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Abstract: This paper proposes a modified BIC (Bayesian information criterion) tuning pa-

rameter selector for SICA-penalized Cox regression models with a diverging number of covariates.

Under some regularity conditions, we prove the model selection consistency of the proposed method.

Numerical results show that the proposed method performs better than the GCV (generalized cross-

validation) criterion.
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1 Introduction

The commonly used Cox model [4] for survival data assumes that the hazard function
h(t|z) for the failure time T associated with covariates z = (z1, · · · , zd)T takes the form

h(t|z) = h0(t) exp(βTz), (1.1)

where t is the time, h0(t) is an arbitrary unspecified baseline Hazard function and β =
(β1, · · · , βd)T is an unknown vector of regression coefficients. In this paper, we consider the
following so-called SICA-penalized log partial likelihood (SPPL) problem

β̂ := arg max
β∈Rd

{Qn(β) = ln(β)− n

d∑
j=1

pλ,τ (βj)}, (1.2)
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where

ln(β) =
n∑

i=1

δi{βTzi − log[
n∑

j=1

Yj(T̃i) exp(βTzj)]} (1.3)

is the logarithm of the partial likelihood function, T̃i = min(Ti, Ci), δi = I(Ti ≤ Ci), Yi(t) =
I(T̃i ≥ t), and Ti and Ci are the failure time and censoring time of subject i (i = 1, · · · , n),
respectively; pλ,τ (βj) = λ(τ + 1)|βj |/(|βj |+ τ) is the SICA penalty function proposed by Lv
and Fan [9], and λ and τ are two positive tuning (or regularization) parameters. In particular,
λ is the sparsity tuning parameter obtaining sparse solutions and τ is the shape (or concavity)
tuning parameter making SICA a bridge between L0 (τ → 0+) and L1 (τ → ∞), where L0

and L1 admit pλ(βj) = λI(|βj | 6= 0) and pλ(βj) = λ|βj |, respectively. β̂, which is dependent
on λ and τ , i.e., β̂ = β̂(λ, τ), is denoted as a SPPL estimator.

Although penalized likelihood methods can select variables and estimate coefficients
simultaneously, their optimal properties heavily depend on an appropriate selection of the
tuning parameters. Thus, an important issue in variable selection using penalized likelihood
methods is the choice of tuning parameters. Some common used tuning parameter selection
criteria are GCV [1, 6, 8, 13], AIC [17] and BIC [14, 15].

Shi et al. [12] proposed using the SPPL approach combined with a GCV tuning pa-
rameter selector for variable selection in Cox’s proportional hazards model with diverging
dimensionality. As shown in Wang et al. [14, 15] in the linear model case, it is known that
GCV tends to over-fit the true model and BIC can identify the true model consistently.
Thus, when the primary goal is variable selection and identification of the true model, BIC
may be preferred over GCV. In this paper, in the context of right-censored data, we modify
the classical BIC to select tuning parameters for (1.2) and prove its consistency when the
number of regression coefficients tends to infinity. Simulation studies are given to illustrate
the performance of the proposed approach.

An outline for this paper is as follows. In Section 2, we first describe the Modified BIC
method for SPPL and then give theoretical results and corresponding proofs. The finite
sample performance of the proposed method through simulation studies are demonstrated
in Section 3. We conclude the paper with Section 4.

2 Modified BIC (MBIC) for SPPL

2.1 Methodology

The ordinary BIC procedure is implemented by minimizing

BIC = BIC(β̂) = −2ln(β̂) + log(n)D̂F, (2.1)

where D̂F is an estimator of the degrees of freedom corresponding to β̂. Motivated by [17],
we take D̂F = ‖β̂‖0 = |{j : β̂j 6= 0}| , d̂. In order to account for a diverging number of
parameters, enlightened by [5], we propose a modified BIC (MBIC) minimizing

MBICkn
= MBICkn

(β̂) = −2ln(β̂) + knd̂, (2.2)
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where kn is a positive number that depends on the sample size n with kn > log(n).

2.2 Theoretical Results

Without loss of generality, we write the true parameter vector as β0 = (βT
10,β

T
20)

T ,
where β10 consists of all s nonzero components and β20 consists of the remaining zero
components. Correspondingly, we write the maximizer of (1.2) as β̂ = (β̂T

1 , β̂T
2 )T . Define

A = {j : β0j 6= 0} and Â = {j : β̂j 6= 0}. Hereafter, sometimes we use dn, sn, λn and τn

rather than d, s, λ and τ to emphasize their dependence on n. The regularity conditions
(C1)–(C7) in [12] are assumed in the following theoretical results.

Theorem 1 (Existence of SPPL estimator) Under conditions (C1)–(C7) in [12], with
probability tending to one, there exists a local maximizer β̂ of Qn(β), defined in (1.2), such
that ‖β̂ − β0‖2 = Op(

√
dn/n), where ‖·‖2 is the L2 norm on the Euclidean space.

Theorem 2 (Oracle property) Under conditions (C1)–(C7) in [12], with probability
tending to 1, the

√
n/dn-consistent local maximizer β̂ = (β̂T

1 , β̂T
2 )T in Theorem 1 must be

such that

(i) (Sparsity) β̂2 = 0;

(ii) (Asymptotic normality) For any nonzero constant sn × 1 vector cn with cT
ncn = 1,

√
ncT

nΓ−
1
2

11 A11{β̂1 − β10} → N(0, 1) (2.3)

in distribution, where A11 and Γ11 consist of the first sn columns and rows of A(β10,0) and
Γ(β10,0) respectively, and A(β) and Γ(β) are defined in Appendix of [12].

Regularity conditions and detailed proofs for Theorem 1 and Theorem 2 can be found
in Appendix of [12]. We now present the main result on the selection consistency of the
MBIC under conditions (C1)–(C7) in [12] and an extra condition

(C8) ρn

√
n/(dnkn) →∞ and dn/kn → 0 as n →∞, where ρn = min

j∈A
|βj0|.

Suppose Ω j R2. We define Ω− = {(λ, τ) ∈ Ω : A 6⊂ Â}, Ω0 = {(λ, τ) ∈ Ω : A = Â}
and Ω+ = {(λ, τ) ∈ Ω : A $ Â}. In other words, Ω0, Ω− and Ω+ are three subsets of Ω, in
which the true, underfitted and overfitted models can be produced. It easily follows that
Ω = Ω0 ∪ Ω+ ∪ Ω− (disjoint union) and A 6= Â ⇔ (λ, τ) ∈ Ω− ∪ Ω+. Let β̂(λ∗n, τ∗n) be the
local maxima of SPPL described in Theorem 1.

Theorem 3 Under conditions (C1)–(C8),

P [ inf
(λ,τ)∈Ω−∪Ω+

MBICkn
(λ, τ) > MBICkn

(β̂(λ∗n, τ∗n))] → 1. (2.4)

Proof Since kn > log(n), without loss of generality, we assume kn > 1. We prove this
theorem by considering two different cases, i.e., underfitting and overfitting.

Case 1 Underfitted model, i.e., A 6⊂ Â, which means ∃j∗ ∈ A, j∗ /∈ Â. Let β̃ =
arg max

β
ln(β), namely, β̃ is the ordinary maximum partial likelihood estimator (MLE). By
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the second-order Taylor expansion of the log partial likelihood, we have

MBICkn
(β̂)−MBICkn

(β̃)

=− 2ln(β̂) + knd̂ + 2ln(β̃)− kndn = −2[ln(β̂)− ln(β̃)] + kn(d̂− dn)

=− 2[(β̂ − β̃)T l′n(β̃) +
1
2
(β̂ − β̃)T l′′n(β̄)(β̂ − β̃)] + kn(d̂− dn),

where β̄ is between β̂ and β̃. Since β̃ is MLE, we have l′n(β̃) = 0, and it follows that

MBICkn
(β̂)−MBICkn

(β̃) = −(β̂ − β̃)T l′′n(β̄)(β̂ − β̃) + kn(d̂− dn) , I1 + I2.

Noting that −l′′n(β̄)/n = A(β0) + op(1), where A(β0) is defined in condition (C3), we have

I1 = (β̂ − β̃)T{nA(β0)[1 + op(1)]}(β̂ − β̃) > nr[1 + op(1)]‖β̂ − β̃‖2
2,

where r = λmin{A(β0)}. Since j∗ /∈ Â, we have β̂j∗ = 0. Condition (C6) implies ρn/αn →∞.
Together with ρn = min

j∈A
|βj0| and ‖β̃ − β0‖2 = Op(αn), we have

‖β̂ − β̃‖2 ≥ |β̂j∗ − β̃j∗ | = |β̃j∗ | = |β̃j∗ − β0j∗ + β0j∗ | ≥ |β0j∗ | − |β̃j∗ − β0j∗ |
≥ ρn − ‖β̃ − β0‖2 = ρn −Op(αn) = ρn[1−Op(αn/ρn)] = ρn[1 + op(1)],

and then we get
I1 > nrρ2

n[1 + op(1)]. (2.5)

Next we consider I2. It easily follows that

I2 = kn(d̂− dn) > −kndn. (2.6)

By (2.5), (2.6)) and condition (C8), we have

MBICkn
(β̂)−MBICkn

(β̃) > nrρ2
n[1 + op(1)]− dnkn

= dnkn(
nrρ2

n[1 + op(1)]
dnkn

− 1)
p→∞, n →∞,

which yields
P [ inf

(λ,τ)∈Ω−
MBICkn

(λ, τ) > MBICkn
(β̃)] → 1. (2.7)

Thus we deduce that the minimum MBIC can not be selected from the underfitted model.
Case 2 Overfitted model, i.e., A $ Â, which means ∀j ∈ A, j ∈ Â, but ∃j∗ ∈ Â, j∗ /∈ A.

In this case, we have d̂ > sn. Define β̌ a vector with the same length of β̂ by β̌Ac = 0 and
β̌A = β̂A. According to Theorem 1 and Theorem 2, we have ‖β̌ − β0‖2 = Op(αn), where
αn =

√
dn/n. By the definition of MBIC, it follows that

MBICkn
(β̂)−MBICkn

(β̌) = −2ln(β̂) + knd̂− [−2ln(β̌) + knsn]

=− 2ln(β̂) + 2ln(β̌) + kn(d̂− sn) = −2[ln(β̂)− ln(β0)] + 2[ln(β̌)− ln(β0)] + kn(d̂− sn)

≥− 2(β̂ − β̌)T l′n(β0)− (β̂ − β0)T l′′n(β̄1)(β̂ − β0) + (β̌ − β0)T l′′n(β̄2)(β̌ − β0) + kn

,I1 + I2 + I3 + I4, (2.8)
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where β̄1 is between β̂ and β0, and β̄2 is between β̌ and β0. By using similar arguments as
in Theorem 1, we can prove that the first three terms in (2.8) are all of the order Op(nα2

n) =
Op(dn). Since dn/kn → 0, we obtain

MBICkn
(β̂)−MBICkn

(β̌) ≥ Op(dn) + kn = kn[Op(dn/kn) + 1]
p→∞,

which implies
P [ inf

(λ,τ)∈Ω+

MBICkn
(λ, τ) > MBICkn

(β̌)] → 1. (2.9)

Thus we deduce that the minimum MBIC can not be selected from the overfitted model.
The results of Cases 1 and 2 complete the proof.
Remark 1 Theorem 3 implies that if β̂(λ∗n, τ∗n) is chosen to minimize MBIC with an

appropriately chosen kn, then β̂(λ∗n, τ∗n) is consistent for model selection.

3 Computation

3.1 Algorithm

We apply the smoothing quasi-Newton (SQN) method to optimize Qn(β) in (1.2). Since
the SICA penalty function is singular at the origin, we first smooth the objective function by
replacing |βj | with

√
β2

j + ε, where ε is a small positive quantity. It follows that
√

β2
j + ε →

|βj | when ε → 0. Then we maximize

Qε
n(β) = ln(β)− n

dn∑
j=1

pλ,τ (
√

β2
j + ε) (3.1)

instead of maximizing Qn(β) by using the DFP quasi-Newton method with backtracking
linear search algorithm procedure (e.g. [11]). In practice, taking ε = 0.01 gives good results.
The pseudo-code for our algorithmic implementation can be found in [12]. More theoretical
results about smoothing methods for nonsmooth and noconvex minimization can be found
in [2, 3].

Remark 2 Like the LQA (local quadratic approximation) algorithm in [6], the sequence
βk obtained from SQN(DFP) may not be sparse for any fixed k and hence is not directly
suitable for variable selection. In practice, we set βk

j = 0 if |βk
j | < ε0 for some sufficiently

small tolerance level ε0, where βk
j is the jth element of βk.

3.2 Covariance Estimation

Following [12], we estimate the covariance matrix (i.e., standard errors) for β̂1 (the
nonvanishing component of β̂) by using the sandwich formulae

ĉov(β̂1) = {∇2ln(β̂1)− nΣλ,τ,ε(β̂1)}−1ĉov{∇ln(β̂1)}{∇2ln(β̂1)− nΣλ,τ,ε(β̂1)}−1, (3.2)

where Σλ,τ,ε(β) = diag{p′λ,τ,ε(|β1|)/|β1|, · · · , p′λ,τ,ε(|βd|)/|βd|} and pλ,τ,ε(βj) = pλ,τ (
√

β2
j + ε).

∇2ln(β̂1) and Σλ,τ,ε(β̂1) are the first d̂× d̂ elements of ∇2ln(β̂) and Σλ,τ,ε(β̂), respectively.
For variables with β̂j = 0, the estimated standard errors are 0.
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3.3 Tuning Parameter Selection

Numerical results suggest that the performance of SPPL estimator is robust to the
choice of τ and τ = 0.01 seems to give reasonable results in simulations, so we fix τ = 0.01
and concentrate on tuning λ via

λ̂MBICkn = arg min
λ

{MBICkn
(β̂) = −2ln(β̂) + knd̂}, (3.3)

where we choose kn = 2 log(n) in the numerical experiments. We compare the performance
of SPPL-MBIC with SPPL-GCV which solves

λ̂GCV = arg min
λ

{GCV(β̂) =
−ln(β̂)

n(1− d̂/n)2
}. (3.4)

In practice, we consider a range of values for λ : λmax = λ0 > · · · > λG = 0 for some positive
number λ0 and G, where λ0 is an initial guess of λ, supposedly large, and G is the number
of grid points (we take G = 100 in our numerical experiments).

3.4 Simulation Study

In this subsection, we illustrate the finite sample properties of SPPL-MBIC with a sim-
ulated example and compare it with the SPPL-GCV method. All simulations are conducted
using MATLAB codes.

We simulated 100 data sets from the exponential hazards model

h(t|z) = exp(βT
0 z),

where β0 ∈ R8 with β01 = 0.5, β02 = 1, β03 = −0.9, and β0j = 0, if j 6= 1, 2, 3. Thus d = 8
and d0 = 3. The 8 covariates z = (z1, · · · , z8)T are marginally standard normal with pairwise
correlations corr(zj , zk) = ρ|j−k|. We assume moderate correlation between the covariates
by taking ρ = 0.5. Censoring times are generated from a uniform distribution U(0, r), where
r is chosen to have approximately 25% censoring rate. Sample sizes n = 150 and 200 are
considered.

To evaluate the model selection performance of both methods, for each estimate β̂, we
record: the model size (MS), |Â|; the correct model (CM), I{Â = A}; the false positive
rate (FPR, the overfitting index), |Â\A|/|Â|; the false negative rate (FNR, the underfitting
index), |A\Â|/(d−|Â|); and the model error (ME), (β̂−β0)T Σ(β̂−β0). Table 1 summarizes
the average performance over 100 simulated datasets. With respect to parameter estima-
tion, Table 2 presents the average of estimated nonzero coefficients (Mean), the average of
estimated standard error (ESE) and the sample standard deviations (SSD).

Observing Table 1, both GCV and MBIC can work efficiently in all considered criteria,
and the MBIC approach outperforms the GCV approach in terms of MS, CM, FNR and
ME. In addition, all procedures have better performance in all metrics when the sample size
increases from n = 150 to n = 200. From Table 2, we can see that Mean is close to its
corresponding true value in all settings, and the proposed covariance estimation is shown to
be reasonable in terms of ESE and SSD.
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Table 1: Simulation results for model selection

n Method MS CM FPR FNR ME
150 MBIC 2.9400 88% 0.0075 0.0150 0.0555

GCV 2.9100 85% 0.0075 0.0200 0.0602
200 MBIC 2.9700 95% 0.0025 0.0067 0.0408

GCV 2.9200 90% 0.0025 0.0150 0.0498

Table 2: Simulation results for parameter estimation

β1 = 0.5 β2 = 1 β3 = −0.9

n Method Mean ESE SSD Mean ESE SSD Mean ESE SSD

150 MBIC 0.4753 0.1055 0.1838 1.0308 0.1490 0.1396 -0.8989 0.1362 0.1456

GCV 0.4639 0.1022 0.2004 1.0349 0.1488 0.1445 -0.8972 0.1362 0.1432

200 MBIC 0.4794 0.0959 0.1488 0.9970 0.1258 0.1328 -0.8757 0.1136 0.1244

GCV 0.4636 0.0912 0.1793 1.0002 0.1255 0.1335 -0.8734 0.1136 0.1256

4 Concluding Remarks

Since the SICA penalty is modified from the transformed L1 penalty pλ,τ (βj) = λ|βj |/
(|βj |+τ) proposed by Nikolova [10], it is straightforward to extend the SPPL-MBIC method
to the penalty function

pλ,τ (βj) =
λ

f(1)
f(

|βj |
|βj |+ τ

), (4.1)

where λ (sparsity) and τ (concavity) are two positive tunning parameters, and f is an
arbitrary function that satisfies the following two hypotheses

(H1) f(x) is a continuous function w.r.t x, which has the first and second derivative in
[0, 1];

(H2) f ′(x) ≥ 0 on the interval [0, 1] and lim
x→0

f(x)
x

= 1.

It is noteworthy that pλ,τ (βj) is the SELO penalty function proposed by Dicker et al.
[5] when we take f(x) = log(x + 1).
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发散维数SICA惩罚Cox回归模型的一种修正BIC调节参数选择器

石跃勇1,3,焦雨领2,严 良1,曹永秀2
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摘要: 本文研究了发散维数SICA惩罚Cox回归模型的调节参数选择问题, 提出了一种修正的BIC调

节参数选择器. 在一定的正则条件下, 证明了方法的模型选择相合性. 数值结果表明提出的方法表现要优

于GCV准则.
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