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1 Introduction

Let S denote the sphere spectrum localized at p and p denote an odd prime. From
[14], the homotopy group of n-dimensional sphere πn+rS

n (r > 0) is a finite group. So the
determination of πn+rS

n has become one of the central problems in algebraic topology.
Ever since the introduction of the Adams spectral sequence (ASS) in the late 1950’s (see

[1]), the study of the homotopy groups of spheres π∗S was split into algebraic and geometric
problems, including the computation of Ext∗,∗A (Zp,Zp) and the detection which element of
Ext∗,∗A (Zp,Zp) can survive to E∗,∗

∞ , here A is the mod p Steenrod algebra, Ext∗,∗A (Zp,Zp) is
the E2-term of the ASS. By [2],

Es,t
2
∼= Exts,t

A (Zp,Zp) ⇒ πt−sS,

and the Adams differential is dr : Es,t
r →Es+r,t+r−1

r .
In addition, we also have the Adams-Novikov spectral sequence (ANSS) [12, 13] based

on the Brown-Peterson spectrum BP in the determination of π∗S.
Many wonderful results were obtained, however, it is still far from the total determina-

tion of π∗S. After the detection of ηj ∈ πpjq+pq−2S for p = 2, j 6= 2, by Mahowald in [11],
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which was represented by h1hj ∈ Ext2,pjq+pq
A (Zp,Zp), many nontrivial elements in π∗S were

found. Please see references [5–9] for details. In recent years, the first author established
several convergence of elements by an arithmatic method, see [16–18, 21].

In [5], Cohen made the nontrivial secondary Adams differential d2(hi) = a0bi−1 (p >

2, i > 0) as geometric input, then, a nontrivial element ξi ∈ π(pi+1+1)qS (i > 0) is detected.
In this paper, we also detect a new family in π∗S by geometric method, the only geometric
input used in the proof is the secondary nontrivial differential given in [20].

The main result is obtained as follows.
Theorem 1.1 Let 3 6 s < p− 1, n > 3, p > 7, then

0 6= γ̃sh0gn ∈ Exts+3,pn+1q+2pnq+sp2q+(s−1)pq+(s−1)q+s−3
A (Zp,Zp)

is a permanent cycle in the Adams spectral sequence and converges to a nontrivial element
of order p in πpn+1q+2pnq+sp2q+(s−1)pq+(s−1)q−6S.

The paper is organized as follows. After giving some necessary preliminaries and useful
knowledge about the MSS in Section 2. The proof of Theorem 1.1 and some results on Ext
groups will be given in Section 3.

2 Related Spectrum and the May Spectral Sequence

For the convenience of the reader, let us briefly indicate the necessary preliminaries in
the proof of the propositions and theorems.

Let M be the Moore spectrum modulo an odd prime p given by the cofibration

S
p // S

i // M
j // ΣS .

Let α:
∑q

M → M be the Adams map and V (1) be its cofibre given by the cofibration

ΣqM
α // M

i′ // V (1)
j′ // Σq+1M.

Let β:
∑(p+1)q

V (1) → V (1) be the ν2-mapping and V (2) be the cofibre of β sitting in the
cofibration

Σ(p+1)qV (1)
β // V (1) i′′ // V (2)

j′′ // Σ(p+1)q+1V (1).

Furthermore, γ:
∑(p2+p+1)q

V (2) → V (2) is the ν3-mapping and the γ-element γs = jj′j′′γsi′′i′i

is a nontrivial element in πsp2q+(s−1)pq+(s−2)q−3S, where p > 7 (see [15]).
From [19], we know that the third periodicity family γs is represented by the third Greek

letter family element
γ̃s ∈ Exts,sp2q+(s−1)pq+(s−2)q+s−3

A (Zp,Zp)

in the ASS, which is represented by the element

s(s− 1)(s− 2)as−3
3 h3,0h2,1h1,2
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in the May spectral sequence (MSS).
Let L be the cofibre of α1 = jαi:

∑q−1
S → S given by the cofibration

Σq−1S
α1 // S

i // L
j // ΣqS.

From [10], we can see that Ext1,∗
A (Zp,Zp) has Zp-bases

a0 ∈ Ext1,1
A (Zp,Zp), hi ∈ Ext1,piq

A (Zp,Zp)(i > 0).

Ext2,∗
A (Zp, Zp) has Zp-bases

α2, a2
0, a0hi (i > 0), gi (i > 0), ki (i > 0), bi (i > 0), and hihj (j > i + 2, i > 0),

whose internal degrees are

2q + 1, 2, piq + 1, 2piq + pi+1q, 2pi+1 + piq, pi+1q and piq + pjq,

respectively. Aikawa computed Ext3,∗
A (Zp,Zp) by λ-algebra in [3].

In the following, recall the Adams resolution of some spectra related to S from [4]. Let

· · · ᾱ2 // Σ−2E2

b̄2
²²

ᾱ1 // Σ−1E1

b̄1
²²

ᾱ0 // E0 = S

b̄0
²²

Σ−2KG2 Σ−1KG1 KG0

(2.1)

be the minimal Adams resolution of the sphere spectrum S which satisfies

(A) Es
bs // KGs

cs // Es+1
as // ΣEs are cofibrations for all s > 0, which induce short

exact sequences in Zp-cohomology

0 // H∗Es+1

c∗s // H∗KGs

b
∗
s // H∗Es

// 0.

(B) KGs are the graded wedge sums of Eilenberg-Maclane spectrum KZp of type Zp.
(C) πtKGs are the Es,t

1 -terms of the ASS,

(bscs−1)∗ : πtKGs−1 −→ πtKGs

are the ds−1,t
1 -differentials of the ASS, and πtKGs

∼= Exts,tA (Zp,Zp). Then, an Adams reso-
lution of an arbitrary spectrum V can be obtained by smashing V to (2.1).

Remark 2.1 In the ANSS, h0 is a permanent cycle and converges to the corresponding
homotopy element i′iα1(α1 = jαi ∈ πq−1S) in πq−1K. Furthermore, if some suppositions
on Ext groups are given, then there exists w ∈ πpn+1q+2pnq−2K such that i′iξ = α′′ ·w (mod
F 4π∗K) and w is represented by (i

′
i)∗(gn) ∈ Ext2,pn+1q+2pnq

A (H∗K,Zp) in the ASS, where
ξ ∈ πpn+1q+2pnq−4S is the homotopy element which is represented by h0ln ∈ Ext4,pn+1q+2pnq+q

A

(Zp,Zp) in the ASS and F 4π∗K denotes the group consisting of all elements in π∗K with
filtration no less than 4.
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To detect π∗S with the ASS, we must compute the E2-term of the ASS, Ext∗,∗A (Zp,Zp).
The most successful method for computing it is the MSS.

From [13], there is a MSS {Es,t,∗
r , dr}, which converges to Exts,t

A (Zp,Zp) with E1-term

E∗,∗,∗
1 = E(hi,j | i > 0, j > 0)⊗ P (bi,j | i > 0, j > 0)⊗ P (ai | i > 0), (2.2)

where E( ) denotes the exterior algebra, P ( ) denotes the polynomial algebra, and

hi,j ∈ E
1,2(pi−1)pj ,2i−1
1 , bi,j ∈ E

2,2(pi−1)pj+1,p(2i−1)
1 , ai ∈ E1,2pi−1,2i+1

1 .

One has dr: Es,t,M
r → Es+1,t,M−r

r (r > 1). If x ∈ Es,t,∗
r and y ∈ Es′,t′,∗

r , then

dr(x · y) = dr(x)y + (−1)sxdr(y). (2.3)

Furthermore, the May E1-term is graded commutative in the sense that

amhn,j = hn,jam, hm,khn,j = −hn,jhm,k,

ambn,j = bn,jam, hm,kbn,j = bn,jhm,k,

aman = anam, bm,nbi,j = bi,jbm,n.

The first May differential d1 is given by




d1(hi,j) = − ∑
0<k<i

hi−k,k+jhk,j ,

d1(ai) = − ∑
0<k<i

hi−k,k, ak,

d1(bi,j) = 0.

(2.4)

For each element x ∈ Es,t,∗
1 , if we denote dim x = s, deg x = t, we have





dimhi,j = dim ai = 1, dim bi,j = 2,

deg hi,j = 2(pi − 1)pj = (pi+j−1 + · · ·+ pj)q,
deg bi,j = 2(pi − 1)pj+1 = (pi+j + · · ·+ pj+1)q,
deg ai = 2pi − 1 = (pi−1 + · · ·+ 1)q + 1,

deg a0 = 1.

(2.5)

Remark 2.2 Any positive integer t can be expressed uniquely as t = q(cnpn+cn−1p
n−1+

· · ·+ c1p + c0) + e, where 0 6 ci < p (0 6 i < n), 0 < cn < p, 0 6 e < q.
Then, it is easy to get the following result from [16].

Proposition 2.3 In the MSS, we have Es,t,∗
1 = 0 for some j (0 6 j 6 n), s < cj , where

s is also a positive integer with 0 < s < p.

3 Some Adams E2-Terms

In this section, we mainly give some important results about Adams E2-terms. At the
end, the proof of Theorem 1.1 will be given.
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Proposition 3.1 Let 3 6 s < p− 1, n > 3, p > 7, then

0 6= γ̃sh0gn ∈ Exts+3,pn+1q+2pnq+sp2q+(s−1)pq+(s−1)q+s−3
A (Zp,Zp).

Proof Consider the structure of Es+2,t,∗
1 in the MSS, where t = pn+1q + 2pnq + sp2q +

(s− 1)pq + (s− 1)q + s− 3. Due to 3 6 s < p− 1, then 5 6 s + 2 < p + 1.
Case 1 5 6 s+2 < p. Let h = x1x2 · · ·xm be the generator of Es+2,t,∗

1 , where xi is one
of ak, hi,j or bu,z, 0 6 k 6 n + 2, 0 < i + j 6 n + 2, 0 < u + z 6 n + 1, i > 0, j > 0, u > 0,
z > 0.

Assume that deg xi = q(ci,n+1p
n+1 + · · ·+ ci,1p + ci,0) + ei, where ci,j = 0 or 1, ei = 1 if

xi = ak or ei = 0, then

deg h =
m∑

i=1

deg xi = q((
m∑

i=1

ci,n+1)pn+1 + (
m∑

i=1

ci,n)pn + · · ·+ (
m∑

i=1

ci,0)) + (
m∑

i=1

ei)

= q(pn+1 + 2pn + sp2 + (s− 1)p + (s− 1)) + s− 3,

dimh =
m∑

i=1

dimxi = s + 2.

Note that dimxi = 1 or 2, we can see that m 6 s + 2 < p from
m∑

i=1

dimxi = s + 2. By

the fact that ci,j = 0 or 1, ei = 0 or 1, m 6 s + 2 < p, we have

m∑
i=1

ei = s− 3,

m∑
i=1

ci,0 = s− 1,

m∑
i=1

ci,1 = s− 1,

m∑
i=1

ci,2 = s,

m∑
i=1

ci,3 = · · · =
m∑

i=1

ci,n−1 = 0,

m∑
i=1

ci,n = 2,

m∑
i=1

ci,n+1 = 1.

From the above results, we can see that b1,nb1,n−1h1,n, h2,nh1,n, h2,nb1,n−1, b2,n−1h1,n,
b1,n−1b2,n−1, b1,nb2

1,n−1, h1,n+1b
2
1,n−1 and h1,n+1b1,n−1h1,n are contained in the xi. By the

commutativity of E∗,∗,∗
1 , we can denote

h1 = x1x2 · · ·xm−3b1,nh1,nb1,n−1, h
′
1 = x1x2 · · ·xm−3 ∈ Es−3,t′,∗

1 ;
h2 = x1x2 · · ·xm−3b1,nb2

1,n−1, h′2 = x1x2 · · ·xm−3 ∈ Es−4,t′,∗
1 ;

h3 = x1x2 · · ·xm−3h1,n+1b
2
1,n−1, h′3 = x1x2 · · ·xm−3 ∈ Es−3,t′,∗

1 ;
h4 = x1x2 · · ·xm−2h2,nh1,n, h′4 = x1x2 · · ·xm−2 ∈ Es,t′,∗

1 ;
h5 = x1x2 · · ·xm−2h2,nb1,n−1, h′5 = x1x2 · · ·xm−2 ∈ Es−1,t′,∗

1 ;
h6 = x1x2 · · ·xm−2b2,n−1h1,n, h′6 = x1x2 · · ·xm−2 ∈ Es−1,t′,∗

1 ;
h7 = x1x2 · · ·xm−2b2,n−1b1,n−1, h′7 = x1x2 · · ·xm−2 ∈ Es−2,t′,∗

1 ;
h8 = x1x2 · · ·xm−3h1,n+1h1,nb1,n−1, h′8 = x1x2 · · ·xm−3 ∈ Es−2,t′,∗

1 ,

where t′ = sp2q + (s− 1)pq + (s− 1)q + s− 3.
We list all the possibilities of h′i in the following table (i = 1, 2, · · · , 8), thus h doesn’t

exist in this case.
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Table 1: the possibilities of h′i
The possibility Analysis The existence of h′i

h′1 s− 3 <
m−3∑
i=1

ci,2 = s Nonexistent

h′2 s− 4 <
m−3∑
i=1

ci,2 = s Nonexistent

h′3 s− 3 <
m−3∑
i=1

ci,2 = s Nonexistent

h′4 h′4 = as−3
3 h2

2,0h1,0 = 0 Nonexistent

h′5 s− 1 <
m−2∑
i=1

ci,2 = s Nonexistent

h′6 s− 1 <
m−2∑
i=1

ci,2 = s Nonexistent

h′7 s− 2 <
m−2∑
i=1

ci,2 = s Nonexistent

h′8 s− 2 <
m−3∑
i=1

ci,2 = s Nonexistent

Case 2 If s + 2 = p, then Es+2,t′′,∗
1 = Ep,t′′,∗

1 , where t′′ = pn+1q + 2pnq + (p− 2)p2q +
(p− 3)pq + (p− 3)q + p− 5. Let h = x1x2 · · ·xr be the generator of Ep,t′′,∗

1 , and assume that

deg xi = q(ci,n+1p
n+1 + ci,npn + · · ·+ ci,1p + ci,0) + ei,

where ci,j = 0 or 1, ei = 1 if xi = aki
or ei = 0, then

deg h =
r∑

i=1

deg xi = q((
r∑

i=1

ci,n+1)pn+1 + (
r∑

i=1

ci,n)pn + · · ·+ (
r∑

i=1

ci,0)) + (
r∑

i=1

ei)

= q(pn+1 + 2pn + (p− 2)p2 + (p− 3)p + (p− 3)) + p− 5,

dimh =
r∑

i=1

dimxi = p.

We claim that
r∑

i=1

ci,0,
r∑

i=1

ci,1 and
r∑

i=1

ci,2 are impossible to constitute p. The reason is

the following: if
r∑

i=1

ci,0 = p, because of
r∑

i=1

ei = p− 5, then

q
(
(

r∑
i=1

ci,n+1)pn+1 + (
r∑

i=1

ci,n)pn + · · ·+ (
r∑

i=1

ci,0)
)

+ (
r∑

i=1

ei) =
r∑

i=1

ei (mod p),

this contradicts to q(pn+1+2pn+(p−2)p2+(p−3)p+(p−3))+p−5 = (p−3)q+p−5 (mod p).

For the same reason,
r∑

i=1

ci,1 and
r∑

i=1

ci,2 are impossible to constitute p.

From dimxi = 1 or 2 and
r∑

i=1

dimxi = p, we can see that r 6 p. By Remark 2.2 and
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r 6 p, ci,j = 0 or 1, ei = 0 or 1, we have
r∑

i=1

ei = p− 5,

r∑
i=1

ci,0 = p− 3,

r∑
i=1

ci,1 = p− 3,

r∑
i=1

ci,2 = p− 2,

(
r∑

i=1

ci,3)p3 + · · ·+ (
r∑

i=1

ci,n)pn + (
r∑

i=1

ci,n+1)pn+1 = pn+1 + 2pn, (3.1)

so

(
r∑

i=1

ci,3) + · · ·+ (
r∑

i=1

ci,n)pn−3 + (
r∑

i=1

ci,n+1)pn−2 = pn−2 + 2pn−3. (3.2)

Thus p |
r∑

i=1

ci,3. Note that ci,3 = 0 or 1, r 6 p, it is known that
r∑

i=1

ci,3 = 0 or p.

Case 2.1 When
r∑

i=1

ci,3 = 0, we have

(
r∑

i=1

ci,4)p + · · ·+ (
r∑

i=1

ci,n)pn−3 + (
r∑

i=1

ci,n+1)pn−2 = pn−2 + 2pn−3.

Case 2.1.1 When n > 4, we claim that
r∑

i=1

ci,4 = 0. Otherwise, if
r∑

i=1

ci,4 = p, then

r = p. So dimxi = 1(1 6 i 6 p) and deg xi = (higher terms) + p4q + (lower terms).

Because of
r∑

i=1

ei = p− 5, deg ak ≡ 1(mod q), dim hl,j ≡ 0(mod q) and dim bu,z ≡ 0(mod q),

there exist factors aj1aj2 · · · ajp−5 among the generators xi (ji > 5, 1 6 i 6 p − 5). Thus,
r∑

i=1

ci,3 > p − 5, which contradicts to
r∑

i=1

ci,3 = 0, so
r∑

i=1

ci,4 = 0. By induction on j, we can

get
r∑

i=1

ci,j = 0 (5 6 j 6 n− 1),
r∑

i=1

ci,n = 2,
r∑

i=1

ci,n+1 = 1.

Case 2.1.2 When n = 4, it is easy to get
r∑

i=1

ci,4 = 2 and
r∑

i=1

ci,5 = 1.

From the above discussion of Case 2.1.1 and Case 2.1.2, similarly to Case 1, we can see
that b1,nb1,n−1h1,n, h2,nh1,n, h2,nb1,n−1, b2,n−1h1,n, b1,n−1b2,n−1, b1,nb2

1,n−1, h1,nb1,n−1h1,n+1

and h1,n+1b
2
1,n−1 are contained in the xi, so h is impossible to exist.

Case 2.2 When
r∑

i=1

ci,3 = p, then r = p. We get dim xi = 1 from dim h = p, then

h = x1x2 · · ·xp, xi ∈ E(hi,j | i > 0, j > 0)⊗ P (ak | k > 0).
Case 2.2.1 When n > 4, we get

p · p3 + (
r∑

i=1

ci,4)p4 + · · ·+ (
r∑

i=1

ci,n)pn + (
r∑

i=1

ci,n+1)pn+1 = pn+1 + 2pn,

that is (1 +
r∑

i=1

ci,4) + (
r∑

i=1

ci,5)p + · · ·+ (
r∑

i=1

ci,n+1)pn−3 = pn−3 + 2pn−4, thus p | (1 +
r∑

i=1

ci,4),

so
r∑

i=1

ci,4 = p− 1 from ci,4 = 0 or 1 and r = p. By induction on j, we can get

r∑
i=1

ci,j = p− 1(4 6 j 6 n− 1),
r∑

i=1

ci,n = 1,

r∑
i=1

ci,n+1 = 1.
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By the reason of degree and the Proposition 2.3, h is impossible to exist.

Case 2.2.2 When n = 4, we know that
r∑

i=1

ci,4 = 1,
r∑

i=1

ci,5 = 1 from (3.2), then

deg h = q(p5 + 2p4 + (p− 2)p2 + (p− 3)p + p− 3) + (p− 5).

By the reason of degree and the Proposition 2.3, h is impossible to exist.
From the above discussion, for 5 6 s + 2 < p + 1, Es+2,t,∗

1 = 0, so Es+2,t,∗
r = 0 (r >

2). It is known that h2,nh1,n, h1,n, as−3
3 h3,0h2,1h1,2 ∈ E∗,∗,∗

1 are permanent cycles in the
MSS and converge nontrivially to gn, hn, γ̃s ∈ Ext∗,∗A (Zp,Zp) (n > 0), respectively, so
as−3

3 h3,0h2,1h1,2h1,nh2,nh1,0 ∈ Es+3,t,∗
1 is a permanent cycle in the MSS and converges non-

trivially to γ̃sh0gn ∈ Exts+3,t
A (Zp,Zp). Note that Es+2,t,∗

r = 0 (r > 1), thus the permanent
cycle is not dr-boundary and converges nontrivially to γ̃sh0gn ∈ Exts+3,t

A (Zp,Zp), that is,
when 5 6 s + 2 < p + 1, 0 6= γ̃sh0gn ∈ Exts+3,t

A (Zp,Zp).
Proposition 3.2 Let 3 6 s < p− 1, n > 3, p > 7, 2 6 r < s + 3, then

Exts+3−r,pn+1q+2pnq+sp2q+(s−1)pq+(s−1)q+s−r−2
A (Zp,Zp) = 0.

Proof We only need to prove that Es+3−r,t,∗
1 = 0 in the MSS, where t = pn+1q+2pnq+

sp2q + (s − 1)pq + (s − 1)q + s − r − 2. Let h = x1x2 · · ·xm be the generator of Es+3−r,t,∗
1 ,

where xi is ak, hi,j or bu,z, 0 6 k 6 n + 2, 0 < i + j 6 n + 2, 0 < u + z 6 n + 1, i > 0, j > 0,
u > 0, z > 0.

Assume that deg xi = q(ci,n+1p
n+1 + ci,npn + · · ·+ ci,0) + ei, where ci,j = 0 or 1, ei = 1

if xi = aki
or ei = 0, then

deg h =
m∑

i=1

deg xi = q((
m∑

i=1

ci,n+1)pn+1 + (
m∑

i=1

ci,n)pn + · · ·+ (
m∑

i=1

ci,0)) + (
m∑

i=1

ei)

= q(pn+1 + 2pn + sp2 + (s− 1)p + (s− 1)) + s− r − 2,

dimh =
m∑

i=1

dimxi = s + 3− r.

Note that dimxi = 1 or 2, we can see that m 6 s + 3 − r 6 s + 1 < p. We claim that

s− r − 2 > 0, otherwise, p >
m∑

i=1

ei = q + (s− r − 2) > q − 5 > p. Because of ci,j = 0 or 1,

ei = 0 or 1 and r < p, we have

m∑
i=1

ei = s− r − 2,

m∑
i=1

ci,0 = s− 1,

m∑
i=1

ci,1 = s− 1,

m∑
i=1

ci,2 = s,

m∑
i=1

ci,3 = · · · =
m∑

i=1

ci,n−1 = 0,

m∑
i=1

ci,n = 2,

m∑
i=1

ci,n+1 = 1.

From the above results, we can see that b1,nb1,n−1h1,n, h2,nh1,n, h2,nb1,n−1, b2,n−1h1,n,
b1,n−1b2,n−1, b1,nb2

1,n−1, h1,nb1,n−1h1,n+1 and h1,n+1b
2
1,n−1 are contained in the xi. By the

commutativity of E∗,∗,∗
1 , we can denote
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h1 = x1x2 · · ·xm−3b1,nh1,nb1,n−1, h
′
1 = x1x2 · · ·xm−3 ∈ E

s−2−r,t(r),∗
1 ;

h2 = x1x2 · · ·xm−3b1,nb2
1,n−1, h

′
2 = x1x2 · · ·xm−3 ∈ E

s−3−r,t(r),∗
1 ;

h3 = x1x2 · · ·xm−3h1,n+1b
2
1,n−1, h

′
3 = x1x2 · · ·xm−3 ∈ E

s−2−r,t(r),∗
1 ;

h4 = x1x2 · · ·xm−2h2,nh1,n, h
′
4 = x1x2 · · ·xm−2 ∈ E

s+1−r,t(r),∗
1 ;

h5 = x1x2 · · ·xm−2h2,nb1,n−1, h
′
5 = x1x2 · · ·xm−2 ∈ E

s−r,t(r),∗
1 ;

h6 = x1x2 · · ·xm−2b2,n−1h1,n, h
′
6 = x1x2 · · ·xm−2 ∈ E

s−r,t(r),∗
1 ;

h7 = x1x2 · · ·xm−2b2,n−1b1,n−1, h
′
7 = x1x2 · · ·xm−2 ∈ E

s−1−r,t(r),∗
1 ;

h8 = x1x2 · · ·xm−3h1,n+1h1,nb1,n−1, h
′
8 = x1x2 · · ·xm−3 ∈ E

s−1−r,t(r),∗
1 ,

where t(r) = sp2q + (s− 1)pq + (s− 1)q + s− 2− r.

For h′1, s−2−r <
m−3∑
i=1

ci,2 = s, by Proposition 2.3, we get that h′1 is impossible to exist.

For the same reason, h′i (i = 2, 3, · · · 8) are impossible to exist. So we have Es+3−r,t,∗
1 = 0,

that is Exts+3−r,t
A (Zp,Zp) = 0.

Proposition 3.3 Let p > 7, tq = pn+1q + 2pnq, n > 3, then
(1)

Ext4,tq+rq+u
A (Zp,Zp) = 0 (r = 2, 3, 4, u = −1, 0 or r = 3, 4, u = 1);

Ext4,tq+q
A (Zp,Zp) ∼= Zp{h0ln}; Ext4,tq

A (Zp,Zp) = 0;

Ext4,tq+2q+1
A (Zp,Zp) ∼= Zp{α̃2gn}, a2

0gn 6= 0.

(2)

Ext5,tq+rq+1
A (Zp,Zp) = 0 (r = 1, 3, 4); Ext5,tq+rq

A (Zp,Zp) = 0 (r = 2, 3);

Ext5,tq+2q+1
A (Zp,Zp) ∼= Zp{α̃2}; Ext5,tq+2

A (Zp,Zp) ∼= Zp{a2
0ln};

Ext5,tq+1
A (Zp,Zp) = 0.

Proof (1) Consider the second degrees (mod pn+1q) of the generators in the E1-terms
of the MSS, where 0 6 j 6 n + 1,

deg hs,j = (ps+j−1 + · · ·+ pj)q (mod pn+1q), 0 6 j < s + j − 1 < n + 1,

= (pn + · · ·+ pj)q (mod pn+1q), 0 6 j < s + j − 1 = n + 1;

deg bs,j−1 = (ps+j−1 + · · ·+ pj)q (mod pn+1q), 1 6 j < s + j − 1 < n + 1,

= (pn + · · ·+ pj)q (mod pn+1q), 1 6 j < s + j − 1 = n + 1;

deg aj+1 = (pj + · · ·+ 1)q + 1 (mod pn+1q), 0 6 j < n + 1,

= (pn + · · ·+ 1)q + 1 (mod pn+1q), j = n + 1.

For the second degree k = tq + rq + u (0 6 r 6 4,−1 6 u 6 2) = 2pnq + rq + u (mod pn+1q),
and excluding the factor which has second degree > tq + pq, we can get that the possibility
of the factor of the generators in Ew,tq+rq+u,∗

1 (4 6 w 6 5) are a0, a1, h1,0, h1,n+1, h1,n, h2,n,
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b1,n, b1,n−1 and b2,n−1. Thus from the degree we know that

E4,tq+rq+u,∗
1 = 0 (r = 3, 4, u = 1);

E4,tq+rq+u,∗
1 = 0 (r = 2, 3, 4, u = −1, 0);

E4,tq,∗
1

∼= Zp{b1,n−1b2,n−1};
E4,tq+q,∗

1
∼= Zp{h1,0h1,nb2,n−1, h2,nb1,n−1h1,0};

E4,tq+2q+1,∗
1

∼= Zp{a1h1,0h1,nh2,n}.

In the MSS, note that dr(xy) = dr(x)y + (−1)sxdr(y) (x ∈ Es,t,∗
1 , y ∈ Es′,t′,∗

1 ). Since
d1(b1,n−1h2,nh1,0) 6= 0, then E4,tq+q

r = Zp{b2,n−1h1,nh1,0} (r > 2). Moreover, h2,nh1,nh1,0 is
permanent cycle in the MSS which converges to h0gn ∈ Ext3,∗

A (Zp,Zp), then dr(E3,tq+q,∗
r ) = 0

for r > 1, so that b2,n−1h1,nh1,0 is not dr-boundary and it converges nontrivially to h0ln.
In addition, we say that Ext4,tq

A (Zp,Zp) = 0, since E4,tq,∗
1

∼= Zp{b1,n−1 b2,n−1}, where
b1,n−1 converges to bn−1, while in the Ext2,∗

A (Zp,Zp), there is no element in relation to
b2,n−1 ∈ E2,pn+1q+pnq,∗

1 .
(2) Similarly, due to the reason of the degree, we can get the following results

E5,tq+q+1,∗
1

∼= Zp{a1b1,n−1b2,n−1, a0h1,0h2,nb1,n−1, a0h1,0b2,n−1h1,n};
E5,tq+rq+1,∗

1 = 0 (r = 3, 4);

E5,tq+rq,∗
1 = 0 (r = 2, 3);

E5,tq+2q+1,∗
1

∼= Zp{a1h1,0b2,n−1h1,n, h2,nb1,n−1h1,0a1};
E5,tq+2,∗

1
∼= Zp{a2

0h1,nb2,n−1, a2
0h2,nb1,n−1};

E5,tq+1,∗
1

∼= Zp{a0b1,n−1b2,n−1, a0h1,n−1h1,nh1,n+1}.

The generators of E5,tq+q+1,∗
1 in the MSS all die, this is because that

d1(a1b1,n−1b2,n−1) = −a0h1,0b1,n−1b2,n−1 6= 0,

a0h1,0h2,nb1,n−1 = −d1(a1h2,nb1,n−1)

and
a0h1,0b2,n−1h1,n = −d1(a1h2,n−1h1,n).

So we have Ext5,tq+q+1
A (Zp,Zp) = 0. In addition, with a similar proof of (1), we know that

drE
4,tq+2,∗
r = 0. So the generator of E5,tq+2,∗

1 in the MSS converges to a2
0ln.

Since d1(h2,nb1,n−1h1,0a1) 6= 0, then E5,tq+2q+1
r = Zp{b2,n−1h1,nh1,0a1} for r > 2. More-

over, h2,nh1,nh1,0a1 is a permanent cycle in the MSS which converges to α̃2gn(a1h1,0 is a
permanent cycle in the MSS and converges to α̃2 ∈ Ext∗,∗A (Zp,Zp)), then dr(E4,tq+2q+1

r ) = 0
for r > 1. Thus b2,n−1h1,nh1,0a1 is not dr-boundary and converges nontrivially to α̃2ln.

Since a0, b1,n−1, h1,n and h1,n+1 are all permanent cycles in the MSS and converge to
a0, bn−1, hn and hn+1, respectively, it is easy to get that a0b1,n−1h1,nh1,n+1 is a permanent
cycle in the MSS and converges to a0bn−1hnhn+1 which equals 0 ∈ Ext5,tq+1

A (Zp,Zp) by
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hnhn+1 = 0. Furthermore, we have d2p−1(b2,n−1) = b1,nh1,n − b1,n−1h1,n+1 from [10], then
d2p−1(a0b2,n−1b1,n−1) 6= 0 and so Ext5,tq+1

A (Zp,Zp) = 0.
Theorem 3.4 Let p > 7, n > 3, then

h0gn ∈ Ext3,pn+1q+2pnq+q
A (Zp,Zp)

is a permanent cycle in the ASS, and converges to a nontrivial element in πpn+1q+2pnq+q−3S.

Proof From [20, Theorem 1.1], there is a nontrivial differential d2(gn) = a0ln(n > 1)
in the ASS, the elements gn and ln are called a pair of a0-related elements. The condition
of Theorem A in [7] can be established by the Zp-bases of Exts,∗

A (Zp,Zp) (s 6 3) in [10]
and Proposition 3.3 in the above. Furthermore, we have κ · (α1)L = (1E4 ∧ p)f with f ∈
[
∑tq+q

L,E4] (see [7], 9.2.34), then (1E4 ∧ i)κ · (α1)L = 0. Thus

(1E4 ∧ 1L ∧ i)(κ ∧ 1L)φ = (1E4 ∧ 1L ∧ i)(κ ∧ 1L)((α1)L ∧ 1L)̃i′′ = 0,

where ĩ′′ ∈ πqL ∧ L such that ((α1)L ∧ 1L)̃i′′ = φ. It can be easily proved that (κ ∧
1L)φ = (c3 ∧ 1L)σφ, where σφ ∈ πtq+2q(KG3 ∧ L) is a d1-cycle which represents (φ)∗(σ) ∈
Ext3,tq+2q

A (H∗L,Zp). Thus

(c3 ∧ 1L∧M )(1KG3 ∧ i)σφ = 0.

So we can get that (1L∧ i)∗φ∗(gn) ∈ Ext3,pn+1q+2pnq+q
A (H∗L∧M,Zp) is a permanent cycle in

the ASS. Then Theorem 3.4 will be concluded by Theorem C in [7], here φ ∈ [
∑2q−1

S,L],
κ ∈ πtq+1E4.

The Proof of Theorem 1.1 From Theorem 3.4, h0gn ∈ Ext3,pn+1q+2pnq+q
A (Zp,Zp) is

a permanent cycle in the ASS and converges to a nontrivial element ϕ ∈ πpn+1q+2pnq+q−3S

for n > 3.
Consider the following composition of mappings

f̃ Σpn+1+2pnq+q−3S
ϕ // S

i′′i′i // V (2)
γs

//

Σ−s(p2+p+1)qV (2)
jj′j′′ // Σ−s(p2+p+1)q+(p+1)q+qS ,

because ϕ is represented by h0gn in the ASS, then the above f̃ is represented by

g̃ = (jj′j′′)∗(γs)∗(i′′i′i)∗(h0gn) = (jj′j′′γsi′′i′i)∗(h0gn)

in the ASS. Furthermore, we know that γs = jj
′
j
′′
γsi′′i′i ∈ π∗S is represented by γ̃s in the

ASS. By using the Yoneda products, we know that the composition

Ext0,0
A (Zp,Zp)

(i′′i′i)∗ // Ext0,0
A (H∗V (2),Zp)

(jj′j′′)∗(γs)∗ // Exts,(sp2+(s−1)p+(s−2))q+s−3
A (Zp,Zp)
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is a multiplication (up to nonzero scalar) by

γ̃s ∈ Exts,sp2q+(s−1)pq+(s−2)q+s−3
A (Zp,Zp).

Hence, the composite map f̃ is represented (up to nonzero scalar) by

γ̃sh0gn ∈ Exts+3,pn+1q+2pnq+sp2q+(s−1)pq+(s−1)q+s−3
A (Zp,Zp)

in the ASS.
From Proposition 3.1, we see that γ̃sh0gn 6= 0. Moreover, from Proposition 3.2, it follows

that γ̃sh0gn can not be hit by any differential in the ASS. Thus γ̃sh0gn survives nontrivially
to a homotopy element in π∗S.
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球面稳定同伦群中第三周期γ类非平凡新元素

王玉玉1,王健波2

(1.天津师范大学数学科学学院,天津 300387)

(2.天津大学理学院数学系,天津 300072)

摘要: 本文研究了球面稳定同伦群的问题. 以Adams谱序列中的第二非平凡微分为几何输入, 给出了

球面稳定同伦群中h0gn(n > 3)的收敛性. 同时, 由Yoneda乘积的知识, 发掘了球面稳定同伦群中的一个非

平凡新元素. 非平凡元素的范围将被我们的结果进一步扩大.
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