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Abstract: In this paper, we study and characterize projective Ricci flat Kropina metrics. By

using the formulas of S-curvature and Ricci curvature for Kropina metrics, we obtain the formula

of the projective Ricci curvature for Kropina metrics. Based on this, we obtain the necessary

and sufficient conditions for Kropina metrics to be projective Ricci flat metrics. Further, as a

natural application, we study and characterize projective Ricci flat Kropina metrics defined by a

Riemannian metric and a Killing 1-form of constant length. We also characterize projective Ricci

flat Kropina metrics with isotropic S-curvature. In this case, the Kropina metrics are Ricci flat

metrics.
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1 Introduction

(α, β)-metrics form a special and very important class of Finsler metrics which can be
expressed in the form F = αφ(β

α
), where α is a Riemannian metric and β is a 1-from and

φ = φ(s) is a C∞ positive function on an open interval. In particular, when φ = 1 + s, the
Finsler metric F = α+β is called Randers metric. When φ = 1

s
, the Finsler metric F = α2

β
is

called Kropina metric. Randers metrics and Kropina metrics are both C-reducible. However,
Randers metrics are regular Finsler metrics and Kropina metrics are Finsler metrics with
singularity. Kropina metrics were first introduced by Berwald when he studied the two
dimensional Finsler spaces with rectilinear extremal and were investigated by Kropina (see
[4, 5]). Kropina metrics seem to be among the simplest nontrivial Finsler metrics with
many interesting application in physics, electron optics with a magnetic field, dissipative
mechanics and irreversible thermodynsmics (see [4, 5, 7]). Recently, some geometers found
some interesting and important geometric properties of Kropina metrics (see [10–12]).

The Ricci curvature in Finsler geometry is the natural extension of the Ricci curvature
in Riemannian geometry and plays an important role in Finsler geometry. A Finsler metric
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F = F (x, y) on an n-dimensional manifold M is called an Einstein metric if it satisfies the
following equation on the Ricci curvature Ric

Ric(x, y) = (n− 1)σF 2(x, y). (1.1)

where σ = σ(x) is a scalar function on M . In particular, a Finsler metric F is called a Ricci
flat metric if F satisfies (1.1) with σ = 0, that is, Ric = 0.

The S-curvature S = S(x, y) is an important non-Riemannian quantity in Finsler ge-
ometry which was first introduced by Shen when he studied volume comparison in Riemann-
Finsler geometry (see [8]). Shen proved that the S-curvature and the Ricci curvature deter-
mine the local behavior of the Busemann-Hausdorff measure of small metric balls around a
point (see [9]). He also established a volume comparison theorem for the volume of metric
balls under a lower Ricci curvature bound and a lower S-curvature bound and generalized
Bishop-Gromov volume comparison theorem in the Riemannian case (see [9]). Recent study
shows that the S-curvature plays a very important role in Finsler geometry (see [2, 9]). The
Finsler metric F is said to be of isotropic S-curvature if S(x, y) = (n + 1)cF (x, y), where
c = c(x) is a scalar function on M . Further, if c(x)=constant, then F is said to be of constant
S-curvature.

It is natural to consider the geometric quantities defined by Ricci curvature and S-
curvature. Recently, Shen defined the concept of projective Ricci curvature in Finsler ge-
ometry. Concterely, for a Finsler metric F on an n-dimensional manifold M , the projective
Ricci curvature PRic is defined by

PRic = Ric + (n− 1)
{
S̄|mym + S̄2

}
, (1.2)

where S̄ := 1
n+1

S and “|” denotes the horizontal covariant derivative with respect to Berwald
connection or Chern connection of F . We can easily rewrite the projective Ricci curvature
as follows

PRic = Ric +
n− 1
n + 1

S|mym +
n− 1

(n + 1)2
S2. (1.3)

It is easy to show that, if two Finsler metrics are pointwise projectively related Finsler
metrics on a manifold with a fixed volume form, then their projective Ricci curvature are
equal. In other words, the projective Ricci curvature is projective invariant with respect to
a fixed volume form.

On the other hand, the projective Ricci curvature is actually a kind of weighted Ricci
curvatures. See [6] and the definition of S-curvature in Section 2. We call a Finsler metric
F the projective Ricci flat metric if F satisfies PRic = 0. In [1], the authors characterized
projective Ricci flat Randers metrics.

To state our main results, let us introduce some common notations for Kropina metrics.
Let F = α2

β
be a Kropina metric on an n-dimensional manifold M . Put

rij :=
1
2
(bi;j + bj;i), sij :=

1
2
(bi;j − bj;i),
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where “ ; ” denotes the covariant derivative with respect to the Levi-Civita connection of α.
Further, put

ri
j := aimrmj , si

j := aimsmj , rj := bmrmj , sj := bmsmj ,

qij := rimsm
j , tij := simsm

j , qj := biqij = rmsm
j , tj := bitij = smsm

j ,

where (aij) := (aij)
−1 and bi := aijbj . We will denote ri0 := rijy

j , si0 := sijy
j and

r00 := rijy
iyj , r0 := riy

i, s0 := siy
i, etc..

In this paper, by using Busemann-Hausdorff volume form, we will derive firstly the
formula for the projective Ricci curvature of a Kropina metric in Section 3. Based on this,
we can prove the following main theorem.

Theorem 1.1 Let F = α2

β
be a Kropina metric on an n-dimensional manifold M . Then

F is a projective Ricci flat metric if and only if α and β satisfy the following equations

αRic = b−4λ (x) α2 − (n− 2) b−4
[
−(r0 + s0)

2 + b2s0;0 + b2r0;0

]
(1.4)

−2b−2q00 + nb−4rr00 − b−2bmr00;m − b−2r00r
m
m,

(n− 1)b2t0 + (n− 3)b2q0 − nrs0 + b2bms0;m + b2s0r
m
m − b4sm

0;m + λ(x)β = 0, (1.5)

where b := ‖βx‖α denotes the length of β with respect to α and λ(x) = 1
2
(n− 1)b2tm

m− (n−
3)rmsm + b2sm

;m.

By the definition, the 1-form β is said to be a Killing form on Riemannian manifold
(M, α) if rij = 0. The 1-form β is said to be a constant length Killing 1-form if it is a Killing
form and has constant length with respect to α, equivalently rij = 0 and si = 0.

For a Kropina metric F = α2/β, if β is a constant length Killing 1-form with respect to
α, we have the following theorem.

Theorem 1.2 Let F = α2

β
be a Kropina metric with constant length Killing form β on

an n-dimensional manifold M . Then F is a projective Ricci flat metric if and only if there
exists a function λ = λ(x) such that α is an Einstein metric αRic = λα2 and β satisfies the
following equations

λβ − sm
0;m = 0, (1.6)

sj
msm

j = 0. (1.7)

For 1-form β = bi (x) yi on M , we say that β is a conformal form with respect to α if
it satisfies bi;j + bj;i = ρaij , where ρ = ρ(x) is a function on M and “; ” is the horizontal
covariant derivative with respect to α. If ρ = 0, β is just a Killing form with respect to α.

In fact, for a Kropina metric F , the following four conditions are equivalent (see [10]):
(a) F has an isotropic S-curvature, S = (n + 1)cF , where c = c(x) is a function on M ;
(b) r00 = k(x)α2, where k = k(x) is a function on M ;
(c) S = 0;
(d) β is a conformal form with respect to α.

So we can get the following conclusion.
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Corollary 1.3 Let F = α2

β
be a Kropina metric on an n-dimensional manifold M .

Assume that F is of isotropic S-curvature, i.e., S = (n + 1)cF . Then F is a projective Ricci
flat metric if and only if F is Ricci flat metric.

2 Preliminaries

Let F be a Finsler metric on an n-dimensional manifold M and Gi be the geodesic
coefficients of F , which are defined by

Gi =
1
4
gil

{[
F 2

]
xkyly

k − [
F 2

]
xl

}
. (2.1)

For any x ∈ M and y ∈ TxM\ {0}, the Riemann curvature Ry := Ri
k

∂
∂xi ⊗dxk is defined by

Ri
k = 2

∂Gi

∂xk
− ∂2Gi

∂xm∂yk
ym + 2Gm ∂2Gi

∂ym∂yk
− ∂Gi

∂ym

∂Gm

∂yk
. (2.2)

The Ricci curvature is the trace of the Riemann curvature, which is defined by Ric = Rm
m.

For a Finsler metric F = F (x, y) on an n-dimensional manifold M , define the Busemann-
Hausdorff volume form of F by dVF = σF (x)dx1 ∧ dx2 ∧ · · · ∧ dxn , where

σF (x) =
Vol (Bn(1))

Vol {y ∈ Rn |F (x, y) < 1}
and Vol denotes the Euclidean volume and Bn(1) denotes the unit ball in Rn. Then the
S-curvature S of F is given by

S (x, y) =
∂Gm

∂ym
− ym ∂ (log σF )

∂xm
. (2.3)

The S-curvature S measures the average rate of change of (TxM, Fx) in the direction y ∈
TxM . It is known that S = 0 for Berwald metrics.

(α, β)-metrics form an important class of Finsler metrics which can be expressed in
the form F = αφ

(
β
α

)
, where α =

√
aij(x)yiyj is a Riemannian metric and β = bi(x)yi is

a 1-from with ‖β‖α < b0 on a manifold. It was proved that F = αφ (β/α ) is a positive
definite Finsler metric if and only if φ = φ (s) is a positive C∞ positive function on (−b0, b0)
satisfying the following condition (see [2])

φ (s)− sφ′ (s) +
(
b2 − s2

)
φ′′ (s) > 0, |s| ≤ b < b0. (2.4)

Randers metric F = α + β is just the (α, β)-metric with φ = 1 + s. When φ = 1/s, the
metric F = α2

β
is just the Kropina metric. It is easy to see that a Kropina metric F = α2

β

is not a regular Finsler metric for |s| < b, but it is regular if s > 0. In this paper, we study
regular Kropina metrics. Hence, we will always restrict our consideration to the domain
where β = bi(x)yi > 0 so that s > 0.

Let Gi(x, y) and αGi (x, y) denote the geodesic coefficients of an (α, β)-metric F =
αφ (β/α) and α, respectively. We can express the geodesic coefficients Gi as follows (see [2]).

Gi = αGi + αQsi
0 + Θ(−2αQs0 + r00)

yi

α
+ Ψ(−2αQs0 + r00) bi, (2.5)
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where

Q :=
φ′

φ− sφ′
,

Θ :=
φ′ (φ− sφ′)

2φ [(φ− sφ′) + (b2 − s2)φ′′]
− sΨ,

Ψ :=
φ′′

2 [(φ− sφ′) + (b2 − s2) φ′′]
.

In particular, for a Kropina metric F = α2

β
, i.e., φ (s) = 1

s
, it follows from (2.5) that

Gi = αGi − F

2
si

0 −
1
b2

(
s0 +

1
F

r00

)
yi +

1
2b2

(Fs0 + r00) bi. (2.6)

Further, the Ricci curvature of F = α2

β
is given by (see [12])

Ric = αRic +
3 (n− 1)

b4F 2
r00

2 +
n− 1
Fb4

(
2r00s0 − 4r00r0 − 4Fr0s0 − Fs0

2
)

+
n− 1
b2F

(
r00;0 + Fs0;0 + F 2smsm

0

)
+

1
b4

[
(r0 + s0)

2 − r (Fs0 + r00)
]

+
1
b2

{
Fbms0;m + bmr00;m − r0;0 − s0;0 + (r00 + Fs0) rm

m + 2nr0msm
0

−Frmsm
0 − Fr0msm − F 2

2
smsm

}
− Fsm

0;m − F 2

4
sj

msm
j . (2.7)

Note that σF (x) =
(

2
b

)n √
det (aij) for Kropina metric. From this and by (2.3) and (2.6),

one obtains the S-curvature of the Kropina metric F = α2

β
,

S(x, y) =
n + 1
Fb2

(Fr0 − r00) , (2.8)

which is proved by Zhang and Shen (see Proposition 5.1 in [12]).

3 Projective Ricci Flat Kropina Metrics

In this section, we will first derive a formula for the projective Ricci curvature of a
Kropina metric. Then we will characterize projective Ricci flat Kropina metrics. By (1.3),
the projective Ricci curvature is given by

PRic = Ric +
n− 1
n + 1

S|mym +
n− 1

(n + 1)2
S2. (3.1)

By (2.6), we have

Gi
m = αGi

m − Fym

2
si

0 −
F

2
si

m − 1
b2

(
sm − Fym

F 2
r00 +

2r0m

F

)
yi − 1

b2

(
s0 +

1
F

r00

)
δi

m

+
bi

2b2
(Fyms0 + Fsm + 2r0m) .
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Thus

S|mym = ym ∂S
∂xm

−Gl
mym ∂S

∂yl

= S;mym −
[
−Fsm

0 −
2
b2

(
s0 +

r00

F

)
yl +

bm

b2
(Fs0 + r00)

]
∂S
∂ym

= S;mym + Fsm
0Sym − bm

b2
(Fs0 + r00)Sym +

2
b2

(
s0 +

r00

F

)
S. (3.2)

From (2.8), we obtain

S;mym = −2 (n + 1)
b4

(
r2
0 −

r0r00

F
+ s0r0 − s0r00

F

)
+

n + 1
b2

(
r0;0 − r00;0

F
− r2

00

βF

)
, (3.3)

[
Fsm

0 −
bm

b2
(Fs0 + r00)

]
Sym =

n + 1
b2

[
Fq0 − 2q00 − r

b2
(Fs0 + r00) +

2r0

b2F
(Fs0 + r00)

− 2r00

b2F 2
(Fs0 + r00) +

r2
00

βF

]
, (3.4)

2
b2

(
s0 +

r00

F

)
S =

2 (n + 1)
b4

(
s0r0 − s0r00

F
+

r0r00

F
− r2

00

F 2

)
. (3.5)

Here, we have used smsm
0 = t0, rmsm

0 = r0msm = q0, r0msm
0 = q00. Plugging (3.3), (3.4)

and (3.5) into (3.2) yields

n− 1
n + 1

S|mym = (n− 1)
[
−2r2

0

b4
+

6r0r00

b4F
+

r0;0

b2
− r00;0

b2F
+

Fq0

b2
− 2q00

b2
− r (Fs0 + r00)

b4

+
2s0r0

b4
− 2r00s0

b4F
− 4r2

00

b4F 2

]
. (3.6)

Further, we have
n− 1

(n + 1)2
S2 = (n− 1)

(
r2
0

b4
+

r2
00

b4F 2
− 2r0r00

b4F

)
. (3.7)

Substituting (2.7), (3.6) and (3.7) into (3.1), we obtain the formula for projective Ricci
curvature of Kropina metric F = α2

β
as follows

PRic = αRic + (n− 2)
[
−(r0 + s0)

2

b4
+

s0;0

b2
+

r0;0

b2

]
+ (n− 1)

Ft0
b2

+ (n− 3)
Fq0

b2

+
2q00

b2
+

1
b2

Fbms0;m +
1
b2

bmr00;m +
1
b2

(r00 + Fs0) rm
m − F 2smsm

2b2

−Fsm
0;m − F 2

4
tm

m. (3.8)

Now we are in the position to prove Theorem 1.1.
Proof of Theorem 1.1 The proof of the sufficient condition in Theorem 1.1 is trivial.

We will mainly prove the necessary condition in Theorem 1.1.
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Assume that PRic = 0, which is equivalent to 4b4β2 ×PRic = 0. By (3.8), we obtain
the following

4b4β2 ×
{

αRic + (n− 2)
[
−(r0 + s0)

2

b4
+

s0;0

b2
+

r0;0

b2

]
+ (n− 1)

Ft0
b2

+ (n− 3)
Fq0

b2

+
2q00

b2
+

1
b2

Fbms0;m +
1
b2

bmr00;m +
1
b2

(r00 + Fs0) rm
m − F 2smsm

2b2
− Fsm

0;m

−F 2

4
tm

m

}
= 0. (3.9)

The equation (3.9) is equivalent to the following equation

Ξ4α
4 + Ξ2α

2 + Ξ0 = 0, (3.10)

where

Ξ4 = −2b2smsm − b4tm
m, (3.11)

Ξ2 =
[
4 (n− 1) b2t0 + 4 (n− 3) b2q0 − 4nrs0 + 4b2bms0;m + 4b2s0r

m
m

−4b4sm
0;m ]β, (3.12)

Ξ0 =
{

b4αRic + (n− 2)
[
−(r0 + s0)

2 + b2s0;0 + b2r0;0

]
+ 2b2q00

−nrr00 + b2bmr00;m + b2r00r
m
m

}
4β2. (3.13)

Rewrite (3.10) as
(Ξ4α

2 + Ξ2)α2 + Ξ0 = 0. (3.14)

Because α2 and β2 are relatively prime polynomials in y, by (3.14) and the definition of Ξ0,
we know that there exist a scalar function λ(x) such that

b4αRic + (n− 2)
[
−(r0 + s0)

2 + b2s0;0 + b2r0;0

]

+2b2q00 − nrr00 + b2bmr00;m + b2r00r
m
m = λ (x) α2. (3.15)

Then (3.9) can be simplified as

0 =
[
4 (n− 1) b2t0 + 4 (n− 3) b2q0 − 4nrs0 + 4b2bms0;m + 4b2s0r

m
m − 4b4sm

0;m

+4λ (x) β]β − b2
(
2smsm + b2tm

m )α2. (3.16)

Since α2 can’t be divided by β, we see that (3.16) is equivalent to the following equations

0 = (n− 1)b2t0 + (n− 3)b2q0 − nrs0 + b2bms0;m + b2s0r
m
m − b4sm

0;m

+λ(x)β, (3.17)

0 = 2smsm + b2tm
m. (3.18)

First, differentiating both sides of (3.17) with respect to yi yields

(n− 1) b2ti + (n− 3) b2qi − nrsi + b2bmsi;m + b2sir
m
m − b4sm

i;m + λ(x)bi = 0. (3.19)
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Contracting (3.19) with bi gives

0 = (n− 1) b2smsm + (n− 3) b2rmsm − b4sm
;m + b2λ (x) . (3.20)

Removing the factor b2 form (3.20), we obtain

λ (x) = − (n− 1) smsm − (n− 3) rmsm + b2sm
;m. (3.21)

By (3.18), we obtain

smsm = −1
2
b2tm

m, (3.22)

then rewrite (3.21) as following

λ(x) =
1
2
(n− 1)tm

m − (n− 3)rmsm + b2sm
;m. (3.23)

This completes the proof of Theorem 1.1.

4 Applications

In this section, we will firstly study projective Ricci flat Kropina metrics with constant
lenght Killing 1-form β and prove Theorem 1.2. Let F = α2

β
be a non-Riemannian Kropina

metric with constant length Killing 1-form β on an n-dimensional manifold M , that is
rij = 0, sj = 0. In this case, equation (3.8) simplely as follows

PRic = αRic− Fsm
0;m − F 2

4
tm

m. (4.1)

Assume that PRic = 0, which is equivalent to 4β2 × PRic = 0. By (4.1), we obtain the
following

4αRic β2 − 4sm
0;mα2β − tm

mα4 = 0. (4.2)

Thus αRic is divisible by α2, that is, there exists a function λ (x) such that

αRic = λα2. (4.3)

Plugging (4.3) into (4.2) and dividing the common factor α2, we conclude that

4
(
λβ − sm

0;m

)
β − tm

mα2 = 0. (4.4)

Since α2 can not be divided by β, we see that (4.4) is equivalent to the following equations

λβ − sm
0;m = 0, tm

m = sj
msm

j = 0.

This completes the proof of Theorem 1.2.
Now, let us consider projective Ricci flat Kropina metrics with isotropic S-curvature.

As we mentioned in Section 1, a Kropina metric F is of isotropic S-curvature, S = (n+1)cF ,
if and only if S = 0. In this case, from the equation (1.3), we know that

PRic = Ric. (4.5)
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Hence, F is projective Ricci flat metric if and only if F is Ricci flat metric.
In [12], Zhang and Shen proved that every Einstein-Kropina metric F = α2

β
has vanishing

S-curvature. In this case, PRic = Ric. They also have obtained the necessary and sufficient
conditions for Kropina metrics to be Einstein metrics in [12].
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射影Ricci 平坦的Kropina 度量

程新跃, 马小玉, 沈玉玲

(重庆理工大学数学与统计学院, 重庆 400054)

摘要: 本文研究和刻画了射影Ricci 平坦的Kropina度量. 利用Kropina度量的S-曲率和Ricci曲率的公

式, 得到了Kropina度量的射影Ricci曲率公式. 在此基础上得到了Kropina度量是射影Ricci 平坦度量的充分

必要条件. 进一步, 作为自然的应用, 本文研究和刻画了由一个黎曼度量和一个具有常数长度的Killing 1-形

式定义的射影Ricci 平坦的Kropina度量, 也刻画了具有迷向S-曲率的射影Ricci 平坦的Kropina度量. 在这

种情形下, Kropina度量是Ricci 平坦度量.
关键词: 芬斯勒度量; Kropina 度量; Ricci 曲率; S-曲率; 射影Ricci 曲率
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