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OPERATOR EQUATIONS OF THE SECOND KIND
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Abstract: In this paper, we investigate the convergence conditions of least-squares projection
method for compact operator equations of the second kind. By technics in functional analysis and
Moore-Penrose inverse, we obtain 4 new mutually equivalent convergence conditions, which build
the connections among several types of convergence conditions and provide us with more choices
to examine the convergency of the approximation scheme. A simple and important example is also
studied as an application of the theorem.
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1 Introduction

Operator equation was one of the principal tools in a large area of applied mathematics,
and the literature discussing around this topic is vast. In this paper, we will limit our

discussion on the compact operator equations of the second kind, which has the form
Ter:=(I—-K)x=0b, z¢€lX, (1.1)

where K : X — X is a compact operator and b € X is given. Thanks to the First and
the Second Riesz Theorem, we know dim N (T) < oo [6, Theorem 3.1, p.28], and R (T')
was closed [6, Theorem 3.2, p.29]. We aim to obtain the best-approximate solution of (1.1),
which is denoted as zf := T'h, where T is the Moore-Penrose inverse of 7. Note that as
R(T) is closed, TT is naturally guaranteed to be bounded.

Due to the complexity of the specific problems that has form (1.1), it is difficult for us
to find a universal solution to all the problems. A more promising strategy is finding the
numerical solution, which involve approximating the abstract space and operator with finite

freedoms. Let {X,,} be a sequence of finite-dimensional subspaces of X such that

XoCXiCXoC-y U X, =X, (12)

n=
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and for each n € N set T,, := TP, where P, := Px, is the orthogonal projection from X
onto X,,. Note that (1.2) implies

S- hmPn = IX; S- hmPR(Tn) = PR(T)7 (13)
here we say {(X,,T,)}nen is a LSA (least-squares approximation setting) for 7', and all of
our following discussions will be based on this setting. Our target is to find suitable LSA
such that

s-limT,] =TT, (1.4)

n—oo

namely, #7 := TTb can be approximated by z! := T'b. There were many works touching
upon this problem such as Du [1, 2], Groetsch [4], Groetsch-Neubauer [3], and Seidman [5].
Note that (1.4) does not naturally holds for equation (1.1), as Du’s example [2, Example 2.10]
shows. To guarantee the convergency of the approximation scheme {71} for T7. Groetsch
[4, Proposition 0] and Du [2, Theorem 2.8 (d)] provide the following convergence conditions

(1.4) <= sup || TIT|| < +o0 < (1.5),
where (1.5) is the stability condition of LSA {(X,, 7)) }nen, that is,
sup || T} || < +oc. (1.5)

However, as will show in a simple and important example, a direct examination of (1.5)
could be difficult, but the examination of some other equivalent condition of (1.5) that we
will soon give in our theorem can be very easy.

In this paper, we will give some equivalent characterizations for (1.4) (or (1.5)). These
equivalent characterizations can not only increase our understanding on the convergence of
this approximation scheme by offering different perspectives, but also provide us with some
simple and ‘easy to check’ criteria to examine the convergence. To proceed, we need the

following notation

s-1imS,, := {z | there is a sequence {z,} such that S, >z, — z},

VZ;%EIS" = {:c | there is a sequence {z,} such that ko_Ljn Sk 3 x, — x} ,
where {S,,} is a sequence of nonempty subsets of a Banach space. With the above notation
the main result obtained in the paper is as below.

Theorem 1.1 For the compact operator equation (1.1) with LSA {(X,,,T},)}nen, the
following propositions are equivalent:

(a) (1.4) (or (1.5)) holds.

(b) There holds

s-1imG (T,}) = w-limg (T,}) = G (T).

n—oo n—oo
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(¢) There holds
s-HmN (T,) = w-ImN (T},) = N (T).

n—oo n—oo

(d) For any b,b,, € X with ||b, —b|| — 0 (n — o0) there holds

s-imT, ' (Prer,)bn) = w-limT, ! (Prer,ba) = T~ (PD).

n—oo

(e) There is a n. € N such that X,,, 2 N(T).

In Section 2, we will give some lemmas and the proof of Theorem 1.1. In Section 3, we

will study some examples to further explain the theorem.
2 Proofs

To prove Theorem 1.1 we need to prepare several lemmas.

Lemma 2.1 Let T € B(X) with dim N (T) < oo, and have LSA {(X,,,T,)}.
(a) There hold

L
N(Tn) - (N (T) N Xn) 57 XnJ_7 PN(Tn,) = P/\/’(T)an +1—-PF,.

(b) There is a n, € N such that

N(T)NX, = ]:L_jo (N(T)NXy) forn>n,,
P

= PN(T)OXM .

then (1.5) holds.
Proof (a) It is clear that

N(T) = {zeX| PezeN(T)NX,} = (N(T)NX,) & XL

and therefore
Py(r,) = Py(rnx, +1— Pa.
(b) Since (1.2) and dim N (T") < oo hold, we have

NTNX, CNT)NX,e1 (Yn), dim(N(T)NX,) <dimN (T) < oo,

and therefore there is a n, € N such that

N(T)NnX, = ]:L_jo N (T)Nn X}) forn>n,.
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This implies that

s-limP, = s-limP, =P———-=P .
i N(T,) e N(T)NX,, kgo(N(T)mX’“) N(T)NXp,
(c) Assume that sup HT ;{H = +o00. Then by the uniform boundedness principle, there

is an u € X such that
sup HTJUH = +o0.

Hence there exists a subsequence {TJK} of {TJ} such that klim HT);kuH = +o00. Due to (b),
there is a n, € N such that /

N(T)NX,= U (N (T)Nn X}) forn>n,.

Hence it follows from (2.1) that N (T) N X, = N(T) C X, for n > n,, and therefore

N(T)" = WIDNX,) NnX,
= N(T)J‘ﬂXnan for n > n,.

Then vy € N (T,,)" = X,,, N N(T)" for k large enough, and therefore

et v
Set vy ; mk I

= Py(pyrvx = TTTv;,  for k large enough,

gyl

[Tvkll = T, vkl = HT}‘ u” 0 (k — o0).
This with 7T € B(X) (by R (T) being closed) implies that
Tim [l = lim [[7'70]| =0,

that contradicts with |lvg| = 1.
Lemma 2.2 Let T € B(X) have LSA {(X,,,T,,)}. Then

s-limG (T;,) = w-imG (T,,) = G (T)..

n—oo n—o0

Proof It is clear that s-limG (T,,) C w- hm Q (T,.). Hence, we need only to show that

n—oo

w-limG (T,)) € G (T) C s-limG (T,,) .

Let (z,y) € G(T). Then (z,T,z) € G(T,,), and (z,T,x) — (z,y) (n — 00). Therefore
(z,y) € s- lim G(T,). This gives that G (T) C s-1imG (T,,). Let (z,y) € w- lim G (T},).
Then there is a sequence {(x,,yn)} such that u;{;goo(Tk) S (Tn,Yn) — (x,y)n?sﬁ 00).
Thus there is a sequence {k, } such that

kn>mn, x,—x (n—>00), Tpxn=y,—y (n— 0).
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Note that for all v € X there holds

(Te—y,0)] < [T (x—an),0)+ (T =Tx,) xn, 0)| + [{yn =y, 0)]|
= (& =z, T"0)| + [(@n, (I = Pr, ) T"0)| + [{yn =, 0)|-

Thus we have (Tx — y,v) = 0 Vv € X, that is, (x,y) € G (T). This gives that zgiglg (T,) <
Gg(T).
Lemma 2.3 Let H be a Hilbert space and {H,,} a sequence of closed subspaces of H.
Then
{Ppg, } is strongly convergent <= s-limH, = w-limH,, ;

n—oo n—od
in the case that {Py, } is strongly convergent,

s-limPy, = Py, where M := s-1limH,, .
n—o0 n—o0

Proof See [1, Lemma 2.13].

Next, we prove Theorem 1.1 as follows.

Proof of Theorem 1.1 Note that, by Lemma 2.1 (a), Py(1,) = Pyvrynx, +1 — Pa,
and there is a n, € N such that

s-imPy(r,,) = Px(r)nx.. - (2.2)
Therefore it follows that
TN -T" = TiPrey— TIT, TN+ T T, T - T"

= TIT(I—P)T"+ (Py,y: — Pyye) T'
= (T)T-1)(I-"P,)T",

that is,
T —T' = (T)T—1)(I-P,)T". (2.3)

Due to this with the uniform boundedness principle, it is clear that
(1.4) <= sup || TIT|| < +oo < (1.5). (2.4)
(a) = (b) We need only to show that (a) implies that
w-limg (T,}) € G (T7) C s-limG (7). (2.5)
Let (a) be valid, namely, (1.4) and (1.5) hold (by (2.4)). Then for all z € X there hold

T T — TTT || < || T3 || (T, = T) 2l + || (T = T7) Ta|| = 0 (n— 0),

T Tie — TT || < ||TW| |[(T] = T7) || + |[(T, = T) T'a|| = 0 (n— 0).
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Thus we obtain that

S- limPN(Tn)i = PN(T)L, S;_l)imPR(Tn) = PR(T)- (26)

n—o0 oo

Let (y,x) € G (TT). Then
(T'y, Preryy) = (T"y, TT'y) = (z,Tx) € G(T).

By Lemma 2.2, s- lim G (7,,) = G (T), hence there is a squence {x,} such that

n—oo
Tp—x (n—>00), Thz,—Tzr (n— ).
This with (2.6) implies that

T,x, — Tx (n — 00),
PN(T,L)LI"” — PN(T)LLU (TL — OO) R

PR(T,L)L?J - PR(T)Ly (n — 00),
and therefore

Thxn + Pty — T2+ Prpyry =y (n— o0),
T} (Town + PR(T,L)Ly) —TTe =Ty=12 (n— ).

Thus (y,z) € s- lim G (T}}), we get

G (Th C s-limG (T,)).

n—oo

Let (y,z) € w- lim G (T.}). Then there is a sequence {(yn,2,)} such that

UG(T)) 2 nwa) = (2) (n—o0).
Hence, there is a sequence {k,} such that
kn>n, yp,—y (n— 0), T,Jnyn:xnéx (n — 00).
This with 7}/ 4, € V' (T},)" € Xy, and (2.6) implies that

z € wlimN (T,,)" =N (T)*  (by Lemma 2.3),

n—oo

Ty, @ = T, Ty yn =TT} yo = Tz (n — 00),

n

and for any v € X

<Tknl‘n,v> = <PR(TM)me> = <yn7PR(T;m)U>
= (Yn, (Pr(1n) — Pr(1)) v) + (Yns Pr(7)V)
— (y, Preryv) = (Pryy,v) (n— 00).
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Thus we have

zeN(T)", Tz = Preryy, thatis, (y,z)€ g (T").
So we obtain that w-lﬁg (Tj) cg (TT) . Now (2.5) is proved.

n—oo

(b) = (c¢) Let (b) be valid. By Lemma 2.3 it follows from (2.2) that

s-lim\ (T,) = w-limN (T,,) € N (T).

n—oo n—oo

Hence to prove (c¢) we need only to show that

N (T) N (s- limA’ (Tn))l — {0} (2.7)

n—oo

L
Assume that (2.7) is not valid. Then there is a zy € N (T)N (s— limA (Tn)> with ||zo| = 1.
Note that, by (2.2) with Lemma 2.3,

s-1imPy(7,) = Prn(T)nx,, 5
n—oo

(- (Tn))L —(W(T)NX,)"

n—oo

for some n, € N.

It follows that zo € N (T) N (N (T) N X,.)", and that z, satisfies
T, P,xg=TP,xg =T (P, —I)zg — 0 (n — 00),
and (noting N (T,,)" = (N (T)N X,)" NX, C X,,)

Lo — TJ (TnPn.’EQ) = X9 — PN(TH)L‘IEO

= Pnr)To — Py(r)nx,, o =0 (n — 00).

So we have
(0,30) € s-limG (T,]) = G (T7) , that is, zo = T70 = 0.
This contradicts with ||zo| = 1.

(¢) = (d) Let (c) be valid. For any b,b, € X with ||b, —b|| — 0 (n — o0) we need
only to show that

w-lmT,; " (Prer,)ba) € T4 (Priryb) C s-limT,* (Prer,)by) - (2.8)

n—oo

Due to Lemma 2.3, (c) is equivalent to s-lim Py, ) = Py (r). By Lemma 2.1 (a) and Lemma
2.3, the above equation is equivalent to (2.1). Then by Lemma 2.1 (c), we obtain (1.5), that
is

M = sup ||T}|| < +o0. (2.9)
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Let 2 € w- lim T, ! (P’R(Tn)bn)~ Then there is a squence {z,} with an integer sequence

n—oo

{k,} such that
kn>n, x,—x, Ty o= Pr)bk, — Pre)b (n — 00).
Note that for all v € X there holds

‘<Ta: — Prnyb,v)| < [T (2 — 2) ,0)| + (T = Ty,) 2, 0)| + ‘<Tknfvn — Prn)b,v)|
< Hx =z, T0)| + ||znll |(I — Pe, ) T 0] + ‘<Tknxn - PR(T)b,v>| .

Hence we have <Tx — Pr(mb, v> =0Vv € X, that is,z € T—* (PR(T)b) . This gives that

w-limT;* (Prer,yba) € T (Preryb) -
Let z € T~' (Pr(mb). Take z,, := z + T} (Pr(z,)bn — Tnz), n € N. Then
Txy, = T, T) Pri7,)bn = Pr(r,)bn, thatis, z, € T," (Prer,)bn)

and by use of (2.9),

IZ5 (Prcr.)bn = Tos) |
< M (lbn = bl + || (Prer) = Preny) Ol + (T = Ta) 1)

0 (n—o00).

[ — ]|

!

That gives € s- lim T,,' (Pr(r,)bn). So we get
T~" (Pr(ryb) C s-IimT, " (Pr(1,)bn) -

Thus we get (d).
(d) = (e) Let (d) be valid. Tt is clear that
s-limT " (0) = w-lmT; " (0) =T~ (0).

By (2.2) and Lemma 2.3, there is a n, € N such that
PN(T)F]X"* = Sn__l)lgglPN(Tn) = PN(T)v

That gives (e).
() = (a) Let (e) hold. Then (2.1) is valid. Hence we have (1.5) by Lemma 2.1 (c),
that is (a) holds.

3 Example

In Theorem 1.1, one thing worth to notice is condition (e), which claims that the strong
convergence of the LSA {(X,,,T,)}nen is equivalent to

In. € Nst. X,,, DN(T).
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Note that the examination of this condition does not involve any computation of operator
norm or generalized-inverse, which are unavoidable in the examination of the stability con-
dition (condition (a) in Theorem 1.1). Here we will look at a simple example to see how the

condition (e) can be used in specific integral equation.

Example 1 Let X := L?|—7, 7], and we choose the approximation space as
X1 :=span{l, sinz, coszx, sin2z, cos2x,---, sinnz, cosnx}.

We consider the below integral equation of the second kind:

2
T = Zndp — / ste(t)dt = f, ¢ € L2[~m,7),

3
where f € L?[—m, 7] is known, and we want to get ¢. Let {X,,T,} be the LSA of the
equation. It is easy to check that A(T) = span{z}, and for z, it has the Fourier series

-1 n+1
(=1) sinnz + .-+ in L?[-7, 7).

1
T =2sinxr —2 X §sin2m+~-+2><
As the non-zero coefficients in the series has infinite term, so it is obvious that there is no
n* € N such that N(T') C X,,-, namely, the convergence condition (e) in Theorem 1.1 does
not be satisfied. According to the Theorem 1.1, the stability condition fails in this case, and
s-limT} # TT.

n—oo

Here we look again on the stability condition (a), namely,
Tt
sup (|4, || < +oo.
n

We notice that to examine this condition, we need to compute generalized-inverse and oper-
ator norm, the cost of which is almost equal to computing the minimal spectral of T,,. Thus,
it is hard to find a unified method to achieve this task.

Condition (e) in Theorem 1.1 also give the clue to choose convergent approximation
scheme. For Example 1, to guarantee the convergence, we choose the approximation space

as
r 1. _ x2 T d"

Xt =span{1, o 5[3(77) -1, - S [(i)Q_l]n}}'

The above is the subspace spanned by the first (n + 1) terms of the sequence of Legendre

polynomial on [—m,7]. Now the LSA {X,,T,} possesses convergency as a result of X, 2D

N(T).
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