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FORCING AN w;-REAL WITHOUT ADDING A REAL
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Abstract: In this paper, we study strong Mathias forcing and its generalizations to uncount-
able cases. By applying the method of forcing, we show that strong Mathias forcing adds unbounded
but not dominating reals, which is in contrast to usual Mathias forcing. We also show that the
wi-version of strong Mathias forcing adds unbounded but not dominating wi-reals and meanwhile,
this forcing adds no new reals, which are applied to the consistency of cardinal invariants on the
real line.
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1 Introduction

Forcing is a mechanism of obtaining independent results over the commonly accepted
foundation of mathematics, the Zermelo-Fraenkel axiom system with the axiom of choice.
Since its formulation by Cohen [1], forcing has become a powerful tool in advanced set theory
as well as other related fields and proved numerous results.

Roughly speaking, forcing usually works in the following way: to prove that a statement
—¢ is unprovable from ZFC, one builds a model of ZFC together with ¢. One starts with a
ground model V and force with a generic filter G to get a bigger model, the generic extension
V]G], which witnesses the failure of —¢. The generic filter G usually collects information
which approximates the desired statement. This process is in a sense similar to a field
extension. For instance, C would disagree with R on the statement 3z(z? = —1). One start
with R and imposes a solution i of the polynomial 22 + 1 = 0 to get C = R[i].

The beginner is referred to [2] and [5] for an elementary introduction to forcing. More
details can be found in the textbooks [3] and [6]. Forcing is also related to boolean valued
models, see [10] for instance.

The Cohen forcing adds reals to the universe. In set theory, reals are identified with a
countable binary sequence or countable sequence on w. Cohen forcing approaches the generic
Cohen real by finite strings. There are other forcings which adjoin different types of reals.

For instance, Mathias forcing [7] is defined in Section 2.
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The rest of this article is organised as follows: Section 2 introduces the Mathias forcing
and its properties; Section 3 deals with a variation of Mathias forcing and focuses on the
difference with the usual Mathias forcing; Section 4 generalizes to uncountable space and

proves the main theorem.

2 Mathias Forcing

Definition 1 A pair (s,S5) is called a Mathias pair, if

1. s is an strictly increasing function from some finite number n to w.

2. S is an infinite subset of w.

3. range(s) C min(S).

Definition 2 Mathias forcing consists of all Mathias pairs with the partial order
defined as: (s,S) < (t,T) if s end extends ¢, range(s) \ range(t) C T and S C T.

For a generic filter G, the Mathias real is defined as g = |J{¢ : 3T(¢,T) € G}, which is
an increasing function from w to w in the generic extension.

Definition 3 A real g dominates a real f, if Im € w Vn > m (f(n) < g(n)).

Definition 4 g € w* N V[G] is dominating over V if Vf € w* NV, g dominates f.

Definition 5 g € w* NV|[G] is unbounded by V if Vf € w* NV, g is not dominated by
I

It is clear that a dominating real is unbounded. It can be proved that a Mathias real is

dominating over the ground model, while a Cohen real is unbounded but not dominating.

3 Strengthen the Mathias Forcing

In this section, we consider a stronger version of the Mathias forcing.

Consider the strong Mathias forcing Py which consists of all Mathias pairs. (s,S) <
(t,T) if s end extends t, range(s) \ range(t) C T, S CT and T\ S is finite.

Namely, we enhance the usual Mathias forcing with the last requirement. As with the
Mathias forcing, we can define the typical generic real g = (J{t : 3T(¢,T) € G}.

In contrast to Mathias forcing, the typical generic real of Py is not a dominating real.

Theorem 6 g is not dominating over the ground model.

Proof A key observation is that, below any condition, there are exactly Ny many
conditions. So this forcing is in a sense a disjoint union of ¢ many Cohen forcings.

Suppose ¢ is dominating, let r I ¢ is dominating. List the conditions below r as
{pn : n € w}. Let g, < p, decide g(n). Namely, let k, € w be such that ¢, IF g(n) = k,.
Define in the ground model that f:w — w, f(n) = k,. Since r |- ImVn > m(g(n) > f(n)).
There is some r’ < r and m such that Vn > m " I g(n) > f(n). By the observation above,

there is some n > m such that p, < r’. Then ¢, < r’. Therefore,

A contradiction. However, we still have the following.
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Theorem 7 g is unbounded over the ground model.
Proof Suppose otherwise. Let (¢,7) IF f dominate g. Moreover, by passing to a

stronger condition, we can assume without loss of generality that
ImVn > m (t,T) IF f(n) > g(n).

Now we let n = max{m+1, |t|} and extend (¢,T) to (s,S) such that |s| > n and s(n) > f(n).
Since (s,S) IF g(n) = s(n), we get a contradiction.

4 Generalization to Uncountable Space

In this section, we generalize the results to uncountable case. We will focus on the first
uncountable cardinal w;.

An w;-real is a function from w; to w;.

Definition 8 A pair (s,.5) is called a w;-Mathias pair, if

1. s is an strictly increasing function from some countable ordinal « to ws.

2. S is an uncountable subset of w;.

3. range(s) C min(S).

Definition 9 Consider the strong w;-Mathias forcing P; which consists of all w;-
Mathias pairs. (s,S) < (¢,T) if s end extends ¢, range(s) \ range(t) C T, S C T and T'\ S
is countable.

Remark 10 We might study the w;-Mathias forcing. The generic w;-real added by
wi-Mathias forcing is dominating. However, the question that whether reals were added is
more complicated and we will not explain in this article.

Now we begin to study the properties of P;.

The main theorem we wish to prove is the following.

Theorem 11 The forcing P; adds no reals; the generic w;-real is unbounded. If CH
holds, then the generic w;-real is not dominating.

Chain condition is usually a key to study a forcing. Set theoretic topologist usually
prefer the forcing with countable chain condition (c.c.c.), as Martin’s Axiom can be applied
there. However, we have the following lemma.

Lemma 12 P; does not satisfy the countable chain condition.

Proof Fix a partition wy = (J{I, : @ < w1}, with each I, uncountable. Then the
(0, I,)’s are mutually incompatible forcing notions.

The chain conditions plays an important role in preserving cardinal. Since the failure
of c.c.c., one would ask if w; is preserved.

Fortunately, a closure property can be expected for P;.

Theorem 13 P; is w-closed.

Proof Let (sg,Sy) > (s1,51) > -+ > (sp,S,) > --- be a decreasing sequence of
conditions. Define s = |J{sn, : n < w}. Then s is an increasing function into w;. Let
domain(s,) = a;,, domain(s) = «, then a = sup{a, : n € w} is a countable ordinal.

Let S =(){S»:n <w}. Then S = S\ U{Sn \ Snt1:n € w}. So S is uncountable.
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Since for each n, range(s,) C min(S,) < min(S), range(s) C min(.5).

Therefore, (s,5) is a condition. Since for each n, S, \ S = [J{Sk \ Sk+1 : k > n} is a
countable set, (s,S) is a lower bound for the given decreasing sequence.

It is well known that w-closed forcing does not add countable sequence of ordinals. In
other words, it is w-distributive. See [3], for instance. So w; is preserved. Also, we have

Corollary 14 P; does not add a real.

w-closed forcing is proper, see [8]. The class of forcing notions that are both w-
distributive and proper was studied in [9], which focus on the forcing axiom and preservation
of a couple of combinatorial properties. An immediate consequence is the following.

Corollary 15 Assume CH in the ground model, then in a generic extension by Py, or
a countable support iteration of P, all the following cardinal invariants are equal to N

a7 b? 07 e7 g7 b? i7 m7 p? t? 57 t? u7
add(B), cov(B), non(B), cof(B),add(L), cov(L),non(L), cof (L).

Remark 16 This result is in contrast to the case of usual Mathias forcing. With a
countable support iteration of the usual Mathias forcing, e, m,p,t,add(B), cov(B),add(L),
cov(£L) remain 8; while the rest become c.

As before, if G is a generic filter of P, then let g = (J{¢t : 3T(t,T) € G}. g is a generic
wi-real.

Unboundedness and dominating properties can be defined for a generic w;-real, similar
to Definitions 3 to 5.

Theorem 17 ¢ is an unbounded w;-real over the ground model.

Proof The proof is similar to the proof of Theorem 7.

Theorem 18 Assume CH holds in the ground model, then g is not dominating over
the ground model.

In fact, we can prove a stronger theorem.

Theorem 19 Assume for any condition r in a forcing Q, {¢ € Q : ¢ < r} has cardinality
N;. Then for any wi-real h in the generic extension, there is in the ground model an w;-real
f, which is not dominated by h.

Proof The proof is similar to that of Theorem 6. Suppose the conclusion fails. Then
there is some r € Q such that r IF his a dominating wi-real.

List { € Q: v <71} ={ps : @ < w;i}. For each o, let ¢, < pa, o < wi be such that
o I h(a) = B4. Now define in the ground model an w;-real f with f(a) = 3.

Since r |- f is dominated by h, there is some p < r and v < w; such that p IF Vo >
v (f(a) < h(e)). Since there are uncountably many successor of p, find some o > 5 such
that p, < p. Then ¢, < p and ¢q IF h(a) = f(a). A contradiction.

Proof of Theorem 18 Assume CH holds in the ground model. Obviously, for any
given condition (¢,T") of Py, the cardinality of the set {(¢',T") € Py : (¢/,T") < (t,T)} is

Wi X Wi = Wi = Ry fwf] = Ry RG = Ry
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The second equality is due to the Hausdorff’s formula; the last equality is CH.

Thus Theorem 19 applies and we conclude that the forcing P; adds an unbounded
wi-real but adds no dominating w,-real.

Remark The results in this section can be generalize to any regular cardinal x with

<K

KR = K.
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