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Abstract: This paper is concerned with an equation representing dynamics of a renewable

resource subjected to Allee effects on time scales. By using exponential dichotomy of linear system

and contraction mapping fixed point theorem, sufficient conditions are established for the existence

of unique positive almost periodic solution. Moreover, by constructing a suitable Lyapunov func-

tional, we obtain sufficient conditions for the global exponential stability of the almost periodic

solution.

Keywords: dynamical equation; Allee effect; almost periodic solution; global exponential

stability; time scale

2010 MR Subject Classification: 34K14; 34N05

Document code: A Article ID: 0255-7797(2017)02-0283-08

1 Introduction

Mathematical ecological system became one of the most important topics in the study of
modern applied mathematics. During the last decade, Allee effects received much attention
from researchers, largely because of their potential role in extinctions of already endangered,
rare or dramatically declining species. The Allee effect refers to a decrease in population
growth rate at low population densities. There were several mechanisms that create Allee
effects in populations; see, for example [1–6].

Mathematical component of the available literature deals with differential equations or
difference equations. Notice that, in the real world, there are many species whose developing
processes are both continuous and discrete. Hence, using the only differential equation or
difference equation can’t accurately describe the law of their developments [7, 8]. Therefore
there is a need to establish correspondent dynamic models on new time scales.

A time scale is a nonempty arbitrary closed subset of reals. The theory of time scales was
first introduced by Hilger in [9] , in order to unify continuous and discrete analysis. The study
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of dynamic equations on time scales can combine the continuous and discrete situations, it
unifies not only differential and difference equations, but also some other problems such as
a mix of stop-start and continuous behaviors.

Although seasonality is known to have considerable impact on the species dynamics,
to our knowledge there were few papers discussed the dynamics of a renewable resource
subjected to Allee effects in a seasonally varying environment. Moreover, ecosystems are
often disturbed by outside continuous forces in the real world, the assumption of almost
periodicity of the parameters is a way of incorporating the almost periodicity of a temporally
nonuniform environment with incommensurable periods (nonintegral multiples). In this
paper, we introduce seasonality into the resource dynamic equation by assuming the involved
coefficients to be almost periodic.

Motivated by the above statements, in the present paper, we shall study the following
equation representing dynamics of a renewable resource x, that is subjected to Allee effects
on time scales

x∆(t) = a(t)x(t)(x(t)− b(t))(c(t)− x(t)), (1.1)

where t ∈ T, T is an almost time scale; a(t) represents time dependent intrinsic growth rate
of the resource; the nonnegative functions c(t) and b(t) stand for seasonal dependent carrying
capacity and threshold function of the species respectively satisfying 0 < b(t) < c(t). All
the coefficients a(t), b(t), c(t) are continuous, almost periodic functions. For the ecological
justification of (1.1), one can refer to [5, 6].

For convenience, we introduce the notation

fu = sup
t∈T

f(t), f l = inf
t∈T

f(t),

where f is a positive and bounded function. Throughout this paper, we assume that the
coefficients of equation (1.1) satisfy

min{al, bl, cl} > 0, max{au, bu, cu} < +∞.

This is the first paper to study an almost equation representing dynamics of a renew-
able resource subjected to Allee effects on time scales. The aim of this paper is, by using
exponential dichotomy of linear system and contraction mapping fixed point theorem, to
obtain sufficient conditions for the existence of unique positive almost periodic solution of
(1.1). We also investigate global exponential stability of the unique almost periodic solution
by means of Lyapunov function.

2 Preliminaries

Let us first recall some basic definitions which can be found in [10].
Let T be a nonempty closed subset (time scale) of R. The forward and backward jump

operators σ, ρ : T→ T and the graininess µ : T→ R+ are defined, respectively, by

σ(t) = inf{s ∈ T : s > t}, ρ(t) = sup{s ∈ T : s < t}, µ(t) = σ(t)− t.
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A point t ∈ T is called left-dense if t > inf T and ρ(t) = t, left-scattered if ρ(t) < t,
right-dense if t < supT and σ(t) = t, and right-scattered if σ(t) > t. If T has a left-scattered
maximum m, then Tk = T\{m}; otherwise Tk = T. If T has a right-scattered minimum m,
then Tk = T\{m}; otherwise Tk = T.

A function f : T→ R is right-dense continuous provided it is continuous at right-dense
point in T and its left-side limits exist at left-dense points in T.

A function p : T → R is called regressive provided 1 + µ(t)p(t) 6= 0 for all t ∈ Tk. The
set of all regressive and rd-continuous functions p : T→ R will be denoted by R = R(T,R).
Define the set R+ = R+(T,R) = {p ∈ R : 1 + µ(t)p(t) > 0,∀ t ∈ T}.

If r is a regressive function, then the generalized exponential function er is defined by

er(t, s) = exp
{∫ t

s

ξµ(τ)(r(τ))∆τ

}

for all s, t ∈ T, with the cylinder transformation

ξh(z) =

{
Log(1+hz)

h
, if h 6= 0,

z, if h = 0.

Lemma 2.1 (see [10]) If p ∈ R and a, b, c ∈ T, then

∫ b

a

p(t)ep(c, σ(t))∆t = ep(c, a)− ep(c, b).

Definition 2.1 [11] A time scale T is called an almost periodic time scale if

Π = {τ ∈ R : t± τ ∈ T,∀t ∈ T} 6= {0}.

Definition 2.2 [12] Let x ∈ Rn, and A(t) be an n× n rd-continuous matrix on T, the
linear system

x∆(t) = A(t)x(t), t ∈ T (2.1)

is said to admit an exponential dichotomy on T if there exist positive constant k, α, projection
P and the fundamental solution matrix X(t) of (2.1), satisfying

|X(t)PX−1(σ(s))|0 ≤ keªα(t, σ(s)), s, t ∈ T, t ≥ σ(s),

|X(t)(I − P )X−1(σ(s))|0 ≤ keªα(σ(s), t), s, t ∈ T, t ≤ σ(s),

where | · |0 is a matrix norm on T
(
A = (aij)n×m, then |A|0 =

( n∑
i=1

m∑
j=1

|aij |2
) 1

2
)
.

Considering the following almost periodic system

x∆(t) = A(t)x(t) + f(t), t ∈ T, (2.2)

where A(t) is an almost periodic matrix function, f(t) is an almost periodic vector function.
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Lemma 2.2 (see [12]) If the linear system (2.1) admits exponential dichotomy, then
system (2.2) has a unique almost periodic solutions x(t) as follows

x(t) =
∫ t

−∞
X(t)PX−1(σ(s))f(s)∆s−

∫ +∞

t

X(t)(I − P )X−1(σ(s))f(s)∆s, (2.3)

where X(t) is the fundamental solution matrix of (2.1).
Definition 2.3 The almost periodic solution x∗ of equation(1.1) is said to be exponen-

tially stable, if there exist positive constants α > 0, α ∈ R+ and N = N(t0) ≥ 1 such that
for any solution x of equation (1.1) satisfying

‖x− x∗‖ ≤ N |x(t0)− x∗(t0)|e−α(t, t0), t ∈ [t0,+∞)T.

3 Main Results

Clearly, the trivial solution x(t) ≡ 0 is an almost periodic solution of (1.1). Since the
study deals with resource dynamics, we are interested in the existence of positive almost
periodic solutions of the considered equation.

First, we make the following assumptions:
(H1) −abc ∈ R+;
(H2) there exist two positive constants L1 > L2 > 0, such that

4au(bu + cu)3

27 inf
t∈T
{abc} ≤ L1 ≤ bl + cl;

2
3
(bl + cl) ≤ L2 ≤ alL2

1(b
l + cl − L1)

sup
t∈T
{abc} ;

(H3) λau

inf
t∈T
{abc} < 1, where λ = max{|2(bl + cl)L2 − 3L2

1|, |2(bu + cu)L1 − 3L2
2|}.

Theorem 3.1 Assume that (H1)–(H3) hold, then equation (1.1) has a unique almost
periodic solution.

Proof Let Z = {z|z ∈ C(T,R), z is an almost periodic function} with the norm
‖z‖ = sup

t∈T
|z(t)|, then Z is a Banach space.

Equation (1.1) can be written as

x∆(t) = −a(t)b(t)c(t)x(t) + a(t)x2(t)[b(t) + c(t)− x(t)], t ∈ T.

For z ∈ Z, we consider the almost periodic solution xz(t) of the nonlinear almost periodic
differential equation

x∆(t) = −a(t)b(t)c(t)x(t) + a(t)z2(t)[b(t) + c(t)− z(t)], t ∈ T. (3.1)

Since inf
t∈T

[a(t)b(t)c(t)] ≥ alblcl > 0, from Lemma 2.15 [12] and (H1), the linear equation

x∆(t) = −a(t)b(t)c(t)x(t)

admits exponential dichotomy on T.
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Hence by Lemma 2.2, equation (3.1) has exactly one almost periodic solution

xz(t) =
∫ t

−∞
e−abc(t, σ(s))a(s)z2(s)[b(s) + c(s)− z(s)]∆s.

Define an operator Φ : Z → Z,

(Φz)(t) =
∫ t

−∞
e−abc(t, σ(s))a(s)z2(s)[b(s) + c(s)− z(s)]∆s. (3.2)

Obviously, z is an almost periodic solution of equation (1.1) if and only if z is the fixed point
of operator Φ.

Let Ω = {z|z ∈ Z, L2 ≤ z(t) ≤ L1, t ∈ T}.
Now, we prove that ΦΩ ⊂ Ω. In fact, ∀z ∈ Ω, we have

(Φz)(t) =
∫ t

−∞
e−abc(t, σ(s))a(s)z2(s)[b(s) + c(s)− z(s)]∆s

≤ au

2

∫ t

−∞
e−abc(t, σ(s))z(s)z(s)[2(bu + cu)− 2z(s)]∆s

≤ 4au(bu + cu)3

27

∫ t

−∞
e−abc(t, σ(s))∆s

≤ 4au(bu + cu)3

27 inf
t∈T
{abc} ≤ L1. (3.3)

On the other hand, we have

(Φz)(t) =
∫ t

−∞
e−abc(t, σ(s))a(s)z2(s)[b(s) + c(s)− z(s)]∆s

≥ al

∫ t

−∞
e−abc(t, σ(s))z2(s)[bl + cl − z(s)]∆s. (3.4)

Note that

2
3
(bl + cl) ≤ L2 ≤ z(t) ≤ L1, t ∈ T.

Since the function g(u) = u2[bl + cl − u] is increasing on u ∈ [0, 2
3
(bl + cl)] and decreasing on

u ∈ [ 2
3
(bl + cl),+∞], then we have g(z(t)) ≥ g(L1) for t ∈ T, that is

z2(t)[bl + cl − z(t)] ≥ L2
1(b

l + cl − L1), t ∈ T.

Thus by (3.4), we obtain

(Φz)(t) ≥ alL2
1(b

l + cl − L1)
∫ t

−∞
e−abc(t, σ(s))∆s

≥ alL2
1(b

l + cl − L1)
sup
t∈T
{abc} ≥ L2. (3.5)
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It follows from (3.3) and (3.5) that

L2 ≤ (Φz)(t) ≤ L1. (3.6)

In addition, for z ∈ Ω, equation (3.1) has exactly one almost periodic solution

xz(t) =
∫ t

−∞
e−abc(t, σ(s))a(s)z2(s)[b(s) + c(s)− z(s)]∆s.

Since xz(t) is almost periodic, then (Φz)(t) is almost periodic. This, together with (3.6),
implies Φz ∈ Ω. So we have ΦΩ ⊂ Ω.

Next, we prove that Φ is a contraction mapping on Ω. In fact, in view of (H1)–(H3),
for any z1, z2 ∈ Ω,

‖Φz1 − Φz2‖
= sup

t∈T
|(Φz1)(t)− (Φz2)(t)|

= sup
t∈T

∣∣∣∣
∫ t

−∞
e−abc(t, σ(s))a(s)z2

1(s)[b(s) + c(s)− z1(s)]∆s

−
∫ t

−∞
e−abc(t, σ(s))a(s)z2

2(s)[b(s) + c(s)− z2(s)]∆s

∣∣∣∣

= sup
t∈T

{∫ t

−∞
e−abc(t, σ(s))a(s)|(b(s) + c(s))(z2

1(s)− z2
2(s))− (z3

1(s)− z3
2(s))|∆s

}

= sup
t∈T

{∫ t

−∞
e−abc(t, σ(s))a(s)|z1(s)− z2(s)|

|(b(s) + c(s))(z1(s) + z2(s))− (z2
1(s) + z1(s)z2(s) + z2

2(s))|∆s

}

≤ λau sup
t∈T

{∫ t

−∞
e−abc(t, σ(s))∆s

}
‖z1 − z2‖

≤ λau

inf
t∈T
{abc}‖z1 − z2‖,

where λ = max{|2(bl + cl)L2 − 3L2
1|, |2(bu + cu)L1 − 3L2

2|}.
Since λau

inf
t∈T
{abc} < 1, this implies that Φ is a contraction mapping. Thus, Φ has exactly

one fixed point z∗ in Ω such that Φ(z∗) = z∗. Otherwise, it is easy to verify that z∗ satisfies
equation (1.1). This means that equation (1.1) has a unique almost periodic solution in
z∗(t), and L2 ≤ z∗(t) ≤ L1. This completes the proof.

Next, we shall construct a suitable Lyapunov functional to study the global exponential
stability of the almost periodic solution of (1.1).

Theorem 3.2 Assume that (H1)–(H3) hold. Suppose further that
(H4) γ = 4(blcl + L2

2)− (bu + cu + L1)2 > 0;
(H5) Let 0 < α < alγ

4
, and −α ∈ R+;

then equation (1.1) has a unique globally exponentially stable almost periodic solution.
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Proof According to Theorem 3.1, we know that (1.1) has an almost periodic solution
x∗(t), and L2 ≤ x∗(t) ≤ L1. Suppose that x(t) is arbitrary solution of (1.1) with initial
condition x(t0) > 0, t0 ∈ T. Now we prove x∗(t) is globally exponentially stable.

Let V (t) = |x(t) − x∗(t)|. Calculating the upper right derivatives of V (t) along the
solution of equation (1.1), from (H4) and (H5), then

D+V ∆(t) = sgn(x(t)− x∗(t))(x∆(t)− x∗∆(t))

= sgn(x(t)− x∗(t))[−a(t)b(t)c(t) + a(t)(b(t) + c(t))(x(t) + x∗(t))

−a(t)(x2(t) + x(t)x∗(t) + x∗2(t))](x(t)− x∗(t))

= −a(t)[b(t)c(t)− (b(t) + c(t))(x(t) + x∗(t))

+(x2(t) + x(t)x∗(t) + x∗2(t))]|x(t)− x∗(t)|

= −a(t)
[(

x(t)− b(t) + c(t)− x∗(t)
2

)2

− (b(t) + c(t) + x∗(t))2

4

+b(t)c(t) + x∗2(t)
]
|x(t)− x∗(t)|

≤ −al

[
blcl + L2

2 −
(bu + cu + L1)2

4

]
|x(t)− x∗(t)|

≤ −αV (t). (3.7)

Integrating (3.7) from t0 to t, we get V (t) ≤ e−α(t, t0)V (t0), that is

|x(t)− x∗(t)| ≤ e−α(t, t0)|x(t0)− x∗(t0)|,

then ‖x− x∗‖ ≤ |x(t0)− x∗(t0)|e−α(t, t0).
From Definition 2.3, the almost periodic solution x∗ of (1.1) is globally exponentially

stable. This completes the proof.
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时标上具Allee效应的动力学方程的概周期解

王丽丽,胡 猛

(安阳师范学院数学与统计学院,河南安阳 455000)

摘要: 本文研究了时标上具Allee效应的可再生资源动力学方程的概周期解的存在性与稳定性. 利用

线性系统指数二分性与压缩映射不动点定理, 得到了方程存在唯一概周期解的充分条件. 此外, 通过构建适

当的Laypunov函数, 得到了概周期解是全局指数稳定的充分条件.
关键词: 动力学方程; Allee效应; 概周期解; 指数稳定; 时标
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