition 3.3 If g2(x) is the generator polynomial of a negacyclic code C of length

n over Fp, then C is an LCD code if and only if g2(x) is self-reciprocal (i.e., g̃2(x) = g2(x))
and all the monic irreducible factors of g2(x) have the same multiplicity in g2(x) and in
xn + 1.

We first investigate the generator polynomials of the complementary-dual cyclic codes
over Fp.

It is well known that each cyclic code over Fp is uniquely determined by its generator
polynomial, a monic divisor of xn−1 over Fp. In order to describe the generator polynomials
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of the complementary-dual cyclic codes, we need to know the factorization of the polynomial
xn − 1 over Fp. Write n = ptm, where t is a nonnegative integer depending on n and
gcd(m, p) = 1. Then xn − 1 = (xm − 1)pt

.
For any irreducible polynomial dividing xm − 1 over Fp, its reciprocal polynomial also

divides xm − 1 over Fp and is also irreducible over Fp. Since gcd(m, p) = 1, the polynomial
xm − 1 factors completely into irreducible factors in Fp[x] as

xm − 1 = δf1(x)f2(x) · · · fk(x)h1(x)h∗1(x) · · ·hs(x)h∗s(x),

where δ 6= 0 in Fp, f1(x), f2(x), · · · , fk(x) are irreducible polynomials that are associates
to their own reciprocals, and h1(x), h∗1(x); · · · ;hs(x), h∗s(x) are pairs of mutually reciprocal
irreducible polynomials. Therefore

xn − 1 = δpt

(f1(x))pt

(f2(x))pt · · · (fk(x))pt

(h1(x))pt

(h∗1(x))pt · · · (hs(x))pt

(h∗s(x))pt

. (3.1)

We can describe the generator polynomials of the complementary-dual cyclic codes as soon
as we know the factorization of xn − 1 over Fp.

Theorem 3.4 Let xn − 1 be factorized as in (3.1). A cyclic code C of length n over
Fp is an LCD code if and only if its generator polynomial is of the form

(f1(x))α1(f2(x))α2 · · · (fk(x))αk(h1(x))β1(h∗1(x))β1 · · · (hs(x))βs(h∗s(x))βs , (3.2)

where αi ∈ {0, pt} for each 1 ≤ i ≤ k, and βj ∈ {0, pt} for each 1 ≤ j ≤ s .
Proof Let C be a cyclic code of length n over Fp, and let g(x) be its generator poly-

nomial. We need to show that C is an LCD code if and only if g(x) is of the form as in
(3.2).

Suppose that

g(x) = ε(f1(x))α1(f2(x))α2 · · · (fk(x))αk(h1(x))β1(h∗1(x))γ1 · · · (hs(x))βs(h∗s(x))γs

with leading coefficient 1, where 0 ≤ αi ≤ pt for each 1 ≤ i ≤ k, and 0 ≤ βj , γj ≤ pt for each
1 ≤ j ≤ s. Then

g∗(x) = η(f1(x))α1(f2(x))α2 · · · (fk(x))αk(h1(x))γ1(h∗1(x))β1 · · · (hs(x))γs(h∗s(x))βs .

Therefore

g̃(x) =
1

g(0)
g∗(x) = ε(f1(x))α1(f2(x))α2 · · · (fk(x))αk(h1(x))γ1(h∗1(x))β1 · · · (hs(x))γs(h∗s(x))βs .

By Proposition 3.2, C is an LCD code if and only if g(x) = g̃(x) and all the monic
irreducible factors of g(x) have the same multiplicity in g(x) and in xn − 1, i.e., βj = γj for
each 1 ≤ j ≤ s, αi ∈ {0, pt} for each 1 ≤ i ≤ k, and βj ∈ {0, pt} for each 1 ≤ j ≤ s.

Therefore, C is an LCD code if and only if its generator polynomial g(x) is of the form
as in (3.2).
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Obviously, C = {0} and C = F n
p are complementary-dual cyclic codes, which are called

the trivial LCD codes over Fp.
The following corollary is obvious.
Corollary 3.5 Let xn − 1 be factorized as in (3.1). Then the number of nontrivial

complementary-dual cyclic codes is exactly 2k+s − 2.

Now we discuss the complementary-dual negacyclic codes.
Since n = ptm, gcd(m, p) = 1, we have xn + 1 = (xm + 1)pt

. For any irreducible
polynomial dividing xm + 1 over Fp, its reciprocal polynomial also divides xm + 1 over Fp

and is also irreducible over Fp. Since gcd(m, p) = 1, the polynomial xm+1 factors completely
into irreducible factors in Fp[x] as

xm + 1 = ζf1(x)f2(x) · · · fk(x)h1(x)h
∗
1(x) · · ·hs(x)h

∗
s(x),

where ζ 6= 0 in Fp, f1(x), f2(x), · · · , fk(x) are irreducible polynomials that are associates
to their own reciprocals, and h1(x), h

∗
1(x); · · · ;hs(x), h

∗
s(x) are pairs of mutually reciprocal

irreducible polynomials. Therefore

xn + 1 = ζpt

(f1(x))pt

(f2(x))pt · · · (fk(x))pt

(h1(x))pt

(h
∗
1(x))pt · · · (hs(x))pt

(h
∗
s(x))pt

. (3.3)

In light of Proposition 3.3 and (3.3), the following theorem is easy to vertify.
Theorem 3.6 Let xn + 1 be factorized as in (3.3). A negacyclic code C of length n is

LCD code if and only if its generator polynomial is of the form

(f1(x))α1(f2(x))α2 · · · (fk(x))αk(h1(x))β1(h
∗
1(x))β1 · · · (hs(x))βs(h

∗
s(x))βs , (3.4)

where αi ∈ {0, pt} for each 1 ≤ i ≤ k, and βj ∈ {0, pt} for each 1 ≤ j ≤ s .
Obviously, C = 0 and C = F n

p are complementary-dual negacyclic codes, which are
called the trivial complementary-dual negacyclic codes over Fp. The following corollary is
easy to obtain.

Corollary 3.7 Let xn + 1 be factorized as in (3.3). Then the number of nontrivial
complementary-dual cyclic codes is exactly 2k+s − 2.

4 Generator Polynomials of Complementary-Dual µ-Constacyclic Codes

over R

Let C1, C2 be codes over R. We denote C1 ⊕C2 = {a + b|a ∈ C1, b ∈ C2}. For a code C

over R, let us take

C1−v = {a ∈ F n
p | there exists b ∈ F n

p such that va + (1− v)b ∈ C}

and
Cv = {b ∈ F n

p | there exists a ∈ F n
p such that va + (1− v)b ∈ C}.

It is easy to vertify that | C |=| Cv || C1−v |, and C = vC1−v ⊕ (1− v)Cv.
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The following four lemmas can be found in [1].
Lemma 4.1 Let C = vC1−v ⊕ (1− v)Cv be a linear code of length n over R. Then C

is a µ-constacyclic code length n over R if and only if C1−v and Cv are negacyclic and cyclic
codes of length n over Fp, respectively.

Lemma 4.2 If C = vC1−v⊕ (1−v)Cv is a µ-constacyclic code of length n over R, then
there is a unique polynomial g(x) = vg1(x)+ (1− v)g2(x) such that C = 〈g(x)〉, g(x)|xn−µ,

and | C |= p2n−deg(g1)−deg(g2), where g1(x) and g2(x) are the generator polynomials of C1−v

and Cv over Fp, respectively.
Lemma 4.3 Let C = vC1−v ⊕ (1− v)Cv be a µ-constacyclic code length n over R, and

C = 〈vg1(x) + (1 − v)g2(x)〉, where g1(x) and g2(x) are the generator polynomials of C1−v

and Cv over Fp, respectively. Then Φ(C) = 〈g1(x)g2(x)〉, and Φ(C⊥) = Φ(C)⊥.

Lemma 4.4 Let C = vC1−v⊕(1−v)Cv be a µ-constacyclic code length n over R. Then
its dual code C⊥ is also a µ-constacyclic code length n over R, and C⊥ = vC⊥

1−v⊕(1−v)C⊥
v .

Theorem 4.5 Let C = vC1−v⊕(1−v)Cv = 〈vg1(x)+(1−v)g2(x)〉 be a µ-constacyclic
code of length n over R. Then C is an LCD code of length n over R if and only if C1−v and
Cv are the complementary-dual negacyclic and cyclic codes of length n over Fp, respectively.

Proof By Lemma 4.4 , we know that C ∩ C⊥ = {0} if and only if C1−v ∩ C⊥
1−v = {0},

and Cv = ∩C⊥
v = {0}.

Form the above proof, the following corollary can be obtained at once.
Corollary 4.6 Let C = vC1−v ⊕ (1− v)Cv be a µ-constacyclic code of length n over

R. Then C is an LCD code of length n over R if and only if Φ(C) is a complementary-dual
cyclic codes of length 2n over Fp.

Proof By Lemma 4.1 and Lemma 4.3, we have C1−v = 〈g1(x)〉, and Cv = 〈g2(x)〉.
Since C1−v is a complementary-dual negacyclic code, g1(x) = g̃1(x) and all the monic

irreducible factors of g1(x) have the same multiplicity in g1(x) and in xn + 1.
Similarly, g2(x) = g̃2(x) and all the monic irreducible factors of g2(x) have the same

multiplicity in g2(x) and in xn − 1.
In light of Lemma 4.2, Φ(C) = 〈g1(x)g2(x)〉. Write g(x) = g1(x)g2(x). Then

g̃(x) =
1

g(0)
g∗(x) =

1
g1(0)g2(0)

g∗1(x)g∗2(x) = g̃1(x)g̃2(x) = g1(x)g2(x) = g(x),

which implies that g̃(x) is self-reciprocal.
Let xn + 1 = g1(x)h1(x), and xn − 1 = g2(x)h2(x). Then

x2n − 1 = g1(x)g2(x)h1(x)h2(x) = g(x)h1(x)h2(x).

Therefore all the monic irreducible factors of g(x) have same multiplicity in g(x) have the
same multiplicity in g(x) in x2n − 1.

We summarize the above fact to conclude that Φ(C) is a complementary-dual cyclic
code of length 2n over Fp.

Conversely, if α ∈ C ∩ C⊥, i.e., α ∈ C, and α ∈ C⊥, then Φ(α) ∈ Φ(C), and Φ(α) ∈
Φ(C⊥) = Φ(C)⊥. Therefore Φ(α) ∈ Φ(C) ∩ Φ(C)⊥ = {0}, i.e., Φ(α) = 0. It is implies that
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α = 0 since Φ is bijective from Rn to F 2n
p . Hence C ∩C⊥ = {0}, i.e., C is a complementary-

dual cyclic code of length n over R.
By Theorem 3.5, Theorem 3.7, Corollary 3.6 and Corollary 3.8, we get the following

statements.
Theorem 4.7 Let C = vC1−v ⊕ (1 − v)Cv be a µ-constacyclic code of length n over

R, xn − 1 and xn + 1 be factorized as in (3.2) and (3.3), respectively. Then
(1) C is an LCD code of length n over R if and only if its generator polynomial is of

the form

v

k∏
l=1

(f l(x))αl

s∏
q=1

(hq(x))βq(h
∗
q(x))βq + (1− v)

k∏
i=1

(fi(x))αi

s∏
j=1

(hj(x))βj (h∗j (x))βj ,

where fi(x), f l(x), hj(x), h∗j (x), hq(x), h
∗
q(x) ∈ Fp[x], and αi, αl, βj , βq ∈ {0, pt}.

(2) Φ(C) is an LCD code of length 2n over Fp if and only if its generator polynomial is
of the form

k∏
i=1

(fi(x))αi

k∏
l=1

(f l(x))αl

s∏
j=1

(hj(x))βj (h∗j (x))βj

s∏
q=1

(hq(x))βq(h
∗
q(x))βq ,

where fi(x), f l(x), hj(x), h∗j (x), hq(x), h
∗
q(x) ∈ Fp[x], and αi, αl, βj , βq ∈ {0, pt}.

(3) The number of nontrivial complementary-dual µ-constacyclic codes of length n over
R is exactly 2k+s+k+s − 2.

Now, we give the following two examples to illustrate the above results.
Example 1 In F5[x],

x6 − 1 = (x− 1)(x + 1)(x2 + x + 1)(x2 + 4x + 1),

x6 + 1 = −3(x + 2)(1 + 2x)(x2 + 2x− 1)(1 + 2x− x2).

Observe that the polynomials x−1, x+1, x2+x+1, and x2+4x+1 are irreducible polynomials
that are associates to their own reciprocals, and x + 2, 1 + 2x;x2 + 2x − 1, 1 + 2x − x2 are
two pairs of mutually reciprocal irreducible polynomials over F5. There are 62 nontrivial
complementary-dual µ-constacyclic codes of length 6 over R = F5 + vF5, i.e.,

Cα1,α2,α3,α4,α5,α6 = 〈v(x + 2)α1(x− 2)α1(x2 + 2x− 1)α2(1 + 2x− x2)α2

+(1− v)(x− 1)α3(x + 1)α4(x2 + x + 1)α5(x2 + 4x + 1)α6〉,

where αi ∈ {0, 1} for 1 ≤ i ≤ 6, and (α1, α2, α3, α4, α5, α6) 6= (0, 0, 0, 0, 0, 0), (1, 1, 1, 1, 1, 1).
Now we list some optimal codes obtained from complementary-dual µ-constacyclic codes

over R = F5 + vF5 in Table 1.
Example 2 In F7[x],

x8 − 1 = (x− 1)(x + 1)(x2 + 1)(x2 − 3x + 1)(x2 + 3x + 1),

x8 + 1 = (x2 + x− 1)(1 + x− x2)(x2 + 3x− 1)(1 + 3x− x2).
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Table 1: Optimal codes of length 12 over F5

from complementary-dual µ-constacyclic codes over R = F5 + vF5

Generator of C φ(C)

v − (v − 1)(x2 + 4x + 1) [12,10,2]
v − (v − 1)(x + 1) [12,11,2]
v(x− 2)(x + 2)− (v − 1)(x2 + 4x + 1) [12,8,4]
v(x2 + 2x− 1)(2x− x2 + 1)− (v − 1)(x− 1)(x2 + 4x + 1) [12,5,6]
v(x− 2)(x + 2)(x2 + 2x− 1)(2x− x2 + 1)− (v − 1)(x + 1)(x2 + x + 1) [12,3,8]
v(x− 2)(x + 2)(x2 + 2x− 1)(2x− x2 + 1)− (v − 1)(x + 1)(x2 + 4x + 1)(x2 + x + 1) [12,1,12]

Observe that the polynomials x− 1, x+1, x2 +1, x2− 3x+1, and x2 +3x+1 are irreducible
polynomials that are associates to their own reciprocals, and x2 +x−1, 1+x−x2;x2 +3x−
1, 1 + 3x − x2 are two pairs of mutually reciprocal irreducible polynomials over F7. There
are 126 nontrivial complementary-dual µ-constacyclic codes of length 8 over R = F7 + vF7,
i.e.,

Cβ1,β2,β3,β4,β5,β6,β7 = 〈v(x2 + x− 1)β1(1 + x− x2)β1(x2 + 3x− 1)β2(1 + 3x− x2)β2

+(1− v)(x− 1)β3(x + 1)β4(x2 + 1)β5(x2 − 3x + 1)β6(x2 + 3x + 1)β7〉,
where βj ∈ {0, 1} for 1 ≤ j ≤ 7, and

(β1, β2, β3, β4, β5, β6, β7) 6= (0, 0, 0, 0, 0, 0, 0), (1, 1, 1, 1, 1, 1, 1).

Now we list some optimal linear codes obtained from complementary-dual µ-constacyclic
codes over R = F7 + vF7 in Table 2.

Table 2: Optimal codes of length 16 over F7

from complementary-dual µ-constacyclic codes over R = F7 + vF7

Generator of C φ(C)

v − (v − 1)(x + 1) [16,15,2]
v − (v − 1)(x2 + 3x + 1) [16,14,2]
v(x2 + 3x− 1)(3x− x2 + 1)− (v − 1)(x + 1)(x2 + 3x + 1) [16,9,6]
v(x− x2 + 1)(x2 + 3x− 1)(3x− x2 + 1)(x2 + x− 1) [16,3,12]
−(x2 + 1)(v − 1)(x + 1)(x2 + 3x + 1)
v(x− x2 + 1)(x2 + 3x− 1)(3x− x2 + 1)(x2 + x− 1) [16,1,16]
−(x2 + 1)(v − 1)(x + 1)(x2 − 3x + 1)(x2 + 3x + 1)
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环Fp + vFp上互补对偶常循环码

刘修生

(湖北理工学院数理学院, 湖北黄石 435003)

摘要: 本文研究了环Fp + vFp上互补对偶 (1− 2v)-常循环码. 利用环 Fp + vFp上 (1− 2v)-常循环码

的分解式 C = vC1−v ⊕ (1− v)Cv, 得到了环 Fp + vFp上互补对偶 (1− 2v)-常循环码的生成多项式. 然后借

助从 Fp + vFp 到 F 2
p 的Gray映射, 证明了环 Fp + vFp上互补对偶 (1− 2v)-常循环码的Gray像是 Fp的互补

对偶循环码.
关键词: 互补对偶(1− 2v)-常循环码; 循环码; 负循环码; 常循环码; 生成多项式

MR(2010)主题分类号: 94B05; 94B15; 11T71 中图分类号: O157.4


