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Abstract: In this paper, we study and characterize projective Ricci flat Kropina metrics. By
using the formulas of S-curvature and Ricci curvature for Kropina metrics, we obtain the formula
of the projective Ricci curvature for Kropina metrics. Based on this, we obtain the necessary
and sufficient conditions for Kropina metrics to be projective Ricci flat metrics. Further, as a
natural application, we study and characterize projective Ricci flat Kropina metrics defined by a
Riemannian metric and a Killing 1-form of constant length. We also characterize projective Ricci
flat Kropina metrics with isotropic S-curvature. In this case, the Kropina metrics are Ricci flat
metrics.
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1 Introduction

(a, B)-metrics form a special and very important class of Finsler metrics which can be
expressed in the form F = ag( g), where « is a Riemannian metric and ( is a 1-from and
¢ = ¢(s) is a C positive function on an open interval. In particular, when ¢ = 1+ s, the
Finsler metric F' = a+ (3 is called Randers metric. When ¢ = %, the Finsler metric F' = %2 is
called Kropina metric. Randers metrics and Kropina metrics are both C-reducible. However,
Randers metrics are regular Finsler metrics and Kropina metrics are Finsler metrics with
singularity. Kropina metrics were first introduced by Berwald when he studied the two
dimensional Finsler spaces with rectilinear extremal and were investigated by Kropina (see
[4, 5]). Kropina metrics seem to be among the simplest nontrivial Finsler metrics with
many interesting application in physics, electron optics with a magnetic field, dissipative
mechanics and irreversible thermodynsmics (see [4, 5, 7]). Recently, some geometers found
some interesting and important geometric properties of Kropina metrics (see [10-12]).

The Ricci curvature in Finsler geometry is the natural extension of the Ricci curvature

in Riemannian geometry and plays an important role in Finsler geometry. A Finsler metric
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F = F(z,y) on an n-dimensional manifold M is called an Einstein metric if it satisfies the

following equation on the Ricci curvature Ric
Ric(z,y) = (n — 1)oF?(z,y). (1.1)

where 0 = o(x) is a scalar function on M. In particular, a Finsler metric F is called a Ricci
flat metric if F satisfies (1.1) with o = 0, that is, Ric = 0.

The S-curvature S = S(z,y) is an important non-Riemannian quantity in Finsler ge-
ometry which was first introduced by Shen when he studied volume comparison in Riemann-
Finsler geometry (see [8]). Shen proved that the S-curvature and the Ricci curvature deter-
mine the local behavior of the Busemann-Hausdorff measure of small metric balls around a
point (see [9]). He also established a volume comparison theorem for the volume of metric
balls under a lower Ricci curvature bound and a lower S-curvature bound and generalized
Bishop-Gromov volume comparison theorem in the Riemannian case (see [9]). Recent study
shows that the S-curvature plays a very important role in Finsler geometry (see [2, 9]). The
Finsler metric F' is said to be of isotropic S-curvature if S(z,y) = (n + 1)cF(x,y), where
¢ = ¢(x) is a scalar function on M. Further, if ¢(xz)=constant, then F' is said to be of constant
S-curvature.

It is natural to consider the geometric quantities defined by Ricci curvature and S-
curvature. Recently, Shen defined the concept of projective Ricci curvature in Finsler ge-
ometry. Concterely, for a Finsler metric F' on an n-dimensional manifold M, the projective

Ricci curvature PRic is defined by

PRic = Ric + (n — 1) {S,y™ + S*}, (1.2)

1
n+1

connection or Chern connection of F. We can easily rewrite the projective Ricci curvature

where S := S and “|” denotes the horizontal covariant derivative with respect to Berwald

as follows
n—1

(n+1)2

It is easy to show that, if two Finsler metrics are pointwise projectively related Finsler

n—1
PRic = Ric + ——S8,,,y™ S2. 1.3
ic 1C+n—|—1 my" + (1.3)

metrics on a manifold with a fixed volume form, then their projective Ricci curvature are
equal. In other words, the projective Ricci curvature is projective invariant with respect to
a fixed volume form.

On the other hand, the projective Ricci curvature is actually a kind of weighted Ricci
curvatures. See [6] and the definition of S-curvature in Section 2. We call a Finsler metric
F' the projective Ricci flat metric if F' satisfies PRic = 0. In [1], the authors characterized
projective Ricci flat Randers metrics.

To state our main results, let us introduce some common notations for Kropina metrics.
Let F = QT; be a Kropina metric on an n-dimensional manifold M. Put

1 1
rij 1= 5 (big +bgs)s sij = 5 (0 — bja),
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13

where “ ;7 denotes the covariant derivative with respect to the Levi-Civita connection of «.

Further, put

= a g, st = A" sy, Ty = by S5 1= b0"5,
. m A m X _ m [ X1 _ m
Qij = TimS"5y  Lij = SimS"j, Q5 i =b'qij = rms";, b =0t = sms',

where (a) := (a;;)”"

and b := aYb;. We will denote 79 := ri;y7, si0 = s;;4° and
Too i= Ti; Yy, ro i=1iyt, So = sy, ete..

In this paper, by using Busemann-Hausdorff volume form, we will derive firstly the
formula for the projective Ricci curvature of a Kropina metric in Section 3. Based on this,
we can prove the following main theorem.

Theorem 1.1 Let F' = %2 be a Kropina metric on an n-dimensional manifold M. Then

F is a projective Ricci flat metric if and only if a and ( satisfy the following equations

“Ric = b_4)\ (l') 052 - (n — 2) b_4 |:—(’I"(] + 80)2 + bZS();() + bz’ro;() (14)
—2b 20 + b rrgg — bfgbmroo;m — b72’r'007“n,?n,

(n — 1)b%to + (n — 3)b%qo — nrsg + b0 so,m + bsor™s, — b*s",, + Ma)B =0, (1.5)

where b := || 3, ||« denotes the length of 3 with respect to a and A(z) = §(n—1)b*™, — (n —
3)rms™ + b2s™ .

By the definition, the 1-form § is said to be a Killing form on Riemannian manifold
(M, ) if r;; = 0. The 1-form f is said to be a constant length Killing 1-form if it is a Killing
form and has constant length with respect to o, equivalently r,; = 0 and s; = 0.

For a Kropina metric ' = a?/f3, if 3 is a constant length Killing 1-form with respect to
«, we have the following theorem.

Theorem 1.2 Let F = O‘Tj be a Kropina metric with constant length Killing form g3 on
an n-dimensional manifold M. Then F is a projective Ricci flat metric if and only if there
exists a function A = A\(z) such that « is an Einstein metric “Ric = Aa? and (3 satisfies the

following equations

)‘ﬁ - SW(L);m = 0? (16>
sjms”; =0. (1.7)

For 1-form 3 = b; () y* on M, we say that 3 is a conformal form with respect to « if
it satisfies b;; + bj,; = pa;;, where p = p(x) is a function on M and “;” is the horizontal
covariant derivative with respect to a. If p =0, 3 is just a Killing form with respect to a.

In fact, for a Kropina metric F, the following four conditions are equivalent (see [10]):

(a) F has an isotropic S-curvature, S = (n + 1)cF, where ¢ = ¢(z) is a function on M;

(b) roo = k(z)a?, where k = k(z) is a function on M;

(c) S=0;

(d) f is a conformal form with respect to «.

So we can get the following conclusion.
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Corollary 1.3 Let F = % be a Kropina metric on an n-dimensional manifold M.
Assume that F is of isotropic S-curvature, i.e., S = (n+ 1)cF. Then F is a projective Ricci

flat metric if and only if F' is Ricci flat metric.

2 Preliminaries

Let F be a Finsler metric on an n-dimensional manifold M and G* be the geodesic

coefficients of F', which are defined by

i1
' = 30" { [F*] " = [P} (2.1)
For any z € M and y € T, M\ {0}, the Riemann curvature R, := R’ 52 @ da* is defined by
, aG" loales loales oG OG™
R, =2—— ——y™ +2G™ - . 2.2
k Oxk ammayk‘ yo+ aymayk 8ym ayk' ( )

The Ricci curvature is the trace of the Riemann curvature, which is defined by Ric = R"},.
For a Finsler metric F' = F(x,y) on an n-dimensional manifold M, define the Busemann-

Hausdorff volume form of F by dVr = op(z)dz' Adz? A--- Adx™ | where

B Vol (B™(1))

~ Vol{y € R"|F(z,y) <1}

and Vol denotes the Euclidean volume and B"(1) denotes the unit ball in R™. Then the

S-curvature S of F' is given by

or(x)

oG™ 0 (logor)
oy™ 4 ox™

S(x,y) = . (2.3)

The S-curvature S measures the average rate of change of (1, M, F,) in the direction y €
T,.M. It is known that S = 0 for Berwald metrics.

(a, B)-metrics form an important class of Finsler metrics which can be expressed in
the form F' = a¢ (g) , where a = W is a Riemannian metric and 3 = b;(x)y® is
a 1-from with ||3]|, < by on a manifold. It was proved that F' = a¢ (8/a ) is a positive
definite Finsler metric if and only if ¢ = ¢ (s) is a positive C* positive function on (—bg, bo)

satisfying the following condition (see [2])

¢ (s) — s¢' (s)+ (b* — %) ¢ (s) >0, [s| <b<by. (2.4)
Randers metric F' = « + (3 is just the (o, 3)-metric with ¢ = 1+ s. When ¢ = 1/s, the
metric F' = %2 is just the Kropina metric. It is easy to see that a Kropina metric F' = %2

is not a regular Finsler metric for |s| < b, but it is regular if s > 0. In this paper, we study
regular Kropina metrics. Hence, we will always restrict our consideration to the domain
where 8 = b;(z)y" > 0 so that s > 0.

Let G'(z,y) and *G*(z,y) denote the geodesic coefficients of an (a, 3)-metric F =
a¢ (8/a) and a, respectively. We can express the geodesic coefficients G* as follows (see [2]).

i

G'=*G" + aQs'y + O (—2aQsg + To0) Z/E + U (=2aQs0 + 700) V', (2:5)
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where
¢
Q=
3 & (6 s9) )
R e Sy (e e Bk
W :: ¢//

2[(¢ — s¢') + (b — %) @]

In particular, for a Kropina metric F = ‘“T;, ie, ¢(s) = %, it follows from (2.5) that

i o Fi 1 1 i 1 i
G' = G—QSO—bQ<SQ+F7’00>y +@(F80+7"00)b. (26)

Further, the Ricci curvature of F = O‘T; is given by (see [12])

3(n—1) 5, n-—1

RiC = aRiC + b4F T00 —+ Fb4 (27"0080 — 47’007"0 — 4F’f’0$0 — FSOQ)
n—1 1
+bT (7"00;0 + FSO;O + FQSmSWS) + bj |:(7“0 + 80)2 —-Tr (FS() + 7“00)1|
1
+b—2{Fbmso;m + 0" r00.m — To.0 — So0:0 + (Too + F'so) 1"y, + 207087
2 F2 )
—Fr,s"s — Fro,s™ — 7smsm} — F's"6,, — Tsjm,s";. (2.7)

Note that op(z) = (%)n \/det (a;;) for Kropina metric. From this and by (2.3) and (2.6),
one obtains the S-curvature of the Kropina metric F' = %2,

n+1

S(z,y) = T (Fro —ro0), (2.8)

which is proved by Zhang and Shen (see Proposition 5.1 in [12]).

3 Projective Ricci Flat Kropina Metrics

In this section, we will first derive a formula for the projective Ricci curvature of a
Kropina metric. Then we will characterize projective Ricci flat Kropina metrics. By (1.3),
the projective Ricci curvature is given by

—1 —1
PRic = Ric + ——S,,y" + — 82, (3.1)
n+1 n

By (2.6), we have

. . F., F, 1 Fym 2om 1 1 .
Gi = O‘G:n—yslo—slm—<sm— v r00+ro> yl—<so+r00> 5

2

b
+—

op2 (Eymso + Fsm + 2r01,) -
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Thus
0S 0S
Simd™ = V" g~ Ot gt
2 T b oS
= Sumy™ — [—st(l) 2 (30 + %) Ytz (F'so + Too)] oy
m m bm 2 Too
= S;my + F's OSym_bT<FSO+TOO)Sym+b72( 0+?) S. (32)

From (2.8), we obtain

2 1 1 . 2
S:my™ = _7@ ha ) (7”3 — oo + SoT0 — LOTOO) + nro * <7"o;0 - foo rm> ) (3-3)

* bt F F b2 F ~ BF
m 0" n+1
[FS 07T 37 (F'so + 7’00)} Sym = B [F(Io — 2q00 — = (FSO +700) + 5 b2F > (Fso + To0)
2r
_bQ_;,"OQ (FSO + T'Q()) + 50}(;:| (34)
2 To0 (n + ].) SoT00 ToTo0 T'go
?(0+?>S:T SoTo — F + 7 *ﬁ . (35)

Here, we have used s,,s"} = to, 7ms" = TomS™ = qo, TomS' = qoo- Plugging (3.3), (3.4)
and (3.5) into (3.2) yields

2 sy = -y [-Hh Sy v ses, P 2 rifn trw)
n+1 bh WAF b2 B2F b2 b2 b
2
vy _ 2w _ 1| "
Further, we have
(el B w

Substituting (2.7), (3.6) and (3.7) into (3.1), we obtain the formula for projective Ricci

curvature of Kropina metric F' = %2 as follows

. T (ro+50)> 0,0 T0;0 Fty Fqo
PRic = RlC+(n—2)|:—b4+b2+b2 +(n 1) b2 +( B)bT
2q m 1 1 F?s™s,,
+?00+b2Fb Som+bb T00m+b (T00+F80) 7”_7
F2
—Fs 776 m Tt";n (38)

Now we are in the position to prove Theorem 1.1.
Proof of Theorem 1.1 The proof of the sufficient condition in Theorem 1.1 is trivial.

We will mainly prove the necessary condition in Theorem 1.1.
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Assume that PRic = 0, which is equivalent to 4b6*3% x PRic = 0. By (3.8), we obtain
the following

am; (ro+50)° | So0 | Too Ftg Fqqo
4b4ﬁ2x{R1c+(n—2)[—b4—|—b2+b2 +(n_1)b72+(n_3)b72
2q 1 m 1 m 1 m F2Smsm m
+b7200+b72Fb 80;m+b72b TOO;m+ﬁ(TOO+FSO)Tm* T — F's 0;m
F2
—_—m L. 3.9
4 m} (3.9)
The equation (3.9) is equivalent to the following equation
= 4 = 2 =
By + Eya® +Ey =0, (3.10)
where
Ey o= —2b%s™s,, — b, (3.11)
Hy = [4 (n — 1) b%tg + 4 (n — 3) b2qo — 4nrso + 4b6*6™ sq.,,, + 4b*sor™.,
—4b*s".,,, 16, (3.12)
= = {b4aRiC + (n — 2) |:—(7"0 + 80)2 + b280;0 + bQTo;o] + 2b2q00
—nr7o0 + b2 T o0.m + bZTOOTWTLn} 43%. (3.13)
Rewrite (3.10) as
(B4a? + E2)a® + E = 0. (3.14)

Because a? and (32 are relatively prime polynomials in y, by (3.14) and the definition of =,
we know that there exist a scalar function A(x) such that

b4aRiC + (7?, — 2) —(T’o + 80)2 + b280;0 + b27'0;0
+20%qo0 — nrToo 4+ b20 ™ T00.m + b2 roor™, = A (x) o (3.15)
Then (3.9) can be simplified as

0 = [4(n—1)b+4(n—3)b%q — 4nrsy + 4b°" S0, + 4bsor, — 4b*s™5,
+4A (z) B] B — b7 (28,8™ + b, )’ (3.16)

Since o can’t be divided by 3, we see that (3.16) is equivalent to the following equations

0 = (n—1)b + (n—3)b’q — nrse + b0 soum + b7sor™, — b*s™..,
+A(x)5, (3.17)
0 = 28,8 +bt". (3.18)

First, differentiating both sides of (3.17) with respect to y* yields

(n —1)b*t; + (n — 3) b2q; — nrs; + 620" 54, + b2si7™, — bts™

mm

+AMa)b; =0.  (3.19)
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Contracting (3.19) with b® gives
0=(n—1)b"s"sp + (n—3) b*rps™ — b*s™ +b*A(x). (3.20)

Removing the factor b* form (3.20), we obtain

Ax)=—=(n—1)s"s, — (n—3)r,s™ + bQSTm. (3.21)
By (3.18), we obtain
1
Spms™ = —§b2tmm, (3.22)
then rewrite (3.21) as following
1
Az) = §(n — D7, = (n = 3)rms™ + b7 (3.23)

This completes the proof of Theorem 1.1.

4 Applications

In this section, we will firstly study projective Ricci flat Kropina metrics with constant
lenght Killing 1-form § and prove Theorem 1.2. Let F' = 0‘7; be a non-Riemannian Kropina
metric with constant length Killing 1-form 8 on an n-dimensional manifold M, that is
ri; =0, s; = 0. In this case, equation (3.8) simplely as follows

F2
PRic = “Ric - F's'y,, — Ttmm-
Assume that PRic = 0, which is equivalent to 43% x PRic = 0. By (4.1), we obtain the

following

(4.1)

4°Ric % — 4s"3,,0° B — tT ot = 0. (4.2)
Thus “Ric is divisible by a2, that is, there exists a function A (z) such that
“Ric = Ao, (4.3)
Plugging (4.3) into (4.2) and dividing the common factor a?, we conclude that

4(AB—8",) B—tTa% = 0. (4.4)

m

2

Since o can not be divided by (3, we see that (4.4) is equivalent to the following equations

AB— 5", =0, t", = sjms";- = 0.

This completes the proof of Theorem 1.2.
Now, let us consider projective Ricci flat Kropina metrics with isotropic S-curvature.
As we mentioned in Section 1, a Kropina metric F is of isotropic S-curvature, S = (n+1)cF,

if and only if S = 0. In this case, from the equation (1.3), we know that

PRic = Ric. (4.5)
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Hence, F' is projective Ricci flat metric if and only if F' is Ricci flat metric.
In [12], Zhang and Shen proved that every Einstein-Kropina metric F' = %; has vanishing
S-curvature. In this case, PRic = Ric. They also have obtained the necessary and sufficient

conditions for Kropina metrics to be Einstein metrics in [12].
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