ON A NEW NONTRIVIAL ELEMENT INVOLVING THE THIRD PERIODICITY γ－FAMILY IN $\pi_{*} S$

WANG Yu－yu ${ }^{1}$ ，WANG Jian－bo ${ }^{2}$
（1．School of Mathematics and Science，Tianjin Normal University，Tianjin 300387，China）
（2．Department of Mathematics，School of Science，Tianjin University，Tianjin 300072，China）

Abstract

In this paper，we discuss stable homotopy groups of spheres．By making a non－ trivial secondary differential as geometric input in the Adams spectral sequence，the convergence of $h_{0} g_{n}(n>3)$ in $\pi_{*} S$ is given．Furthermore，by the knowledge of Yoneda products，a new nontrivial element in $\pi_{*} S$ is detected．The scale of the nontrivial elements is expanded by our results．

Keywords：stable homotopy groups of spheres；Toda－Smith spectrum；Adams spectral se－ quence；May spectral sequence；Adams differential

2010 MR Subject Classification：55Q45
Document code：A Article ID：0255－7797（2017）05－0898－13

1 Introduction

Let S denote the sphere spectrum localized at p and p denote an odd prime．From ［14］，the homotopy group of n－dimensional sphere $\pi_{n+r} S^{n}(r>0)$ is a finite group．So the determination of $\pi_{n+r} S^{n}$ has become one of the central problems in algebraic topology．

Ever since the introduction of the Adams spectral sequence（ASS）in the late 1950＇s（see ［1］），the study of the homotopy groups of spheres $\pi_{*} S$ was split into algebraic and geometric problems，including the computation of $\operatorname{Ext}_{A}^{* * *}\left(\mathbb{Z}_{p}, \mathbb{Z}_{p}\right)$ and the detection which element of $\operatorname{Ext}_{A}^{* * *}\left(\mathbb{Z}_{p}, \mathbb{Z}_{p}\right)$ can survive to $E_{\infty}^{*, *}$ ，here A is the $\bmod p$ Steenrod algebra， $\operatorname{Ext}_{A}^{*, *}\left(\mathbb{Z}_{p}, \mathbb{Z}_{p}\right)$ is the E_{2}－term of the ASS．By［2］，

$$
E_{2}^{s, t} \cong \mathrm{Ext}_{A}^{s, t}\left(\mathbb{Z}_{p}, \mathbb{Z}_{p}\right) \Rightarrow \pi_{t-s} S
$$

and the Adams differential is $d_{r}: E_{r}^{s, t} \rightarrow E_{r}^{s+r, t+r-1}$ ．
In addition，we also have the Adams－Novikov spectral sequence（ANSS）［12，13］based on the Brown－Peterson spectrum BP in the determination of $\pi_{*} S$ ．

Many wonderful results were obtained，however，it is still far from the total determina－ tion of $\pi_{*} S$ ．After the detection of $\eta_{j} \in \pi_{p^{j} q+p q-2} S$ for $p=2, j \neq 2$ ，by Mahowald in［11］，

[^0]which was represented by $h_{1} h_{j} \in \operatorname{Ext}_{A}^{2, p^{j} q+p q}\left(\mathbb{Z}_{p}, \mathbb{Z}_{p}\right)$, many nontrivial elements in $\pi_{*} S$ were found. Please see references [5-9] for details. In recent years, the first author established several convergence of elements by an arithmatic method, see [16-18, 21].

In [5], Cohen made the nontrivial secondary Adams differential $d_{2}\left(h_{i}\right)=a_{0} b_{i-1}(p>$ $2, i>0)$ as geometric input, then, a nontrivial element $\xi_{i} \in \pi_{\left(p^{i+1}+1\right) q} S(i \geqslant 0)$ is detected. In this paper, we also detect a new family in $\pi_{*} S$ by geometric method, the only geometric input used in the proof is the secondary nontrivial differential given in [20].

The main result is obtained as follows.
Theorem 1.1 Let $3 \leqslant s<p-1, n>3, p \geqslant 7$, then

$$
0 \neq \widetilde{\gamma}_{s} h_{0} g_{n} \in \operatorname{Ext}_{A}^{s+3, p^{n+1} q+2 p^{n} q+s p^{2} q+(s-1) p q+(s-1) q+s-3}\left(\mathbb{Z}_{p}, \mathbb{Z}_{p}\right)
$$

is a permanent cycle in the Adams spectral sequence and converges to a nontrivial element of order p in $\pi_{p^{n+1} q+2 p^{n} q+s p^{2} q+(s-1) p q+(s-1) q-6} S$.

The paper is organized as follows. After giving some necessary preliminaries and useful knowledge about the MSS in Section 2. The proof of Theorem 1.1 and some results on Ext groups will be given in Section 3.

2 Related Spectrum and the May Spectral Sequence

For the convenience of the reader, let us briefly indicate the necessary preliminaries in the proof of the propositions and theorems.

Let M be the Moore spectrum modulo an odd prime p given by the cofibration

$$
S \xrightarrow{p} S \xrightarrow{i} M \xrightarrow{j} \Sigma S
$$

Let $\alpha: \sum^{q} M \rightarrow M$ be the Adams map and $V(1)$ be its cofibre given by the cofibration

$$
\Sigma^{q} M \xrightarrow{\alpha} M \xrightarrow{i^{\prime}} V(1) \xrightarrow{j^{\prime}} \Sigma^{q+1} M
$$

Let $\beta: \sum^{(p+1) q} V(1) \rightarrow V(1)$ be the ν_{2}-mapping and $V(2)$ be the cofibre of β sitting in the cofibration

$$
\Sigma^{(p+1) q} V(1) \xrightarrow{\beta} V(1) \xrightarrow{i^{\prime \prime}} V(2) \xrightarrow{j^{\prime \prime}} \Sigma^{(p+1) q+1} V(1)
$$

Furthermore, $\gamma: \sum^{\left(p^{2}+p+1\right) q} V(2) \rightarrow V(2)$ is the ν_{3}-mapping and the γ-element $\gamma_{s}=j j^{\prime} j^{\prime \prime} \gamma^{s} i^{\prime \prime} i^{\prime} i$ is a nontrivial element in $\pi_{s p^{2} q+(s-1) p q+(s-2) q-3} S$, where $p \geqslant 7$ (see [15]).

From [19], we know that the third periodicity family γ_{s} is represented by the third Greek letter family element

$$
\widetilde{\gamma}_{s} \in \operatorname{Ext}_{A}^{s, s p^{2} q+(s-1) p q+(s-2) q+s-3}\left(\mathbb{Z}_{p}, \mathbb{Z}_{p}\right)
$$

in the ASS, which is represented by the element

$$
s(s-1)(s-2) a_{3}^{s-3} h_{3,0} h_{2,1} h_{1,2}
$$

in the May spectral sequence (MSS).
Let L be the cofibre of $\alpha_{1}=j \alpha i: \sum^{q-1} S \rightarrow S$ given by the cofibration

$$
\Sigma^{q-1} S \xrightarrow{\alpha_{1}} S \xrightarrow{\bar{i}} L \xrightarrow{\bar{j}} \Sigma^{q} S
$$

From [10], we can see that $\operatorname{Ext}_{A}^{1, *}\left(\mathbb{Z}_{p}, \mathbb{Z}_{p}\right)$ has \mathbb{Z}_{p}-bases

$$
a_{0} \in \operatorname{Ext}_{A}^{1,1}\left(\mathbb{Z}_{p}, \mathbb{Z}_{p}\right), h_{i} \in \operatorname{Ext}_{A}^{1, p^{i} q}\left(\mathbb{Z}_{p}, \mathbb{Z}_{p}\right)(i \geqslant 0)
$$

$\operatorname{Ext}_{A}^{2, *}\left(\mathbb{Z}_{p}, \mathbb{Z}_{p}\right)$ has \mathbb{Z}_{p}-bases

$$
\alpha_{2}, a_{0}^{2}, a_{0} h_{i}(i>0), g_{i}(i \geqslant 0), k_{i}(i \geqslant 0), b_{i}(i \geqslant 0), \text { and } h_{i} h_{j}(j \geqslant i+2, i \geqslant 0),
$$

whose internal degrees are

$$
2 q+1,2, p^{i} q+1,2 p^{i} q+p^{i+1} q, 2 p^{i+1}+p^{i} q, p^{i+1} q \text { and } p^{i} q+p^{j} q
$$

respectively. Aikawa computed $\operatorname{Ext}_{A}^{3, *}\left(\mathbb{Z}_{p}, \mathbb{Z}_{p}\right)$ by λ-algebra in [3].
In the following, recall the Adams resolution of some spectra related to S from [4]. Let

be the minimal Adams resolution of the sphere spectrum S which satisfies
(A) $E_{s} \xrightarrow{\bar{b}_{s}} K G_{s} \xrightarrow{\bar{c}_{s}} E_{s+1} \xrightarrow{\bar{a}_{s}} \Sigma E_{s}$ are cofibrations for all $s \geqslant 0$, which induce short exact sequences in \mathbb{Z}_{p}-cohomology

$$
0 \longrightarrow H^{*} E_{s+1} \xrightarrow{\bar{c}_{s}^{*}} H^{*} K G_{s} \xrightarrow{\bar{b}_{s}^{*}} H^{*} E_{s} \longrightarrow 0 .
$$

(B) $K G_{s}$ are the graded wedge sums of Eilenberg-Maclane spectrum $K \mathbb{Z}_{p}$ of type \mathbb{Z}_{p}.
(C) $\pi_{t} K G_{s}$ are the $E_{1}^{s, t}$-terms of the ASS,

$$
\left(\bar{b}_{s} \bar{c}_{s-1}\right)_{*}: \pi_{t} K G_{s-1} \longrightarrow \pi_{t} K G_{s}
$$

are the $d_{1}^{s-1, t}$-differentials of the ASS , and $\pi_{t} K G_{s} \cong \operatorname{Ext}_{A}^{\mathrm{s}, \mathrm{t}}\left(\mathbb{Z}_{\mathrm{p}}, \mathbb{Z}_{\mathrm{p}}\right)$. Then, an Adams resolution of an arbitrary spectrum V can be obtained by smashing V to (2.1).

Remark 2.1 In the ANSS, h_{0} is a permanent cycle and converges to the corresponding homotopy element $i^{\prime} i \alpha_{1}\left(\alpha_{1}=j \alpha i \in \pi_{q-1} S\right)$ in $\pi_{q-1} K$. Furthermore, if some suppositions on Ext groups are given, then there exists $\bar{w} \in \pi_{p^{n+1} q+2 p^{n} q-2} K$ such that $i^{\prime} i \xi=\alpha^{\prime \prime} \cdot \bar{w}(\bmod$ $\left.F^{4} \pi_{*} K\right)$ and \bar{w} is represented by $\left(i^{\prime} i\right)_{*}\left(g_{n}\right) \in \operatorname{Ext}_{A}^{2, p^{n+1} q+2 p^{n} q}\left(H^{*} K, \mathbb{Z}_{p}\right)$ in the ASS, where $\xi \in \pi_{p^{n+1} q+2 p^{n} q-4} S$ is the homotopy element which is represented by $h_{0} l_{n} \in \operatorname{Ext}_{A}^{4, p^{n+1} q+2 p^{n} q+q}$ $\left(\mathbb{Z}_{p}, \mathbb{Z}_{p}\right)$ in the ASS and $F^{4} \pi_{*} K$ denotes the group consisting of all elements in $\pi_{*} K$ with filtration no less than 4.

To detect $\pi_{*} S$ with the ASS, we must compute the E_{2}-term of the ASS, $\operatorname{Ext}_{A}^{* * *}\left(\mathbb{Z}_{p}, \mathbb{Z}_{p}\right)$. The most successful method for computing it is the MSS.

From [13], there is a MSS $\left\{E_{r}^{s, t, *}, d_{r}\right\}$, which converges to $\operatorname{Ext}_{A}^{s, t}\left(\mathbb{Z}_{p}, \mathbb{Z}_{p}\right)$ with E_{1}-term

$$
\begin{equation*}
E_{1}^{*, *, *}=E\left(h_{i, j} \mid i>0, j \geqslant 0\right) \otimes P\left(b_{i, j} \mid i>0, j \geqslant 0\right) \otimes P\left(a_{i} \mid i \geqslant 0\right) \tag{2.2}
\end{equation*}
$$

where $E()$ denotes the exterior algebra, $P()$ denotes the polynomial algebra, and

$$
h_{i, j} \in E_{1}^{1,2\left(p^{i}-1\right) p^{j}, 2 i-1}, b_{i, j} \in E_{1}^{2,2\left(p^{i}-1\right) p^{j+1}, p(2 i-1)}, a_{i} \in E_{1}^{1,2 p^{i}-1,2 i+1}
$$

One has $d_{r}: E_{r}^{s, t, M} \rightarrow E_{r}^{s+1, t, M-r}(r \geqslant 1)$. If $x \in E_{r}^{s, t, *}$ and $y \in E_{r}^{s^{\prime}, t^{\prime}, *}$, then

$$
\begin{equation*}
d_{r}(x \cdot y)=d_{r}(x) y+(-1)^{s} x d_{r}(y) \tag{2.3}
\end{equation*}
$$

Furthermore, the May E_{1}-term is graded commutative in the sense that

$$
\begin{array}{ll}
a_{m} h_{n, j}=h_{n, j} a_{m}, & h_{m, k} h_{n, j}=-h_{n, j} h_{m, k} \\
a_{m} b_{n, j}=b_{n, j} a_{m}, & h_{m, k} b_{n, j}=b_{n, j} h_{m, k} \\
a_{m} a_{n}=a_{n} a_{m}, & b_{m, n} b_{i, j}=b_{i, j} b_{m, n}
\end{array}
$$

The first May differential d_{1} is given by

$$
\left\{\begin{array}{l}
d_{1}\left(h_{i, j}\right)=-\sum_{0<k<i} h_{i-k, k+j} h_{k, j} \tag{2.4}\\
d_{1}\left(a_{i}\right)=-\sum_{0<k<i} h_{i-k, k}, a_{k} \\
d_{1}\left(b_{i, j}\right)=0
\end{array}\right.
$$

For each element $x \in E_{1}^{s, t, *}$, if we denote $\operatorname{dim} x=s, \operatorname{deg} x=t$, we have

$$
\left\{\begin{array}{l}
\operatorname{dim} h_{i, j}=\operatorname{dim} a_{i}=1, \quad \operatorname{dim} b_{i, j}=2 \tag{2.5}\\
\operatorname{deg} h_{i, j}=2\left(p^{i}-1\right) p^{j}=\left(p^{i+j-1}+\cdots+p^{j}\right) q \\
\operatorname{deg} b_{i, j}=2\left(p^{i}-1\right) p^{j+1}=\left(p^{i+j}+\cdots+p^{j+1}\right) q \\
\operatorname{deg} a_{i}=2 p^{i}-1=\left(p^{i-1}+\cdots+1\right) q+1 \\
\operatorname{deg} a_{0}=1
\end{array}\right.
$$

Remark 2.2 Any positive integer t can be expressed uniquely as $t=q\left(c_{n} p^{n}+c_{n-1} p^{n-1}+\right.$ $\left.\cdots+c_{1} p+c_{0}\right)+e$, where $0 \leqslant c_{i}<p(0 \leqslant i<n), 0<c_{n}<p, 0 \leqslant e<q$.
Then, it is easy to get the following result from [16].
Proposition 2.3 In the MSS, we have $E_{1}^{s, t, *}=0$ for some $j(0 \leqslant j \leqslant n), s<c_{j}$, where s is also a positive integer with $0<s<p$.

3 Some Adams E_{2}-Terms

In this section, we mainly give some important results about Adams E_{2}-terms. At the end, the proof of Theorem 1.1 will be given.

Proposition 3.1 Let $3 \leqslant s<p-1, n>3, p \geqslant 7$, then

$$
0 \neq \widetilde{\gamma}_{s} h_{0} g_{n} \in \operatorname{Ext}_{A}^{s+3, p^{n+1} q+2 p^{n} q+s p^{2} q+(s-1) p q+(s-1) q+s-3}\left(\mathbb{Z}_{p}, \mathbb{Z}_{p}\right)
$$

Proof Consider the structure of $E_{1}^{s+2, t, *}$ in the MSS, where $t=p^{n+1} q+2 p^{n} q+s p^{2} q+$ $(s-1) p q+(s-1) q+s-3$. Due to $3 \leqslant s<p-1$, then $5 \leqslant s+2<p+1$.

Case $15 \leqslant s+2<p$. Let $h=x_{1} x_{2} \cdots x_{m}$ be the generator of $E_{1}^{s+2, t, *}$, where x_{i} is one of $a_{k}, h_{i, j}$ or $b_{u, z}, 0 \leqslant k \leqslant n+2,0<i+j \leqslant n+2,0<u+z \leqslant n+1, i>0, j \geqslant 0, u>0$, $z \geqslant 0$.

Assume that $\operatorname{deg} x_{i}=q\left(c_{i, n+1} p^{n+1}+\cdots+c_{i, 1} p+c_{i, 0}\right)+e_{i}$, where $c_{i, j}=0$ or $1, e_{i}=1$ if $x_{i}=a_{k}$ or $e_{i}=0$, then

$$
\begin{aligned}
\operatorname{deg} h & =\sum_{i=1}^{m} \operatorname{deg} x_{i}=q\left(\left(\sum_{i=1}^{m} c_{i, n+1}\right) p^{n+1}+\left(\sum_{i=1}^{m} c_{i, n}\right) p^{n}+\cdots+\left(\sum_{i=1}^{m} c_{i, 0}\right)\right)+\left(\sum_{i=1}^{m} e_{i}\right) \\
& =q\left(p^{n+1}+2 p^{n}+s p^{2}+(s-1) p+(s-1)\right)+s-3
\end{aligned} \quad \begin{aligned}
\operatorname{dim} h & =\sum_{i=1}^{m} \operatorname{dim} x_{i}=s+2
\end{aligned}
$$

Note that $\operatorname{dim} x_{i}=1$ or 2 , we can see that $m \leqslant s+2<p$ from $\sum_{i=1}^{m} \operatorname{dim} x_{i}=s+2$. By the fact that $c_{i, j}=0$ or $1, e_{i}=0$ or $1, m \leqslant s+2<p$, we have

$$
\begin{aligned}
& \sum_{i=1}^{m} e_{i}=s-3, \sum_{i=1}^{m} c_{i, 0}=s-1, \sum_{i=1}^{m} c_{i, 1}=s-1, \sum_{i=1}^{m} c_{i, 2}=s \\
& \sum_{i=1}^{m} c_{i, 3}=\cdots=\sum_{i=1}^{m} c_{i, n-1}=0, \sum_{i=1}^{m} c_{i, n}=2, \sum_{i=1}^{m} c_{i, n+1}=1
\end{aligned}
$$

From the above results, we can see that $b_{1, n} b_{1, n-1} h_{1, n}, h_{2, n} h_{1, n}, h_{2, n} b_{1, n-1}, b_{2, n-1} h_{1, n}$, $b_{1, n-1} b_{2, n-1}, b_{1, n} b_{1, n-1}^{2}, h_{1, n+1} b_{1, n-1}^{2}$ and $h_{1, n+1} b_{1, n-1} h_{1, n}$ are contained in the x_{i}. By the commutativity of $E_{1}^{*, *, *}$, we can denote

$$
\begin{array}{ll}
h_{1}=x_{1} x_{2} \cdots x_{m-3} b_{1, n} h_{1, n} b_{1, n-1}, & \\
h_{1}^{\prime}=x_{1} x_{2} \cdots x_{m-3} \in E_{1}^{s-3, t^{\prime}, *} ; \\
h_{1} x_{2} \cdots x_{m-3} b_{1, n} b_{1, n-1}^{2}, & \\
h_{1}^{\prime} x_{2} \cdots x_{m-3} h_{1, n+1} b_{1, n-1}^{2}, & \\
h_{3}^{\prime}=x_{1} x_{2} \cdots x_{m-3} \in x_{m-3}^{s-4, t^{\prime}, *} ; E_{1}^{s-3, t^{\prime}, *} ; \\
h_{4}=x_{1} x_{2} \cdots x_{m-2} h_{2, n} h_{1, n}, & \\
h_{5}^{\prime}=x_{1} x_{2} \cdots x_{1} x_{2} \cdots x_{m-2} h_{2, n} b_{1, n-1}, & \\
h_{5}^{\prime}=x_{1}^{s, t^{\prime}, *} ; \\
h_{6}=x_{1} x_{2} \cdots x_{m-2} \in E_{1-2}^{s-1, t^{\prime}, * ;} ; \\
h_{7}=x_{1} x_{2} \cdots x_{m-2} h_{1, n}, & \\
h_{6, n-1}^{\prime} b_{1, n-1}, & \\
h_{8}=x_{1} x_{2} \cdots x_{m-2} \in x_{1} x_{2} \cdots x_{1}^{s-1, t^{\prime}, *} ; x_{m-2} \in E_{1}^{s-2, t^{\prime}, *} ; \\
h_{m-3} h_{1, n+1} h_{1, n} b_{1, n-1}, & h_{8}^{\prime}=x_{1} x_{2} \cdots x_{m-3} \in E_{1}^{s-2, t^{\prime}, *},
\end{array}
$$

where $t^{\prime}=s p^{2} q+(s-1) p q+(s-1) q+s-3$.
We list all the possibilities of h_{i}^{\prime} in the following table $(i=1,2, \cdots, 8)$, thus h doesn't exist in this case.

Table 1: the possibilities of h_{i}^{\prime}

The possibility	Analysis	The existence of h_{i}^{\prime}
h_{1}^{\prime}	$s-3<\sum_{i=1}^{m-3} c_{i, 2}=s$	Nonexistent
h_{2}^{\prime}	$s-4<\sum_{i=1}^{m-3} c_{i, 2}=s$	Nonexistent
h_{3}^{\prime}	$s-3<\sum_{i=1}^{m-3} c_{i, 2}=s$	Nonexistent
h_{4}^{\prime}	$h_{4}^{\prime}=a_{3}^{s-3} h_{2,0}^{2} h_{1,0}=0$	Nonexistent
h_{5}^{\prime}	$s-1<\sum_{i=1}^{m-2} c_{i, 2}=s$	Nonexistent
h_{6}^{\prime}	$s-1<\sum_{i=1}^{m-2} c_{i, 2}=s$	Nonexistent
h_{7}^{\prime}	$s-2<\sum_{i=1}^{m-2} c_{i, 2}=s$	Nonexistent
h_{8}^{\prime}	$s-2<\sum_{i=1}^{m-3} c_{i, 2}=s$	Nonexistent

Case 2 If $s+2=p$, then $E_{1}^{s+2, t^{\prime \prime}, *}=E_{1}^{p, t^{\prime \prime}, *}$, where $t^{\prime \prime}=p^{n+1} q+2 p^{n} q+(p-2) p^{2} q+$ $(p-3) p q+(p-3) q+p-5$. Let $h=x_{1} x_{2} \cdots x_{r}$ be the generator of $E_{1}^{p, t^{\prime \prime}, *}$, and assume that

$$
\operatorname{deg} x_{i}=q\left(c_{i, n+1} p^{n+1}+c_{i, n} p^{n}+\cdots+c_{i, 1} p+c_{i, 0}\right)+e_{i}
$$

where $c_{i, j}=0$ or $1, e_{i}=1$ if $x_{i}=a_{k_{i}}$ or $e_{i}=0$, then

$$
\begin{aligned}
\operatorname{deg} h & =\sum_{i=1}^{r} \operatorname{deg} x_{i}=q\left(\left(\sum_{i=1}^{r} c_{i, n+1}\right) p^{n+1}+\left(\sum_{i=1}^{r} c_{i, n}\right) p^{n}+\cdots+\left(\sum_{i=1}^{r} c_{i, 0}\right)\right)+\left(\sum_{i=1}^{r} e_{i}\right) \\
& =q\left(p^{n+1}+2 p^{n}+(p-2) p^{2}+(p-3) p+(p-3)\right)+p-5 \\
\operatorname{dim} h & =\sum_{i=1}^{r} \operatorname{dim} x_{i}=p
\end{aligned}
$$

We claim that $\sum_{i=1}^{r} c_{i, 0}, \sum_{i=1}^{r} c_{i, 1}$ and $\sum_{i=1}^{r} c_{i, 2}$ are impossible to constitute p. The reason is the following: if $\sum_{i=1}^{r} c_{i, 0}=p$, because of $\sum_{i=1}^{r} e_{i}=p-5$, then

$$
q\left(\left(\sum_{i=1}^{r} c_{i, n+1}\right) p^{n+1}+\left(\sum_{i=1}^{r} c_{i, n}\right) p^{n}+\cdots+\left(\sum_{i=1}^{r} c_{i, 0}\right)\right)+\left(\sum_{i=1}^{r} e_{i}\right)=\sum_{i=1}^{r} e_{i}(\bmod p)
$$

this contradicts to $q\left(p^{n+1}+2 p^{n}+(p-2) p^{2}+(p-3) p+(p-3)\right)+p-5=(p-3) q+p-5(\bmod p)$. For the same reason, $\sum_{i=1}^{r} c_{i, 1}$ and $\sum_{i=1}^{r} c_{i, 2}$ are impossible to constitute p.

From $\operatorname{dim} x_{i}=1$ or 2 and $\sum_{i=1}^{r} \operatorname{dim} x_{i}=p$, we can see that $r \leqslant p$. By Remark 2.2 and
$r \leqslant p, c_{i, j}=0$ or $1, e_{i}=0$ or 1 , we have

$$
\begin{align*}
& \sum_{i=1}^{r} e_{i}=p-5, \sum_{i=1}^{r} c_{i, 0}=p-3, \sum_{i=1}^{r} c_{i, 1}=p-3, \sum_{i=1}^{r} c_{i, 2}=p-2 \\
& \left(\sum_{i=1}^{r} c_{i, 3}\right) p^{3}+\cdots+\left(\sum_{i=1}^{r} c_{i, n}\right) p^{n}+\left(\sum_{i=1}^{r} c_{i, n+1}\right) p^{n+1}=p^{n+1}+2 p^{n} \tag{3.1}
\end{align*}
$$

so

$$
\begin{equation*}
\left(\sum_{i=1}^{r} c_{i, 3}\right)+\cdots+\left(\sum_{i=1}^{r} c_{i, n}\right) p^{n-3}+\left(\sum_{i=1}^{r} c_{i, n+1}\right) p^{n-2}=p^{n-2}+2 p^{n-3} . \tag{3.2}
\end{equation*}
$$

Thus $p \mid \sum_{i=1}^{r} c_{i, 3}$. Note that $c_{i, 3}=0$ or $1, r \leqslant p$, it is known that $\sum_{i=1}^{r} c_{i, 3}=0$ or p.
Case 2.1 When $\sum_{i=1}^{r} c_{i, 3}=0$, we have

$$
\left(\sum_{i=1}^{r} c_{i, 4}\right) p+\cdots+\left(\sum_{i=1}^{r} c_{i, n}\right) p^{n-3}+\left(\sum_{i=1}^{r} c_{i, n+1}\right) p^{n-2}=p^{n-2}+2 p^{n-3}
$$

Case 2.1.1 When $n>4$, we claim that $\sum_{i=1}^{r} c_{i, 4}=0$. Otherwise, if $\sum_{i=1}^{r} c_{i, 4}=p$, then $r=p$. So $\operatorname{dim} x_{i}=1(1 \leqslant i \leqslant p)$ and $\operatorname{deg} x_{i}=$ (higher terms) $+p^{4} q+$ (lower terms). Because of $\sum_{i=1}^{r} e_{i}=p-5, \operatorname{deg} a_{k} \equiv 1(\bmod q), \operatorname{dim} h_{l, j} \equiv 0(\bmod q)$ and $\operatorname{dim} b_{u, z} \equiv 0(\bmod q)$, there exist factors $a_{j_{1}} a_{j_{2}} \cdots a_{j_{p-5}}$ among the generators $x_{i}\left(j_{i} \geqslant 5,1 \leqslant i \leqslant p-5\right)$. Thus, $\sum_{i=1}^{r} c_{i, 3} \geqslant p-5$, which contradicts to $\sum_{i=1}^{r} c_{i, 3}=0$, so $\sum_{i=1}^{r} c_{i, 4}=0$. By induction on j, we can get $\sum_{i=1}^{r} c_{i, j}=0(5 \leqslant j \leqslant n-1), \sum_{i=1}^{r} c_{i, n}=2, \sum_{i=1}^{r} c_{i, n+1}=1$.

Case 2.1.2 When $n=4$, it is easy to get $\sum_{i=1}^{r} c_{i, 4}=2$ and $\sum_{i=1}^{r} c_{i, 5}=1$.
From the above discussion of Case 2.1.1 and Case 2.1.2, similarly to Case 1, we can see that $b_{1, n} b_{1, n-1} h_{1, n}, h_{2, n} h_{1, n}, h_{2, n} b_{1, n-1}, b_{2, n-1} h_{1, n}, b_{1, n-1} b_{2, n-1}, b_{1, n} b_{1, n-1}^{2}, h_{1, n} b_{1, n-1} h_{1, n+1}$ and $h_{1, n+1} b_{1, n-1}^{2}$ are contained in the x_{i}, so h is impossible to exist.

Case 2.2 When $\sum_{i=1}^{r} c_{i, 3}=p$, then $r=p$. We get $\operatorname{dim} x_{i}=1$ from $\operatorname{dim} h=p$, then $h=x_{1} x_{2} \cdots x_{p}, x_{i} \in E\left(h_{i, j} \mid i>0, j \geqslant 0\right) \otimes P\left(a_{k} \mid k \geqslant 0\right)$.

Case 2.2.1 When $n>4$, we get

$$
p \cdot p^{3}+\left(\sum_{i=1}^{r} c_{i, 4}\right) p^{4}+\cdots+\left(\sum_{i=1}^{r} c_{i, n}\right) p^{n}+\left(\sum_{i=1}^{r} c_{i, n+1}\right) p^{n+1}=p^{n+1}+2 p^{n}
$$

that is $\left(1+\sum_{i=1}^{r} c_{i, 4}\right)+\left(\sum_{i=1}^{r} c_{i, 5}\right) p+\cdots+\left(\sum_{i=1}^{r} c_{i, n+1}\right) p^{n-3}=p^{n-3}+2 p^{n-4}$, thus $p \mid\left(1+\sum_{i=1}^{r} c_{i, 4}\right)$, so $\sum_{i=1}^{r} c_{i, 4}=p-1$ from $c_{i, 4}=0$ or 1 and $r=p$. By induction on j, we can get

$$
\sum_{i=1}^{r} c_{i, j}=p-1(4 \leqslant j \leqslant n-1), \sum_{i=1}^{r} c_{i, n}=1, \sum_{i=1}^{r} c_{i, n+1}=1 .
$$

By the reason of degree and the Proposition 2.3, h is impossible to exist.
Case 2.2.2 When $n=4$, we know that $\sum_{i=1}^{r} c_{i, 4}=1, \sum_{i=1}^{r} c_{i, 5}=1$ from (3.2), then

$$
\operatorname{deg} h=q\left(p^{5}+2 p^{4}+(p-2) p^{2}+(p-3) p+p-3\right)+(p-5)
$$

By the reason of degree and the Proposition $2.3, h$ is impossible to exist.
From the above discussion, for $5 \leqslant s+2<p+1, E_{1}^{s+2, t, *}=0$, so $E_{r}^{s+2, t, *}=0(r \geqslant$ 2). It is known that $h_{2, n} h_{1, n}, h_{1, n}, a_{3}^{s-3} h_{3,0} h_{2,1} h_{1,2} \in E_{1}^{*, *, *}$ are permanent cycles in the MSS and converge nontrivially to $g_{n}, h_{n}, \widetilde{\gamma}_{s} \in \operatorname{Ext}_{A}^{*, *}\left(\mathbb{Z}_{p}, \mathbb{Z}_{p}\right)(n \geqslant 0)$, respectively, so $a_{3}^{s-3} h_{3,0} h_{2,1} h_{1,2} h_{1, n} h_{2, n} h_{1,0} \in E_{1}^{s+3, t, *}$ is a permanent cycle in the MSS and converges nontrivially to $\widetilde{\gamma}_{s} h_{0} g_{n} \in \operatorname{Ext}_{A}^{s+3, t}\left(\mathbb{Z}_{p}, \mathbb{Z}_{p}\right)$. Note that $E_{r}^{s+2, t, *}=0(r \geqslant 1)$, thus the permanent cycle is not d_{r}-boundary and converges nontrivially to $\widetilde{\gamma}_{s} h_{0} g_{n} \in \operatorname{Ext}_{A}^{s+3, t}\left(\mathbb{Z}_{p}, \mathbb{Z}_{p}\right)$, that is, when $5 \leqslant s+2<p+1,0 \neq \widetilde{\gamma}_{s} h_{0} g_{n} \in \operatorname{Ext}_{A}^{s+3, t}\left(\mathbb{Z}_{p}, \mathbb{Z}_{p}\right)$.

Proposition 3.2 Let $3 \leqslant s<p-1, n>3, p \geqslant 7,2 \leqslant r<s+3$, then

$$
\operatorname{Ext}_{A}^{s+3-r, p^{n+1} q+2 p^{n} q+s p^{2} q+(s-1) p q+(s-1) q+s-r-2}\left(\mathbb{Z}_{p}, \mathbb{Z}_{p}\right)=0
$$

Proof We only need to prove that $E_{1}^{s+3-r, t, *}=0$ in the MSS, where $t=p^{n+1} q+2 p^{n} q+$ $s p^{2} q+(s-1) p q+(s-1) q+s-r-2$. Let $h=x_{1} x_{2} \cdots x_{m}$ be the generator of $E_{1}^{s+3-r, t, *}$, where x_{i} is $a_{k}, h_{i, j}$ or $b_{u, z}, 0 \leqslant k \leqslant n+2,0<i+j \leqslant n+2,0<u+z \leqslant n+1, i>0, j \geqslant 0$, $u>0, z \geqslant 0$.

Assume that $\operatorname{deg} x_{i}=q\left(c_{i, n+1} p^{n+1}+c_{i, n} p^{n}+\cdots+c_{i, 0}\right)+e_{i}$, where $c_{i, j}=0$ or $1, e_{i}=1$ if $x_{i}=a_{k_{i}}$ or $e_{i}=0$, then

$$
\begin{aligned}
\operatorname{deg} h & =\sum_{i=1}^{m} \operatorname{deg} x_{i}=q\left(\left(\sum_{i=1}^{m} c_{i, n+1}\right) p^{n+1}+\left(\sum_{i=1}^{m} c_{i, n}\right) p^{n}+\cdots+\left(\sum_{i=1}^{m} c_{i, 0}\right)\right)+\left(\sum_{i=1}^{m} e_{i}\right) \\
& =q\left(p^{n+1}+2 p^{n}+s p^{2}+(s-1) p+(s-1)\right)+s-r-2 \\
\operatorname{dim} h & =\sum_{i=1}^{m} \operatorname{dim} x_{i}=s+3-r
\end{aligned}
$$

Note that $\operatorname{dim} x_{i}=1$ or 2 , we can see that $m \leqslant s+3-r \leqslant s+1<p$. We claim that $s-r-2 \geqslant 0$, otherwise, $p>\sum_{i=1}^{m} e_{i}=q+(s-r-2) \geqslant q-5>p$. Because of $c_{i, j}=0$ or 1 , $e_{i}=0$ or 1 and $r<p$, we have

$$
\begin{array}{ll}
\sum_{i=1}^{m} e_{i}=s-r-2, \sum_{i=1}^{m} c_{i, 0}=s-1, & \sum_{i=1}^{m} c_{i, 1}=s-1, \\
\sum_{i=1}^{m} c_{i, 3}=\cdots=c_{i, 2}=s \\
\sum_{i=1}^{m} c_{i, n-1}=0, & \sum_{i=1}^{m} c_{i, n}=2, \quad \sum_{i=1}^{m} c_{i, n+1}=1
\end{array}
$$

From the above results, we can see that $b_{1, n} b_{1, n-1} h_{1, n}, h_{2, n} h_{1, n}, h_{2, n} b_{1, n-1}, b_{2, n-1} h_{1, n}$, $b_{1, n-1} b_{2, n-1}, b_{1, n} b_{1, n-1}^{2}, h_{1, n} b_{1, n-1} h_{1, n+1}$ and $h_{1, n+1} b_{1, n-1}^{2}$ are contained in the x_{i}. By the commutativity of $E_{1}^{*, *, *}$, we can denote

$$
\begin{array}{ll}
h_{1}=x_{1} x_{2} \cdots x_{m-3} b_{1, n} h_{1, n} b_{1, n-1}, & h_{1}^{\prime}=x_{1} x_{2} \cdots x_{m-3} \in E_{1}^{s-2-r, t(r), *} \\
h_{2}=x_{1} x_{2} \cdots x_{m-3} b_{1, n} b_{1, n-1}^{2}, & h_{2}^{\prime}=x_{1} x_{2} \cdots x_{m-3} \in E_{1}^{s-3-r, t(r), *} \\
h_{3}=x_{1} x_{2} \cdots x_{m-3} h_{1, n+1} b_{1, n-1}^{2}, & h_{3}^{\prime}=x_{1} x_{2} \cdots x_{m-3} \in E_{1}^{s-2-r, t(r), *} \\
h_{4}=x_{1} x_{2} \cdots x_{m-2} h_{2, n} h_{1, n}, & h_{4}^{\prime}=x_{1} x_{2} \cdots x_{m-2} \in E_{1}^{s+1-r, t(r), *} \\
h_{5}=x_{1} x_{2} \cdots x_{m-2} h_{2, n} b_{1, n-1}, & h_{5}^{\prime}=x_{1} x_{2} \cdots x_{m-2} \in E_{1}^{s-r, t(r), *} \\
h_{6}=x_{1} x_{2} \cdots x_{m-2} b_{2, n-1} h_{1, n}, & h_{6}^{\prime}=x_{1} x_{2} \cdots x_{m-2} \in E_{1}^{s-r, t(r), *} \\
h_{7}=x_{1} x_{2} \cdots x_{m-2} b_{2, n-1} b_{1, n-1}, & h_{7}^{\prime}=x_{1} x_{2} \cdots x_{m-2} \in E_{1}^{s-1-r, t(r), *} \\
h_{8}=x_{1} x_{2} \cdots x_{m-3} h_{1, n+1} h_{1, n} b_{1, n-1}, & h_{8}^{\prime}=x_{1} x_{2} \cdots x_{m-3} \in E_{1}^{s-1-r, t(r), *}
\end{array}
$$

where $t(r)=s p^{2} q+(s-1) p q+(s-1) q+s-2-r$.
For $h_{1}^{\prime}, s-2-r<\sum_{i=1}^{m-3} c_{i, 2}=s$, by Proposition 2.3, we get that h_{1}^{\prime} is impossible to exist. For the same reason, $h_{i}^{\prime}(i=2,3, \cdots 8)$ are impossible to exist. So we have $E_{1}^{s+3-r, t, *}=0$, that is $\operatorname{Ext}_{A}^{s+3-r, t}\left(\mathbb{Z}_{p}, \mathbb{Z}_{p}\right)=0$.

Proposition 3.3 Let $p \geqslant 7, t q=p^{n+1} q+2 p^{n} q, n>3$, then

$$
\begin{aligned}
& \operatorname{Ext}_{A}^{4, t q+r q+u}\left(\mathbb{Z}_{p}, \mathbb{Z}_{p}\right)=0(r=2,3,4, u=-1,0 \text { or } r=3,4, u=1) ; \\
& \operatorname{Ext}_{A}^{4, t q+q}\left(\mathbb{Z}_{p}, \mathbb{Z}_{p}\right) \cong \mathbb{Z}_{p}\left\{h_{0} l_{n}\right\} ; \operatorname{Ext}_{A}^{4, t q}\left(\mathbb{Z}_{p}, \mathbb{Z}_{p}\right)=0 \\
& \operatorname{Ext}_{A}^{4, t q+2 q+1}\left(\mathbb{Z}_{p}, \mathbb{Z}_{p}\right) \cong \mathbb{Z}_{p}\left\{\tilde{\alpha}_{2} g_{n}\right\}, a_{0}^{2} g_{n} \neq 0 .
\end{aligned}
$$

$$
\begin{align*}
& \operatorname{Ext}_{A}^{5, t q+r q+1}\left(\mathbb{Z}_{p}, \mathbb{Z}_{p}\right)=0(r=1,3,4) ; \operatorname{Ext}_{A}^{5, t q+r q}\left(\mathbb{Z}_{p}, \mathbb{Z}_{p}\right)=0(r=2,3) \tag{2}\\
& \operatorname{Ext}_{A}^{5, t q+2 q+1}\left(\mathbb{Z}_{p}, \mathbb{Z}_{p}\right) \cong \mathbb{Z}_{p}\left\{\tilde{\alpha}_{2}\right\} ; \operatorname{Ext}_{A}^{5, t q+2}\left(\mathbb{Z}_{p}, \mathbb{Z}_{p}\right) \cong \mathbb{Z}_{p}\left\{a_{0}^{2} l_{n}\right\} \\
& \operatorname{Ext}_{A}^{5, t q+1}\left(\mathbb{Z}_{p}, \mathbb{Z}_{p}\right)=0
\end{align*}
$$

Proof (1) Consider the second degrees $\left(\bmod p^{n+1} q\right)$ of the generators in the E_{1}-terms of the MSS, where $0 \leqslant j \leqslant n+1$,

$$
\begin{aligned}
\operatorname{deg} h_{s, j} & =\left(p^{s+j-1}+\cdots+p^{j}\right) q\left(\bmod p^{n+1} q\right), 0 \leqslant j<s+j-1<n+1, \\
& =\left(p^{n}+\cdots+p^{j}\right) q\left(\bmod p^{n+1} q\right), 0 \leqslant j<s+j-1=n+1 ; \\
\operatorname{deg} b_{s, j-1} & =\left(p^{s+j-1}+\cdots+p^{j}\right) q\left(\bmod p^{n+1} q\right), 1 \leqslant j<s+j-1<n+1, \\
& =\left(p^{n}+\cdots+p^{j}\right) q\left(\bmod p^{n+1} q\right), 1 \leqslant j<s+j-1=n+1 ; \\
\operatorname{deg} a_{j+1} & =\left(p^{j}+\cdots+1\right) q+1\left(\bmod p^{n+1} q\right), 0 \leqslant j<n+1, \\
& =\left(p^{n}+\cdots+1\right) q+1\left(\bmod p^{n+1} q\right), j=n+1 .
\end{aligned}
$$

For the second degree $k=t q+r q+u(0 \leqslant r \leqslant 4,-1 \leqslant u \leqslant 2)=2 p^{n} q+r q+u\left(\bmod p^{n+1} q\right)$, and excluding the factor which has second degree $\geqslant t q+p q$, we can get that the possibility of the factor of the generators in $E_{1}^{w, t q+r q+u, *}(4 \leqslant w \leqslant 5)$ are $a_{0}, a_{1}, h_{1,0}, h_{1, n+1}, h_{1, n}, h_{2, n}$,
$b_{1, n}, b_{1, n-1}$ and $b_{2, n-1}$. Thus from the degree we know that

$$
\begin{aligned}
& E_{1}^{4, t q+r q+u, *}=0(r=3,4, u=1) \\
& E_{1}^{4, t q+r q+u, *}=0(r=2,3,4, u=-1,0) \\
& E_{1}^{4, t q, *} \cong \mathbb{Z}_{p}\left\{b_{1, n-1} b_{2, n-1}\right\} \\
& E_{1}^{4, t q+q, *} \cong \mathbb{Z}_{p}\left\{h_{1,0} h_{1, n} b_{2, n-1}, h_{2, n} b_{1, n-1} h_{1,0}\right\} ; \\
& E_{1}^{4, t q+2 q+1, *} \cong \mathbb{Z}_{p}\left\{a_{1} h_{1,0} h_{1, n} h_{2, n}\right\} .
\end{aligned}
$$

In the MSS, note that $d_{r}(x y)=d_{r}(x) y+(-1)^{s} x d_{r}(y)\left(x \in E_{1}^{s, t, *}, y \in E_{1}^{s^{\prime}, t^{\prime}, *}\right)$. Since $d_{1}\left(b_{1, n-1} h_{2, n} h_{1,0}\right) \neq 0$, then $E_{r}^{4, t q+q}=\mathbb{Z}_{p}\left\{b_{2, n-1} h_{1, n} h_{1,0}\right\}(r \geqslant 2)$. Moreover, $h_{2, n} h_{1, n} h_{1,0}$ is permanent cycle in the MSS which converges to $h_{0} g_{n} \in \operatorname{Ext}_{A}^{3, *}\left(\mathbb{Z}_{p}, \mathbb{Z}_{p}\right)$, then $d_{r}\left(E_{r}^{3, t q+q, *}\right)=0$ for $r \geqslant 1$, so that $b_{2, n-1} h_{1, n} h_{1,0}$ is not d_{r}-boundary and it converges nontrivially to $h_{0} l_{n}$.

In addition, we say that $\operatorname{Ext}_{A}^{4, t q}\left(\mathbb{Z}_{p}, \mathbb{Z}_{p}\right)=0$, since $E_{1}^{4, t q, *} \cong \mathbb{Z}_{p}\left\{b_{1, n-1} b_{2, n-1}\right\}$, where $b_{1, n-1}$ converges to b_{n-1}, while in the $\operatorname{Ext}_{A}^{2, *}\left(\mathbb{Z}_{p}, \mathbb{Z}_{p}\right)$, there is no element in relation to $b_{2, n-1} \in E_{1}^{2, p^{n+1} q+p^{n} q, *}$.
(2) Similarly, due to the reason of the degree, we can get the following results

$$
\begin{aligned}
& E_{1}^{5, t q+q+1, *} \cong \mathbb{Z}_{p}\left\{a_{1} b_{1, n-1} b_{2, n-1}, a_{0} h_{1,0} h_{2, n} b_{1, n-1}, a_{0} h_{1,0} b_{2, n-1} h_{1, n}\right\} \\
& E_{1}^{5, t q+r q+1, *}=0(r=3,4) \\
& E_{1}^{5, t q+r q, *}=0(r=2,3) \\
& E_{1}^{5, t q+2 q+1, *} \cong \mathbb{Z}_{p}\left\{a_{1} h_{1,0} b_{2, n-1} h_{1, n}, h_{2, n} b_{1, n-1} h_{1,0} a_{1}\right\} \\
& E_{1}^{5, t q+2, *} \cong \mathbb{Z}_{p}\left\{a_{0}^{2} h_{1, n} b_{2, n-1}, a_{0}^{2} h_{2, n} b_{1, n-1}\right\} \\
& E_{1}^{5, t q+1, *} \cong \mathbb{Z}_{p}\left\{a_{0} b_{1, n-1} b_{2, n-1}, a_{0} h_{1, n-1} h_{1, n} h_{1, n+1}\right\}
\end{aligned}
$$

The generators of $E_{1}^{5, t q+q+1, *}$ in the MSS all die, this is because that

$$
\begin{aligned}
& d_{1}\left(a_{1} b_{1, n-1} b_{2, n-1}\right)=-a_{0} h_{1,0} b_{1, n-1} b_{2, n-1} \neq 0, \\
& a_{0} h_{1,0} h_{2, n} b_{1, n-1}=-d_{1}\left(a_{1} h_{2, n} b_{1, n-1}\right)
\end{aligned}
$$

and

$$
a_{0} h_{1,0} b_{2, n-1} h_{1, n}=-d_{1}\left(a_{1} h_{2, n-1} h_{1, n}\right) .
$$

So we have $\operatorname{Ext}_{A}^{5, t q+q+1}\left(\mathbb{Z}_{p}, \mathbb{Z}_{p}\right)=0$. In addition, with a similar proof of (1), we know that $d_{r} E_{r}^{4, t q+2, *}=0$. So the generator of $E_{1}^{5, t q+2, *}$ in the MSS converges to $a_{0}^{2} l_{n}$.

Since $d_{1}\left(h_{2, n} b_{1, n-1} h_{1,0} a_{1}\right) \neq 0$, then $E_{r}^{5, t q+2 q+1}=\mathbb{Z}_{p}\left\{b_{2, n-1} h_{1, n} h_{1,0} a_{1}\right\}$ for $r \geqslant 2$. Moreover, $h_{2, n} h_{1, n} h_{1,0} a_{1}$ is a permanent cycle in the MSS which converges to $\tilde{\alpha}_{2} g_{n}\left(a_{1} h_{1,0}\right.$ is a permanent cycle in the MSS and converges to $\left.\widetilde{\alpha}_{2} \in \operatorname{Ext}_{A}^{*, *}\left(\mathbb{Z}_{p}, \mathbb{Z}_{p}\right)\right)$, then $d_{r}\left(E_{r}^{4, t q+2 q+1}\right)=0$ for $r \geqslant 1$. Thus $b_{2, n-1} h_{1, n} h_{1,0} a_{1}$ is not d_{r}-boundary and converges nontrivially to $\widetilde{\alpha}_{2} l_{n}$.

Since $a_{0}, b_{1, n-1}, h_{1, n}$ and $h_{1, n+1}$ are all permanent cycles in the MSS and converge to a_{0}, b_{n-1}, h_{n} and h_{n+1}, respectively, it is easy to get that $a_{0} b_{1, n-1} h_{1, n} h_{1, n+1}$ is a permanent cycle in the MSS and converges to $a_{0} b_{n-1} h_{n} h_{n+1}$ which equals $0 \in \operatorname{Ext}_{A}^{5, t q+1}\left(\mathbb{Z}_{p}, \mathbb{Z}_{p}\right)$ by
$h_{n} h_{n+1}=0$. Furthermore, we have $d_{2 p-1}\left(b_{2, n-1}\right)=b_{1, n} h_{1, n}-b_{1, n-1} h_{1, n+1}$ from [10], then $d_{2 p-1}\left(a_{0} b_{2, n-1} b_{1, n-1}\right) \neq 0$ and so $\operatorname{Ext}_{A}^{5, t q+1}\left(\mathbb{Z}_{p}, \mathbb{Z}_{p}\right)=0$.

Theorem 3.4 Let $p \geqslant 7, n>3$, then

$$
h_{0} g_{n} \in \operatorname{Exx}_{A}^{3, p^{n+1} q+2 p^{n} q+q}\left(\mathbb{Z}_{p}, \mathbb{Z}_{p}\right)
$$

is a permanent cycle in the ASS, and converges to a nontrivial element in $\pi_{p^{n+1} q+2 p^{n} q+q-3} S$.
Proof From [20, Theorem 1.1], there is a nontrivial differential $d_{2}\left(g_{n}\right)=a_{0} l_{n}(n \geqslant 1)$ in the ASS, the elements g_{n} and l_{n} are called a pair of a_{0}-related elements. The condition of Theorem A in [7] can be established by the \mathbb{Z}_{p}-bases of $\operatorname{Ext}_{A}^{s, *}\left(\mathbb{Z}_{p}, \mathbb{Z}_{p}\right)(s \leqslant 3)$ in [10] and Proposition 3.3 in the above. Furthermore, we have $\kappa \cdot\left(\alpha_{1}\right)_{L}=\left(1_{E_{4}} \wedge p\right) f$ with $f \in$ [$\sum^{t q+q} L, E_{4}$] (see [7], 9.2.34), then $\left(1_{E_{4}} \wedge i\right) \kappa \cdot\left(\alpha_{1}\right)_{L}=0$. Thus

$$
\left(1_{E_{4}} \wedge 1_{L} \wedge i\right)\left(\kappa \wedge 1_{L}\right) \phi=\left(1_{E_{4}} \wedge 1_{L} \wedge i\right)\left(\kappa \wedge 1_{L}\right)\left(\left(\alpha_{1}\right)_{L} \wedge 1_{L}\right) \widetilde{i^{\prime \prime}}=0,
$$

where $\widetilde{i^{\prime \prime}} \in \pi_{q} L \wedge L$ such that $\left(\left(\alpha_{1}\right)_{L} \wedge 1_{L}\right) \widetilde{i^{\prime \prime}}=\phi$. It can be easily proved that $(\kappa \wedge$ $\left.1_{L}\right) \phi=\left(\bar{c}_{3} \wedge 1_{L}\right) \sigma \phi$, where $\sigma \phi \in \pi_{t q+2 q}\left(K G_{3} \wedge L\right)$ is a d_{1}-cycle which represents $(\phi)_{*}(\sigma) \in$ $\operatorname{Ext}_{A}^{3, t q+2 q}\left(H^{*} L, \mathbb{Z}_{p}\right)$. Thus

$$
\left(\bar{c}_{3} \wedge 1_{L \wedge M}\right)\left(1_{K G_{3}} \wedge i\right) \sigma \phi=0 .
$$

So we can get that $\left(1_{L} \wedge i\right)_{*} \phi_{*}\left(g_{n}\right) \in \operatorname{Ext}_{A}^{3, p^{n+1} q+2 p^{n} q+q}\left(H^{*} L \wedge M, \mathbb{Z}_{p}\right)$ is a permanent cycle in the ASS. Then Theorem 3.4 will be concluded by Theorem C in [7], here $\phi \in\left[\sum^{2 q-1} S, L\right]$, $\kappa \in \pi_{t q+1} E_{4}$.

The Proof of Theorem 1.1 From Theorem 3.4, $h_{0} g_{n} \in \operatorname{Ext}_{A}^{3, p^{n+1} q+2 p^{n} q+q}\left(\mathbb{Z}_{p}, \mathbb{Z}_{p}\right)$ is a permanent cycle in the ASS and converges to a nontrivial element $\varphi \in \pi_{p^{n+1} q+2 p^{n} q+q-3} S$ for $n>3$.

Consider the following composition of mappings

$$
\begin{gathered}
\tilde{f} \Sigma^{p^{n+1}+2 p^{n} q+q-3} S \xrightarrow{\varphi} S \xrightarrow{i^{\prime \prime} i^{\prime} i} V(2) \xrightarrow{\gamma^{s}} \\
\Sigma^{-s\left(p^{2}+p+1\right) q} V(2) \xrightarrow{j j^{\prime} j^{\prime \prime}} \Sigma^{-s\left(p^{2}+p+1\right) q+(p+1) q+q} S,
\end{gathered}
$$

because φ is represented by $h_{0} g_{n}$ in the ASS, then the above \tilde{f} is represented by

$$
\widetilde{g}=\left(j j^{\prime} j^{\prime \prime}\right)_{*}\left(\gamma^{s}\right)_{*}\left(i^{\prime \prime} i^{\prime} i\right)_{*}\left(h_{0} g_{n}\right)=\left(j j^{\prime} j^{\prime \prime} \gamma^{s} i^{\prime \prime} i^{\prime} i\right)_{*}\left(h_{0} g_{n}\right)
$$

in the ASS. Furthermore, we know that $\gamma_{s}=j j^{\prime} j^{\prime \prime} \gamma^{s} i^{\prime \prime} i^{\prime} i \in \pi_{*} S$ is represented by $\widetilde{\gamma}_{s}$ in the ASS. By using the Yoneda products, we know that the composition

$$
\begin{aligned}
& \operatorname{Ext}_{A}^{0,0}\left(\mathbb{Z}_{p}, \mathbb{Z}_{p}\right) \xrightarrow{\left(i^{\prime \prime} i^{\prime}\right)_{*}^{*}} \operatorname{Ext}_{A}^{0,0}\left(H^{*} V(2), \mathbb{Z}_{p}\right) \\
& \xrightarrow{\left(j j^{\prime} j^{\prime \prime}\right)_{*}\left(\gamma^{s}\right)_{*}} \operatorname{Ext}_{A}^{s,\left(s p^{2}+(s-1) p+(s-2)\right) q+s-3}\left(\mathbb{Z}_{p}, \mathbb{Z}_{p}\right)
\end{aligned}
$$

is a multiplication (up to nonzero scalar) by

$$
\widetilde{\gamma}_{s} \in \operatorname{Ext}_{A}^{s, s p^{2} q+(s-1) p q+(s-2) q+s-3}\left(\mathbb{Z}_{p}, \mathbb{Z}_{p}\right)
$$

Hence, the composite map \tilde{f} is represented (up to nonzero scalar) by

$$
\widetilde{\gamma}_{s} h_{0} g_{n} \in \operatorname{Ext}_{A}^{s+3, p^{n+1} q+2 p^{n} q+s p^{2} q+(s-1) p q+(s-1) q+s-3}\left(\mathbb{Z}_{p}, \mathbb{Z}_{p}\right)
$$

in the ASS.
From Proposition 3.1, we see that $\widetilde{\gamma}_{s} h_{0} g_{n} \neq 0$. Moreover, from Proposition 3.2, it follows that $\widetilde{\gamma}_{s} h_{0} g_{n}$ can not be hit by any differential in the ASS. Thus $\widetilde{\gamma}_{s} h_{0} g_{n}$ survives nontrivially to a homotopy element in $\pi_{*} S$.

References

[1] Adams J F. On the structure and application of Steenrod algebra[J]. Comm. Math. Helv., 1958, 32(1): 180-214.
[2] Adams J F. Stable homotopy and generalized homotopy[M]. Chicago: Univ. Chicago Press, 1974.
[3] Aikawa T. 3-dimensional cohomology of the mod p Steenrod algebra[J]. Math. Scand., 1980, 47: 91-115.
[4] Cohen R, Goeress P. Secondary cohomology operations that detect homotopy class[J]. Topology, 1984, 23(2): 177-194.
[5] Cohen R. Odd primary infinite families in the stable homotopy theory[M]. Providence RI: AMS, 1981.
[6] Lin J K. Third periodicity families in the stable homotopy of spheres[J]. J. P. J. Geom. Topology, 2003, 3(3): 179-219.
[7] Lin J K. Adams spectral sequence and stable homotopy groups of spheres (in Chinese)[M]. Beijing: Science Press, 2007, 163-185.
[8] Liu X G. A new family represented by $b_{1} g_{0} \tilde{\gamma}_{s}$ in the stable homotopy of spheres[J]. Sys. Sci. Math., 2006, 26(2): 129-136.
[9] Lee C N. Detection of some elements in the stable homotopy groups of spheres[J]. Math. Z., 1996, 222(2): 231-246.
[10] Liulevicius A. The factorizations of cyclic reduced powers by secondary cohomology operations $[\mathrm{M}]$. Providence RI: AMS, 1962.
[11] Mahowald M. A new infinite family in $\pi_{*} S[\mathrm{~J}]$. Topology, 1977, 16(3): 249-256.
[12] Miller H R, Ravenel D C, Wilson W S. Periodic phenomena in the Adams-Novikov spectral sequence[J]. Ann. Math., 1977, 106(3): 469-516.
[13] Ravenel D C. Complex cobordism and stable homotopy groups of spheres[M]. New York: Academic Press, 1986.
[14] Serre J P. Groupes d' homotopie et classes de groupes abeliens[J]. Ann. Math., 1953, 58(2): 258-294.
[15] Toda H. On spectra realizing exterior parts of the Steenrod algebra[J]. Topology, 1971, 10(1): 53-65.
[16] Wang Y Y. A new familiy of filtration $s+5$ in the stable homotopy groups of spheres[J]. Acta. Math. Sci., 2008, 28(2): 321-332.
［17］Wang Y Y，Wang J L．A new family of elements in the stable homotopy groups of spheres［J］．J． Math．，2015，35（2）：294－306．
［18］Wang Y Y，Wang J B．The nontrivility of ζ_{n}－related elements in the stable homotopy groups of sphere［J］．Math．Scand．，2015，117：304－319．
［19］Wang X J，Zheng Q B．The convergence of ${\tilde{\alpha_{s}}}^{(n)} h_{0} h_{k}$ in Adams spectral sequence［J］．Sci．China Math．，1998，41（6）：622－628．
［20］Zhao H，Wang X J．Two nontrivial differentials in the Adams spectral sequence［J］．Chinese Ann． Math．，2008，29A（1）：557－566．
［21］Zhong L N，Wang Y Y．Detection of a nontrivial product in the stable homotopy groups of spheres［J］． Alge．Geom．Top．，2013，13：3009－3029．

球面稳定同伦群中第三周期 γ 类非平凡新元素

王玉玉 ${ }^{1}$ ，王健波 ${ }^{2}$
（1．天津师范大学数学科学学院，天津 300387）
（2．天津大学理学院数学系，天津 300072）

摘要：本文研究了球面稳定同伦群的问题。以Adams谱序列中的第二非平凡微分为几何输入，给出了球面稳定同伦群中 $h_{0} g_{n}(n>3)$ 的收敛性。同时，由Yoneda乘积的知识，发掘了球面稳定同伦群中的一个非平凡新元素．非平凡元素的范围将被我们的结果进一步扩大。

关键词：球面稳定同伦群；Toda－Smith谱；Adams谱序列；May谱序列；Adams微分
MR（2010）主题分类号：55Q45 中图分类号：O189．23

[^0]: ＊Received date：2016－05－14 Accepted date：2016－07－22
 Foundation item：Supported by NSFC（11301386）；NSFC（11001195）and Beiyang Elite Scholar Program of Tianjin University（0903061016）；The Project Sponsored by the Scientific Research Founda－ tion for the Returned Overseas Chinese Scholars，State Education Ministry．

 Biography：Wang Yuyu（1979－），female，born at Handan，Hebei，professor，major in stable homo－ topy theory．

