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Abstract: In this paper, we investigate the Orlicz mixed intersection bodies and its proper-
ties. By using geometric analysis, we introduce the concept of Orlicz mixed intersection bodies and
obtain the continuity and affine invariant property of the Orlicz mixed intersection bodies operator.
By applying the integral methods and Steiner symmetrization, the affine isoperimetric inequality
for Orlicz mixed intersection bodies is established.
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1 Introduction

Let K™ denote the set of convex bodies (compact, convex subsets with nonempty interi-
ors) in Euclidean n-space R"; Let K" denote the set of convex bodies containing the origin in
their interiors in R™; S!' denotes the set of star bodies (about the origin) in R™. We use |K|
to denote the n-dimensional volume of a body K. Besides, write S?~! for the unit sphere in
R™.

For a compact set K C R™ which is star-shaped with respect to the origin, we will use
pr = p(K,-) : R"\{o} — [0, 00) to denote its radial function. That is,

pr(x) = p(K,z) =max{\ > 0: Az € K} for all x € R"\{o}.

If pg is continuous and positive, then K is called star body. In [1], Lutwak introduced the
intersection body I K of each K € S?, which is the star body with radial function

p(IK,u) =v(KNut), uwes" !,

where v(-) denotes (n — 1)-dimensional volume and u' is the hyperplane orthogonal to u.
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For 0 < p < 1, the L,-intersection body I,K of K € S is defined by (see, e.g., Cardner
and Giannopoulos [2], Yuan [3])

p(IpK,u)p:/ |z u|Pde, uwe ST, (1.1)
K

where x-u is the usual inner product of z, . € R", and integration is with respect to Lebesgue
measure.

Haberl and Ludwig [4] also gave the following definition of L,-intersection body for
convex polytopes and investigated its characterization. There is a different constant between
the L,-intersection body of (1.1) and the following L,-intersection body in [5]. For u € S"~*
and 0 < p < 1, the L,-intersection body of K € S is defined by

1 _
P K, u)? = P(l—p)/ |z - u["Pdz,
K

where I denotes the Gamma function.

Intersection body [1] played an important role for the solution of the celebrated Busemann-
Petty problem, and found applications in geometric tomography [6], affine isoperimetric in-
equalities [7, 8] and the geometry of Banach spaces [9]. For more details about intersection
body we refer the reader to [10-14].

Progress towards an Orlicz Brunn-Minkowski theory was made by Lutwak, Yang and
Zhang [15, 16]. This theory plays such a crucial role that it is undeniably applied to a number
of areas of geometry. The more development of the Orlicz Brunn-Minkowski theory can be
found in [17-31]. Recently, Ma et al. [32] considered convex function ¢ : R\{o} — (0, 00)
such that tlirglo o(t) =0, 15% ©(t) = 0o and ¢(0) = co. This means that ¢ must be increasing
on (—o00,0) and decreasing on (0,00). They assumed that ¢ is either strictly increasing on
(—00,0) or strictly decreasing on (0,00), and denoted by ® the class of such ¢. Further,
for K € S, they gave the concept of Orlicz intersection body I,K as the star body whose

radial function is given by

pl_:K( )—sup{)\>0 ]K|/ < |)dy<1}, x eR", (1.2)

when ¢(t) = [t|7, 0 < p < 1, then [LK = oI, K.

In this paper, we also consider the above convex function ¢ and assume that K, L are
two star bodies (about the origin) in R™ with volume |K| and |L|. If ¢ € ®, then the Orlicz
mixed intersection bodies I,(K, L) of K, L as the star body whose radial function at z € R"
is given by

pfvl(KL)() 5up{)\>0 |K|L|// |x |)dydz<1} (1.3)

when ¢(t) = [t|7? with 0 < p < 1, and K = L in (1.3), then [,(K,K) = I,(K, K), where
the radial function of I,(K, K) is given by

p(I,(K,K),x |K|2/ / |z - (y — 2z)|"Pdyd-=.
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Our main result deals with the affine isoperimetric inequality for Orlicz mixed intersec-
tion bodies. Here and in the following, for K € K", we denote by Bg the n-ball with the
same volume as K centered at the origin.

Theorem 1.1 If K,L € K? and ¢ € ®, then

[ (K, L)| = [1;(Bxk, B)|
with equality if K and L are dilates of each other and have the same midpoints.
2 Notations and Orlicz Mixed Intersection Bodies
For a body K € K7, its support function, h = h(K,-) : S"71 — R is defined by
hr(uw) =max{u-z:x€ K}, ueS" "
For ¢ > 0, the support function of the convex body ¢K = {cy : y € K} is
hex(x) = chg(z), =z €R".

Let GL(n) denote the group of linear transformations. For T' € GL(n), write T" for the
transpose of T', T~! for the inverse of T and T'~* for the inverse of the transpose of T'. The

support function of the image TK = {Ty : y € K} is given by
hri(z) = hg(T'x), = €R"™
According to the definition of radial function pg, for K € 8 and a > 0, we easily get
pr(ar) = a " pr(x) and  pax(z) = apk(z). (2.1)
For T € GL(n), the radial function of the image TK = {Ty:y € K} of K € 8! is given by
p(TK,z) = p(K, T 'z) for all z € R™. (2.2)
The radial distance between K, L € S is defined by

S(K?L): sup |p(K,u) — p(L,u)].

ueSn—1
For K € §7, define the real number Ry and rx by
Ry = I;le%(p;((x), T = géi}r{lp;((x). (2.3)
For K € K7, then the polar body K* of K is defined by
K'={zeR':z-y<1,Vye K}.

It is easily proved that (K*)* = K if K € K.
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From the definitions of support and radial function, it follows obviously that for each

K € K7, we easily get

hg«(u) = for all u € ™.

and  pg-(u) = hKl(u)

In the following write x, y for vectors in R™ and ', ' for vectors in R"~!. We will

px (u)

use (2/,s), (v/,s) for vectors in R® = R"! x R. For a convex body K and a direction
u € S" ! let K, denote the image of the orthogonal projection of K onto u, the subspace
of R™ orthogonal to u. The undergraph and overgraph functions, [, (K,-) : K, — R and
l.(K,-): K, — R, of K in the direction u are given by

K={y +tu:—1,(Ky)<t<Il,(K,y) fory € K,}.

Therefore the Steiner symmetral S, K of K € K in the direction u is defined by the body
whose orthogonal projection onto u* is identical to that of K and whose undergraph and

overgraph functions are
1 1-
L(Suly) = Lu(SuK,y') = SLK y) + SL(K.y)). (2.4)

For more details about the Steiner symmetrization we can refer to [33].

The following lemma will be required.

Lemma 2.1 (see [16], Lemma 1.2) Suppose K € K? and u € S"~!. For /' € relintK,,
the overgraph and undergraph functions of K in direction u are given by

LK,y = min {hx(z',1) —2"-y'}

z/€ut

and
L (K,y") = min {hx(a’, 1) =2’ y'}.

@' Eu
From the definition of Orlicz mixed intersection bodies (1.3) and ¢ is strictly increasing

on (—00,0) or strictly decreasing on (0, 00), we have the function

e A5

is strictly increasing on (0, 00) and it is also continuous. Thus we have
Lemma 2.2 If K, L € 87, then for ug € S,

i e <|u0 Ao )|>dydz_1

if and only if p;:(K’L) (up) = Xo-
Lemma 2.3 (see [34]) Let x = (1,22, ,x,) € R" and y = (y1,¥2, * ,yn) € R™. If
O0<my <xp <M, 0<mg <yp <My, k=1,---,n, then

() (5) = () (S

k=1
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Lemma 2.3 implies that if z,y, z € R™, then there exists a constant c¢q € (0, 1) such that
|z (y = 2)| = collllly — =]. (2.5)

If K and L are bodies in R", their multiplicative du, (K, L) is defined by (see [35])
do(K, L) = inf{ab: a,b>0,K CbL,L C aK}. Whenever we write

1 1
Szl < llzllx < bllell,  llyl < llyllz < allyll (2.6)

Denote by ¢, > 0 the constant to meet ¢, = min{c > 0 : max{p(c), o(—c)} < 1} for
each ¢ € ®. And denote distant d(K, L) of convex bodies K, L by

d(K,L) :==max{|lx —y| :x € K,y € L}. (2.7)

Lemma 2.4 If K,L € 8" and ¢ € @, then for all u € S"!, there exists a positive
constant b and ¢q € (0, 1) such that

1 _ b
bRK TrL

Co

d(K, L)

Cop

-1
< prk,n (W) <

Cop

Proof Let zy € S" ! and pI_:(K L) (xo) = Ao. Then

|K|L|/ / <|% » ”)dydz—l (2.8)

We first obtain the upper estimate. From the definition of c,, either ¢(c,) = 1 or
o(—c,) = 1. If p(c,) =1, by (2.7), we have

oo (e
> [ A5 )dydz
w( < )

With the definition of ¢, ¢ is strictly increasing on (—oo,0) or strictly decreasing on
dE.L) 5o\ < dK.L)
., L€ 0SS 7%; .

On the other hand, we obtain the lower estimate. Note that ¢(c,) =1, zo € S"7*, from

(0,00). So we can immediately obtain ¢, <
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Lp(xo . ()g\JO— Z)l)dydz

g
(5
<Co|||y| Iz ||>
(*
3

(2.5), (2.6) and (2.3), it follows that

1
(p(C@):lz ‘K

L]

i,
L/
/

.7
s
/

K||L

0 b
< — dyd
—|K||L|// (A bRy )y :
_ (|t b
Y )\0 bRK TL ’

where b > 0 and ¢o € (0,1). Since ¢ is strictly decreasing on (0,00), we immediately get
Co 1 b 3 CU 1
, l.e., Ag >

= — = —— — —=|. We complete the proof.
The following shows that the Orlicz mixed intersection bodies operator I, : S7 — S is

CLp - )\0 bRK TL bRK TL

continuous.

Lemma 2.5 Suppose ¢ € ®. If K;,L; € S and K; - K € §*, L; — L € §?, then
I,(K;, L;) = I,(K,L).

Proof For ¢ € ® and ¢ is convex, continuous, and either strictly increasing on (—oc, 0)

or strictly decreasing on (0, 00), then for uy € S"~!, we will show that

1 1
Pro(k,L0 (U0) = P11y (to0)-

Suppose pI_:(KI_ Li)(UO) = \;, by Lemma 2.2, we have

e ) /. oG s =1 (29)

From Lemma 2.4, there exists a positive constant b and ¢y € (0, 1) such that

1 b

bRK L,

Co d(Kz‘, Li)

Co

<A<

Co
Since K; - K € §", L; — L € 8", we have d(K;,L;) — d(K,L) > 0, Rk, — Rx > 0,
rr, — rr > 0 and there exist «, § such that 0 < a < \; < 8 < oo for all i. Let {\.} be a

convergent subsequence of {\;}, and suppose that A, — )¢, together with the continuous of

(P =

 and (2.9), we have




No. 3 Orlicz mixed intersection bodies 573

which by Lemma 2.2 yields p;:( K.L) (ug) = Ao. This shows that

pl_:(Ki,Li) (uo) — pI_:(K#L) (’LLo)

But for radial function on S"~! pointwise and uniform convergence are equivalent (see Schnei-
der [8], p.54). Thus the pointwise convergence p;;( KiL) p;:( K.y O S"~1 completes the
proof.

We next show that the Orlicz mixed intersection bodies operator is also continuous in

Lemma 2.6 For K,L € S} and ¢; — ¢ € ®, then I, (K,L) — I,(K,L).

Proof Let K,L € 8" and up € S"~'. We will show that p;;i(K’L) — p;;(K’L). For
¢ € ® with ¢ is convex, continuous, and either strictly increasing on (—o0,0) or strictly
decreasing on (0,00), and let p;:_ (x.0)(U0) = Ais Le.,

| (o =2,
|K||L|/K/L%( \ )dyd . (2.10)

then together with Lemma 2.4 we have that there exists a positive constant b and ¢y € (0,1)
such that

1 b

bRK TL

Co

d(K, L)

C

<A\ <

c% Pi

Since p; — ¢ € ®, we have c,, — ¢, > 0 and thus there exist o, 8 such that 0 < o < \; <
0 < oo for all . Denote by {\,} the arbitrary convergent subsequence of {);}, and suppose
that A\, — Ag, together with (2.10), we immediately have

1 // <IuO~(y—Z)|>
—_— p| ———= |dydz =1,
IK[IL] Jx Jo Ao

which by Lemma 2.2 yields pI_:(KVL) (ug) = Ag. This shows that pI_:i (K,L)(UO) — pI_:(K’L)(uo).
Since the radial function p I, (K,L) = PI,(K,L) (up) pointwise on S"~! they converge uniformly
and hence I,,(K,L) — I,(K,L).

Lemma 2.7 Suppose ¢ € ®. For K, L € §" and a linear transformation 7' € GL(n),
then I,(T'K,TL) =T "(I,(K,L)).

Proof Suppose xg € R and

p I, (TK,TL),x0) = Ao (2.11)

Let s =Ty, t = Tz, then |TK| = |detT|| K|, |TL| = |detT||L|, ds = |detT'|dy, dt = |detT'|dz,
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where |detT| is the absolute value of the determinant of 7. From Lemma 2.2, we have

= e o, (7 s

~ faeer T | “’(W)'M’“ydz
= i [, (R e
|K||L|/ / < e AO(T%'Z”)O‘W
=i [, (s e

ie., p;:(KL) (T'zy) = Xo. By (2.2), we have \g = p;¢1(K7L) (T'zo) = p;lt(Iw(K’L))(xo). Com-
bining with equality (2.11), we immediately obtain

71(I<P(TK3 TL)aIO) = pil(Tit(Iw(Kv L)),l‘o).
That is, LP(TK, TL) = Tﬁt(IW(K, L)).

3 Proofs of Main Results

Lemma 3.1 Suppose ¢ € @ is strictly convex and K,L € K?. If u € S"! and

zh, 2 € ut, then

_ xh + b 1 1
plg,l(SuK,SuL)( B 1) < 2101 (K L)(xlv 1)+ 2p1¢(K L)(x27 1) (3.1)
and
! !
~1 Ty + Ty L L
plw(S“,K,S“,L)( 9 ,—1) < §p1¢(K,L)(x/17 1)+ Eplw(K,L)(IIQ? -1). (3.2)

Equality in either inequality holds if p; (k. r)(21,1) = pr_(x,L)(%5, —1) with K and L are
dilates having the same midpoints.

Proof We only prove (3.1). Inequality (3.2) can be established in the same way.

For each 2’ € K,, ¥ € Ly, let 0, = 0.(u) = |[K N (2 + Ru)| and oy = o, (u) =
|L N (y' + Ru)| be the lengths of the chords K N (2’ + Ru), L N (3’ + Ru).

Define m.. = m..(u) by m./(v) = 1L, (K,z") + 1l,(K,z') such that 2’ + m.u is the
midpoint of the chord K N (2’ + Ru). And define m, = my (u) by my, (v) = 11,(L,y') +
11.(L,y’) such that ¥’ + myu is the midpoint of the chord L N (y + Ru). Note that the
midpoints of the chords of K in the direction u lie in a subspace if and only if there exists
a u € K, such that u -2z = m, for all 2/ € K,. Similarly, the midpoints of the chords

of L in the direction u lie in a subspace if and only if there exists a p € L, such that
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-y =my forally € L,. If \; > 0, then we have

{2
./L/ ( ARCAE @Z®M>d@ ()

m /+ m /+ 2 o
o , _ L
/ / / / . (|331 (y —2)+ ””j\y +s1—m;, t1|)dy’d81dz’dt1

/SK/SL (Isr:1 % —z)+(51—t1) + (my —m.) )d(y’,sl)d(z’,tl) (3.3)

by making the change of variables s = m,, + s; and t = m,/ + ¢;.

On the other hand, for Ay > 0, we have

J (520
i//w<m””(“>‘@“m}mwmwﬁ

L L A
S ()

:/SMK /SUL (P<|x2 (Y =2+ (81); t1) — (my — mz’)')d(y/,sl)d(z/’tl) (3.4)

by making the change of variables s = m,, — s; and t = m,» — ;.

Let

/71 /
To= o+

1 1 1
B *.CU/2 and )\0 = 5)\1 + 5)\2

2

From the convexity of ¢, it follows that

2@<|$6 (Y —2)+ (s1 —t1)|> _)\1 <|gc’1 (Y — )+ (31); t1) + (my —m.) >

Ao
(=t o) g )l

(3.5)
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By (3.3), (3.4) and (3.5), it yields that

INE (x“' )dd+—g// (wm @”wa
_l/s K/s LSO('% — (Sl_tl)ﬂmy/_m2l>|>d(y’,sl)d(z’,t1)
Lo f (m o e '_mz))d(y’,snd(zctl)
2 (R @1_“))«y»na5¢n

u

—9 SK/L (””0’ O(y >|>dydz. (3.6)

Let

p[:,(K,L) (7,1) =X and pI_:(K’L)(x’% ~1) = \o.

From Lemma 2.2, we get

wm L (m“ ”» -1
I G e LI

Combining with the fact that |K| =|S, K|, |L| = |S,L| and (3.6), we get

.730, (y )>
dydz < 1.
ISKIISLI/SK/SL < Ao

In light of the continuity of ¢ and (1.3) yields

and

pI:,l (SuK, SuL)(

x' + xf 1 1
12 2,1)§§>\1+§>\2

with the equality requiring equality in (3.5) for all 2’ € K,, v/ € L,, and s, € [—-22, %

g, 0'/]

t €%, %
Slnce  is strictly convex, this means that we must have ¢ can not be linear in a

neighborhood of the origin given by

B (Y = ) (51— ) + (my = ma) _ e (y = #) + (51— 1) = (my —ma)
)\1 N )\2

(3.7)

forall s; € (=2, 2, ¢ € (=%, %), Choosing \; = p; (KL)(:L‘l, 1)and Ay = p;¢1(K7L)($/2, —-1),
equation (3.7) 1mmed1ately yields

pl:,l(K,L)(xllv D=M=X= P;:(K,L) (5, —1)
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and
(ch—20) -y = 2my, (2= )& = 2ma
for all 4/ € L, and 2’ € K.
But this means that the midpoints {(y',m,/ ) : ¥’ € L, } and {(z',m./) : 2’ € K, } of the
chords of L, K parallel to u lie in the subspaces

I R
(., 25— y) €L} and {(, 25

of R", respectively. As we can observe the equality holds if p;_(x,r) (2], 1) = pr,_(x,0)(h, —1)

2') 2 e K}

with K and L are dilates having the same midpoints.
Lemma 3.2 Suppose K,L € K?, ¢ € ®. If u € S, then

I3(S.K.S.L) € Su(I3(K. L).

Proof Let y' € relint(I} (K, L),). According to Lemma 2.1, there exist 27 = 7 (y’)
and 24, = 25(y') in u* such that

LW(IG(K L), y') = hosx,ny (27, 1) — 27 - (3.8)
and
LIL(K,L),y') = hrs 0y (5, 1) — 25 -y (3.9)
From (2.4), (3.8), (3.9) and Lemma 3.1, it follows that

7 * 1- * 1 *
L(Su I (K, L),y") = §lu(1¢(K7L)7yl) + §lu(1¢(K7 L),y')
1 A ! / 1 / ! /
= §(h1;(K,L)($1, 1) —a2y-y)+ i(hI;(KL)(an —1) —z5-y')

1 1
gy (@1, 1) + Shiz e (25, —1) = (

x) + ,
2 )

)+ ah x) + b
- () .y

. / !/ /
min {hr s, k5,0 1) — 2"y}

L(I5(SuK, S.L),y) (3.10)

v

his(s.k,s.0)(

v

and

* / 1 * ’ 1 * ’
lu(Sngo(KvL)ay ) = ilu(Iap(Ka L)’y ) + §lu(ILp(K’ L)vy )

1 1

= i(hI;(K,L)(l"p 1) —a)-y)+ §(hI;(K,L) (x5, —1) — x5 - ¢)
1 1 xy + 2

= ih];(K,L)(fL'l17 1)+ th:J(K’L)(x/Q’ -1) - (172)) . y/

2

x) + ) + xh ,
1) — (272
D= (F5)
> min {hyy(s, k5,0, 1) — 2" y'}

z'Eu

:lu(I::(SuK7 SuL)J/)) (3.11)

> hiz(sux,s.1)(
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(3.10) and (3.11) give the inclusion.
Proof of Theorem 1.1 Combining with the Steiner symmetrization argument, there
is a sequence of direction {u;}, such that the sequences {K;} and {L;} converge to By and

By, respectively, where the sequences {K;} and {L;} are defined by
K,=S, S,K and L;,=8S,, S, L

with |K| = |K;| and |L| = |L;|. Thus |K| = |Bk| and |L| = |By|.

Since the Steiner symmetrization keeps the volume, by Lemma 3.2, we have
115 (K, Li)| = [15(Su, K1, Su, Lio1)| < (Ko, Lica)| < - < IG(K L)),

when i — oo, we have |I} (B, Br)| < |[;(K, L)|.
According to the equality condition of Lemma 3.1, above equality holds if K and L are

dilates of each other and have the same midpoints.
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