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1 Introduction

In recent years, the increasingly serious problem of environmental degradation and re-
source shortage, made the analysis and modeling of biological systems more interested.
The predator-prey system played a crucial role among the relationships between the bio-
logical population, and it naturally attracted much attention both for mathematicians and
biologists, especially on predator-prey systems with or without time delay. As we know,
delay differential equation models exhibit much more complicated dynamics than differen-
tial equation models without delay, see [1–12]. A lot of researchers studied the dynamics
of predator-prey models with harvesting and obtained many dynamic behaviors, such as
stability of equilibrium, Hopf bifurcation, periodic solution, Bogdanov-Takens bifurcation,
Neimark-Sacker bifurcation, and so on, see [10–15].

In [16], Lucas studied the dynamic properties of the following Leslie-Gower predator-
prey system {

ẋ = x(a− y),
ẏ = y(d− k y

x
),

(1.1)

∗ Received date: 2014-11-16 Accepted date: 2015-02-26

Foundation item: Supported by the Funding Program of Higher School Outstanding Youth

Scientific and Technological Innovation Team in Hubei of China (T201412).

Biography: Li Zhenwei (1991–), male, born at Qianjiang, Hubei, major in ordinary differential

equations and control theory.



258 Journal of Mathematics Vol. 37

where x and y denote prey and predator population densities at time t, respectively, a, d,
and k are positive constants that represent the prey intrinsic growth rate, predator mortality
rate, and the maximum value of the per capita reduction rate of x due to y, respectively.

At present, economic profit is a very important factor for merchants, governments and
even every citizen, so it is necessary to research biological economic systems, which are often
described by differential-algebraic equations or differential difference-algebraic equations.

In 1954, Gordon [13] studied the effect of the harvest effort on ecosystem from an
economic perspective and proposed the following economic theory:

Net Economic Revenue (NER) = Total Revenue (TR) - Total Cost (TC).

This provides theoretical evidence for the establishment of differential-algebraic equa-
tion.

Based on the economic theory as mentioned above and system (1.1), Liu and Fu [12]
considered the following Leslie-Gower predator-prey system





ẋ = x(a− y − E),
ẏ = y(d− k y

x
),

0 = E(px− c)− v.

(1.2)

They investigated the Hopf bifurcation of the above system without considering the effect
of time delay and the harvesting of predator.

As is known to all, delay differential equation models exhibit much more complicated
dynamics than ordinary differential equation models, see [1–12], as was pointed by Kuang
[17] that any model of species dynamics without delays is an approximation at best. When
we considered the model with non-selective harvesting, namely at the same time there are
also the harvesting of predator and harvesting of the prey in the model, it will be more in
line with the actual situation of the predator-prey systems.

Motivated by the above discussion, in this paper, by choosing the time delay as a
bifurcation parameter and consider the predator-prey systems with non-selective harvesting,
we investigate a modified Leslie-Gower predator-prey systems with non-selective harvesting
and time delay described by the following system





dx
dt

= x(t)(r1 − by(t− τ)− E(t)),
dy
dt

= y(t)(r2 − k y(t)
x(t)

− E(t)),
0 = E(t)(p1x(t) + p2y(t)− c1 − c2)−m,

(1.3)

where p1 > 0 and p2 > 0 are harvesting reward per unit harvesting effort for unit prey and
predator, respectively; c1 and c2 are harvesting cost per unit harvesting effort for prey and
predator, respectively; m is the economic profit per unit harvesting effort.

In this paper, we mainly discuss the effects of economic profit on the dynamics of system
(1.3) in the region R3

+ = {(x, y, E)|x > 0, y > 0, E > 0)}.
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For convenience, we let

f(X(t), E(t)) =

(
f1(X(t), E(t))
f2(X(t), E(t))

)
=

(
x(t)(r1 − by(t− τ)− E(t))
y(t)(r2 − k y(t)

x(t)
− E(t))

)
,

g(X(t), E(t)) = E(t)(p1x(t) + p2y(t)− c1 − c2)−m,

where Xt = (x, y)T .
The rest of the paper is arranged as follows: in Section 2, the local stability of the positive

equilibrium points are investigated by the corresponding characteristic equation of system
(1.3). In Section 3, by using the normal form and Hopf bifurcation theorem, we study the
Hopf bifurcation of the nonnegative equilibrium depending on the parameter where we show
that the positive equilibrium loses its stability and system (1.3) exhibits Hopf bifurcation in
the second section. In Section 4, the theoretical result is supplied by a numerical example.
Finally, this paper ends with a brief discussion.

2 Local Stability Analysis of System

In this section, we discuss the local stability of a positive equilibrium for system (1.3).
Now, we try to find all possible positive equilibrium points of system (1.3). A point Y0 =
(x0, y0, E0) is an equilibrium point of system (1.3) if and only if Y0 satisfy the following
equations 




x(t)(r1 − by(t− τ)− E(t)) = 0,

y(t)(r2 − k y(t)
x(t)

− E(t)) = 0,

E(t)(p1x(t) + p2y(t)− c1 − c2)−m = 0.

(2.1)

From (2.1), we can easy get E0 satisfy

E3 + γ1E2 + γ2E + γ3 = 0, (2.2)

where

γ1 =
bc1 + bc2 − kp1 − p2r1 − p2r2

p2

,

γ2 =
kp1r1 + r1p2r2 + bm− bc1c2 − bc2r2

p2

, γ3 =
−bmr2

p2

< 0.

Based on the root and coefficient relationship of equation and γ3 < 0, we can find at
least one positive root E0, so system (1.3) has at least one positive equilibrium point
Y0 = (x0, y0, E0) = (k(r1−E0)

b(r2−E0)
, r1−E0

b
, E0), where r1 > E0, r2 > E0.

Now, we derive the formula for determining the properties of the positive equilibrium
point of system (1.3). As in [13], first we consider the local parametric ψ of the third equation
of system (1.3), which is defined as follows

[x, y, Ē]T = ψ(Z(t)) = NT
0 + U0 + V0h(Z(t)), g(ψ(Z(t))) = 0,
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where

U0 =




1 0
0 1
0 0


 , V0 =




0
0
1


 ,

Z(t) = (y1, y2)T , N0 = (x0, y0, Ē0),

h(Z(t)) = h(h1(y1(t), y2(t)), h2(y1(t), y2(t)), h3(y1(t), y2(t))) : R2 −→ R

is a smoothing mapping, that is

x(t) = x0 + y1(t), y(t) = y0 + y2(t), Ē(t) = Ē0 + h3(y1(t), y2(t)).

Then we can obtain the parametric system of system (1.3) as follows
{

dy1(t)
dt

= (y1(t) + x0)(r1 − b(y2(t) + y0)− (Ē0 + h3(y1(t), y2(t))),
dy2(t)

dt
= (y2(t) + y0)(r2 − k (y2(t)+y0)

(y1(t)+x0)
− (Ē0 + h3(y1(t), y2(t))).

(2.3)

Noticing that g(ψ(Z(t))) = 0, so we can get the linearized system of parametric system (2.3)
at (0,0) as follows {

dy1(t)
dt

= −bx0y2(t− τ),
dy2(t)

dt
= ky2

0
x2
0

y1(t)− ky0
x0

y2(t).
(2.4)

From (2.4), we can obtain the characteristic equation of the linearized system of parametric
system (2.2) at (0,0) as follows

λ2 +
ky0

x0

λ + b
ky2

0

x0

e−λτ = 0. (2.5)

By eq. (2.5), when τ = 0, it is obvious that ky0
x0

> 0 and kby2
0

x0
> 0, then, two roots of eq.

(2.5) has always negative teal parts, i.e., the positive equilibrium point of system (1.3) is
locally asymptotically stable.

Now, based on the above discussion, we study the local stability around the positive
equilibrium point for system (1.3) and the existence of Hopf bifurcation occurring at the
positive equilibrium point when τ > 0.

If iω is a root of eq. (2.5), and substituting iω (ω is a positive real number) into eq.
(2.5), and separating the real and imaginary parts, two transcendental equations can be
obtained as follows

ω2 =
kby2

0

x0

cos(ωτ), (2.6)

ky0

x0

ω =
kby2

0

x0

sin(ωτ). (2.7)

Since sin(ωτ)2 + cos(ωτ)2 = 1 and adding (2.6) and (2.7), we obtain

ω4 + (
ky0

x0

)2ω2 − (
kby2

0

x0

)2 = 0. (2.8)
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From (2.8), (ky0
x0

)2 > 0 and −(kby2
0

x0
)2 < 0, we can easy find that eq. (2.5) has a unique

positive root ω0, that is

ω0 =

√√√√−(ky0
x0

)2 +
√

(ky0
x0

)2 + 4(kby2
0

x0
)2

2
. (2.9)

Substituting ω0 into (2.6) and solving for τ , we get

τn =
1
ω0

arccos(
x0ω

2
0

kby2
0

) +
2nπ

ω0

, n = 0, 1, 2, · · · . (2.10)

Thus when τ = τn, the characteristic equation (2.5) has a pair of purely imaginary roots
iω0.

Lemma 2.1 Denote by λn(τ) = ηn(τ) + iωn(τ) the root of (2.5) such that ηn(τn) = 0,
ωn(τn) = ω0, n = 0, 1, 2, · · · . Then the following transversality condition η′n(τn) is satisfied.

Proof Differentiating eq. (2.5) with respect to τ , we obtain

(
dλ

dτ
)−1 =

[2λx0 + ky0 − kby2
0τe−λτ ]

kby2
0τe−λτ

= − 1
λ2
− τ

λ
− 1

λ2 + ky0
x0

λ
.

Noting that

sign{Re(
dλ

dt
)}λ=iω = sign{Re(

dλ

dt
)−1}λ=iω = sign{ 2ω2

0 + (ky0
x0

)2

ω2
0(ω2

0 + ky0
x0

2
)
} > 0.

The proof is completed.
From the above analysis and [17, 18], we have the following results.
Theorem 2.1 (i) For system (1.3), its positive equilibrium point Y0 is locally asymp-

totically stable for τ ∈ [0, τ0) and unstable for τ > τ0.
(ii) System (1.3) undergoes Hopf bifurcation at the positive equilibrium point Y0 for

τ = τn, n = 0, 1, 2, · · · .

3 Direction and the Stability of Hopf Bifurcation

In this section, we investigate the direction of bifurcation and the stability of bifurcation
periodic orbits from the positive equilibrium point Y0 of system (1.3) at τ = τ0 by using the
normal form approach theory and center manifold theory introduced by Hassard [15].

Now, we re-scare the time by

t =
t

τ
, ȳ1 = y1, ȳ2 = y2, τ = τ0 + µ, Z̄ = (ȳ1, ȳ2)

for simplicity, we continue to use Z said Z̄, then the parametric system (2.3) of system
(1.3) is equivalent to the following functional differential equation (FDE) system in C =
C([−1, 0],R2),

Ż(T ) = LµZ(T ) + f(µ,Zt), (3.1)
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where Z(T ) = (y1(t), y2(t))T , and Lµ : C → R, f : R× C → R are given, respectively, by

Lµ(φ) = (τ0 + µ)

[
0 0
a21 a22

]
φT (0) + (τ0 + µ)

[
0 a12

0 0

]
φT (−1),

where

a12 = −bx0, a21 =
ky2

0

x2
0

, a22 = −ky0

x0

,

and f(µ, φ) = (τ0 + µ)

(
f11

f22

)
, where

f11 = −bφ1(0)φ2(−1),

f22 = −ky2
0

x3
0

φ2
1(0) +

2ky0

x0

φ1(0)φ2(0)− k

x0

φ2
2(0) + · · · ,

and φ = (φ1, φ2) ∈ C. By the Riesz representation theorem, there exists a matrix whose
components are bounded variation functions θ ∈ [−1, 0] such that

Lµ(φ) =
∫ 0

−1

dη(θ, µ)φ(θ), φ ∈ C.

In fact, choosing

η(θ, µ) = (τ0 + µ)

[
0 0
a21 a22

]
δ(θ) + (τ0 + µ)

[
0 a12

0 0

]
δ(θ + 1),

where δ(θ) =

{
0, θ 6= 0,

1, θ = 0.
For φ ∈ C1([−1, 0],R2), define

A(µ)φ(θ) =





dφ(θ)
dθ

, −1 ≤ θ < 0,∫ 0

−1

dη(θ, µ)φ(θ), θ = 0.
(3.2)

Then system (3.1) can be rewritten as

Ż = A(µ)Zt + R(µ)Zt. (3.3)

For ψ ∈ C1([0, 1], (R2)∗), the adjoint operator A∗ of A as

A∗ψ(s) =




−dψ(s)

ds
, 0 < s ≤ 1,∫ 0

−1

dηT (s, 0)ψ(−s), s = 0,
(3.4)

where ηT is the transpose of the matrix η.
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For φ ∈ C1([−1, 0],R2) and for ψ ∈ C1([0, 1], (R2)∗), in order to normalize the eigenvec-
tors of operator A and adjoint operator A∗, we define a bilinear inner product

〈ψ(s), φ(θ)〉 = ψ̄(0)φ(0)−
∫ 0

θ=−1

∫ θ

ξ=0

ψ̄(ξ − θ)dη(θ)φ(ξ)dξ, (3.5)

where η(θ) = η(θ, 0). It is easy to verify that A(0) and A∗ are a pair of adjoint operators.
By the discussion in Section 2, we know that ±iωτ0 are eigenvalues of A(0). Thus they

are also eigenvalues of A∗. Next we calculate the eigenvector q(θ) of A associated to the
eigenvalue iωτ0 and the eigenvector q∗(s) of A∗ associated to the eigenvalue −iωτ0. Then it
is not difficult to show that

q(θ) = (1, β)T , q∗(s) = G(β∗, 1)eiωτ0s,

where

β = − iω

bx0e−iωτ0
, β∗ =

iω − ky0
x0

bx0e−iωτ0
, Ḡ = (β + β̄∗ − bx0τ0ββ̄∗e−iωτ0)−1.

Moreover, 〈q∗(s), q(θ)〉 = 1 and 〈q∗(s), q̄(θ)〉 = 0.
In the reminder of this section, we use the same notations as those in [15]. We first

compute the coordinates to describe the center manifold C0 at µ = 0. Define

ż(t) = 〈q∗, Zt〉,W (t, θ) = Zt − 2Rez(t)q(θ). (3.6)

On the center manifold C0, we have

W (t, θ) = W (z(t), z̄(t), θ) = W20(θ)
z2

2
+ W11(θ)zz̄ + W02(θ)

z̄2

2
+ · · · . (3.7)

In fact, z and z̄ are local coordinates for center manifold C0 in the direction of q and q̄∗.
Note that W is real if zt is real. We consider only real solutions. For the solution zt ∈ C0,
since µ = 0 and (3.3), we have

ż = iωτ0z + 〈q∗(θ), f(0,W (z, z̄, θ) + 2Re[z(t)q(θ)])〉,
= iωτ0z + q̄∗f(0,W (z, z̄, 0) + 2Re[z(t)q(θ)]), (3.8)

rewrite it as
ż = iωτ0z + g(z, ż), (3.9)

where

g(z, ż) = g20(θ)
z2

2
+ g11(θ)zz̄ + g02(θ)

z̄2

2
+ · · · . (3.10)

From (3.3) and (3.8), we have

Ẇ = Żt − żq − ˙̄zq =

{
AW − 2Re{q̄∗f(z, z̄)q(θ))}, −1 ≤ θ < 0,

AW − 2Re{q̄∗f(z, z̄q(θ))}+ f, θ = 0.
(3.11)
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Rewrite (3.11) as
Ẇ = AW + H(z, Z̄, θ), (3.12)

where

H(z, z̄, θ) = H20(θ)
z2

2
+ H11(θ)zz̄ + H02(θ)

z̄2

2
+ · · · . (3.13)

Substituting the corresponding series into (3.12) and comparing the coefficient, we obtain

(A− 2iωτ0)W20(θ) = −H20(θ), AW11(θ) = −H11(θ). (3.14)

Notice that
q(θ) = (1, β)T eiωτ0θ, q∗(0) = G(β∗, 1),

and (3.6) we obtain

y1t(0) = z + z̄ + W 1
20(0)

z2

2
+ W 1

11(0)zz̄ + W 1
02(0)

z̄2

2
+ · · · ,

y2t(0) = βz + β̄z̄ + W 2
20(0)

z2

2
+ W 2

11(0)zz̄ + W 2
02(0)

z̄2

2
+ · · · ,

y1t(−1) = βze−iωτ0 + β̄z̄eiωτ0 + W 1
20(−1)

z2

2
+ W 1

11(−1)zz̄ + W 1
02(−1)

z̄2

2
+ · · · ,

y2t(−1) = βze−iωτ0 + β̄z̄eiωτ0 + W 2
20(−1)

z2

2
+ W 2

11(−1)zz̄ + W 2
02(−1)

z̄2

2
+ · · · .

According to (3.8) and (3.9), we know that

g(z, z̄) = q̄∗(0)f0(z, z̄) = Ḡτ0(β̄∗, 1)

(
f0
11

f0
22

)
, (3.15)

where

f0
11 = −by1t(0)y2t(−1),

f0
22 = −ky2

0

x3
0

y1t(0)2 +
2ky0

x0

y1t(0)y2t(0)− k

x0

y2t(0)2 + · · · .

By (3.7), it follows that

g(z, z̄) = Ḡτ0{−bβ̄∗[z + z̄ + W 1
20(0)

z2

2
+ W 1

11(0)zz̄ + W 1
02(0)

z̄2

2
]

×[βze−iωτ0 + β̄z̄eiωτ0 + W 2
20(−1)

z2

2
+ W 2

11(−1)zz̄ + W 2
02(−1)

z̄2

2
]

−ky2
0

x3
0

[z + z̄ + W 1
20(0)

z2

2
+ W 1

11(0)zz̄ + W 1
02(0)

z̄2

2
]2

+
2ky0

x0

[z + z̄ + W 1
20(0)

z2

2
+ W 1

11(0)zz̄ + W 1
02(0)

z̄2

2
]

×[βz + β̄z̄ + W 2
20(0)

z2

2
+ W 2

11(0)zz̄ + W 2
02(0)

z̄2

2
]

− k

x0

[βz + β̄z̄ + W 2
20(0)

z2

2
+ W 2

11(0)zz̄ + W 2
02(0)

z̄2

2
]2 + · · · }.
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That is,

g(z, z̄) = Ḡτ0{z2[−bββ̄∗e−iωτ0 − ky2
0

x3
0

+
2ky0

x0

β − k

x0

β2]

+zz̄[−bβ̄∗(β̄eiωτ0 + βe−iωτ0)− 2
ky2

0

x3
0

+
2ky0

x0

(β̄ + β)− 2
k

x0

ββ̄]

+z̄2[−bβ̄∗β̄eiωτ0 − ky2
0

x3
0

+
2ky0

x0

β̄ − k

x0

β̄2]

+z2z̄[(−bββ̄∗eiωτ0 − 2
ky2

0

x3
0

+
2ky0

x0

β)W 1
11(0) + (

2ky0

x0

− 2
k

y0

)W 2
11(0)

+(
−bββ̄∗eiωτ0

2
− ky2

0

x3
0

+
2ky0
x0

β̄

2
)W 1

20(0) + (
2ky0
x0

2
− k

x0

β̄)W 2
20(0)

−bβ̄∗W 2
11(−1) +

−bβ̄∗

2
W 2

20(−1)] + · · · }.

Comparing the coefficients with (3.10), it follows that

g20 = 2Ḡτ0[−bββ̄∗e−iωτ0 − ky2
0

x3
0

+
2ky0

x0

β − k

x0

β2],

g11 = Ḡτ0[−bβ̄∗(β̄eiωτ0 + βe−iωτ0)− 2
ky2

0

x3
0

+
2ky0

x0

(β̄ + β)− 2
k

x0

ββ̄],

g02 = [−bβ̄∗β̄eiωτ0 − ky2
0

x3
0

+
2ky0

x0

β̄ − k

x0

β̄2],

g21 = [(−bββ̄∗eiωτ0 − 2
ky2

0

x3
0

+
2ky0

x0

β)W 1
11(0) + (

−bββ̄∗eiωτ0

2
− ky2

0

x3
0

+
2ky0
x0

β̄

2
)W 1

20(0)

+(
2ky0

x0

− 2
k

y0

)W 2
11(0) + (

2ky0
x0

2
− k

x0

β̄)W 2
20(0)− bβ̄∗W 2

11(−1) +
−bβ̄∗

2
W 2

20(−1)].

Now we compute W20(θ) and W11(θ). From (3.11) and (3.15), we have that for θ ∈ [−1, 0),

H(z, z̄, θ) = −2Re{q̄∗(0)f(z, z̄)q(θ)} = −g(z, z̄)q(θ)− ḡ(z, z̄)q̄(θ). (3.16)

Comparing the coefficients with (3.13), we can obtain that

H20(θ) = −g20q(θ)− ḡ02q̄(θ),H11(θ) = −g11q(θ)− ḡ11q̄(θ). (3.17)

Substituting the above equalities into (3.14), it follows that
{

Ẇ20(θ) = 2iωW20(θ) + g20q(θ) + ḡ02q̄(θ),
Ẇ11(θ) = g11q(θ) + ḡ11q̄(θ).

(3.18)

Solving (3.18), we have

{
W20(θ) = ig20

τ0ω
q(0)eiωτ0θ + iḡ02

3ωτ0
q̄(0)e−iωτ0θ + Ee2iωτ0 ,

W11(θ) = − ig11
τ0ω

q(0)eiωτ0θ + iḡ11
ωτ0

q̄(0)e−iωτ0θ + F.
(3.19)
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In what follows, we seek appropriate E and F in (3.19). From (3.11) and (3.15), we have

H20(0) = −g20q(0)− ḡ02q̄(0) + 2τ0

(
d1

d2

)
, (3.20)

H11(0) = −g11q(0)− ḡ11q̄(0) + 2τ0

(
d1

d2

)
, (3.21)

where

d1 = −bβ∗e−iωτ0 , d2 = −ky2
0

x3
0

+
2ky0

x0

β − k

x0

β2,

d3 = −bRe(β∗eiωτ0), d4 = −ky2
0

x3
0

+
2ky0

x0

Re(β)− k

x0

ββ̄.

Substituting (3.19)–(3.21) into (3.14) and noting that

(iωτ0I −
∫ 0

−1

eiωτ0θdη(θ))q(0) = 0,

(−iωτ0I −
∫ 0

−1

e−iωτ0θdη(θ))q(0) = 0.

We obtain
(

2iω bx0e
−2iω0τ0

−ky2
0

x2
0

2iω + ky0
x0

)
E = 2

(
d1

d2

)
, (3.22)

(
0 bx0

−ky2
0

x2
0

ky0
x0

)
F = 2

(
d3

d4

)
. (3.23)

It is easy to obtain E and F from (3.22) and (3.23), that is

E(1) =
(2iω + ky0

x0
)d1 − bx0e

−2iω0τ0

2ky0iω
x0

+ bky2
0

x0
e−2iω0τ0 − 4ω2

,

E(2)=

ky2
0

x2
0

d3 + 2iωd4

2ky0iω
x0

+ bky2
0

x0
e−2iω0τ0 − 4ω2

,

F (1) =
ky0
x0

d3 − bx0d4

bky2
0

x0

, F (2) =
d3

bx0

.

Therefore we can compute the following quantities

C1(0) =
i

2τ0ω0

(g20g11 − 2|g11|2 − 1
3
|g02|2) +

g21

2
,

µ2 = − ReC1(0)
Reλ′(τ0)

, t2 = − ImC1(0) + µ2Imλ′(τ0)
τ0ω0

, β2 = 2ReC1(0),
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which determine the direction of Hopf bifurcation and stability of bifurcated periodic solu-
tions of system (1.3) at the critical value τ0.

Theorem 3.1 (i) The direction of Hopf bifurcation is determined by the sign of µ2: the
Hopf bifurcation is supercritical if µ2 > 0 and the Hopf bifurcation is subcritical if µ2 < 0.

(ii) The stability of bifurcated periodic solution is determined by β2: the periodic
solution are stable if β2 > 0 and unstable if β2 < 0.

(iii) The period of bifurcation periodic solution is determined by t2: the period increase
if t2 > 0, decrease if t2 < 0.
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Figure 1: When τ = 0.62 < τ0 and with initial conditions x0 = 2.0053, y0 = 3.1480,
E0 = 0.0256, that show the positive equilibrium point Y0 is locally asymptotically stable.

4 Numerical Simulations

As an example we consider the differential-algebraic predator-prey system (1.3) with
the parameters r1 = 1.6, r2 = 1.3, b = k = m = 0.5, p1 = 7, p2 = 6, c1 = 5, c2 = 3, that is,





dx
dt

= x(t)(1.6− 0.5y(t− τ)− E(t)),
dy
dt

= y(t)(1.3− 0.5 y(t)
x(t)

− E(t)),
0 = E(t)(7x(t) + 6y(t)− 5− 3)− 0.5.

(4.1)

And by the discussions in Section 2 and Section 3, we determine the stability of the posi-
tive equilibrium point and Hopf bifurcation. Here, for convenience, we only discuss one of
the positive equilibrium point Y0 of system (4.1), and others positive equilibrium points of
system (4.1) can be similar studied. we can easily get Y0 = (2.0053, 3.1480, 0.0256), and by
computing, we get ω0 = 0.9942, τ0 = 0.6473. So by Theorem 2.1, the equilibrium point Y0

is asymptotically stable when τ ∈ [0, τ0) = [0, 0.6473) and unstable when τ > 0.6473.
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Figure 2: When τ = 0.682 > τ0, with the same initial conditions above that shows the
bifurcating periodic solutions from the positive equilibrium point Y0.

When τ = 0, we can easily show that the positive equilibrium point

Y0 = (2.0053, 3.1480, 0.0256)

is asymptotically stable.
By the theory of Hassard [15], as it is discussed in former section, we also determine the

direction of Hopf bifurcation and the other properties of bifurcating periodic solution. By
computing, we can obtain the following values C1(0) = 0.5303 − 0.4428i, λ′(τ0) = 1.6352 +
1.1431i, it follows that µ2 = −0.3243 < 0, β2 = 1.0607 > 0, t2 = 1.2643 > 0, from which and
Theorem 3.1 we conclude that the Hopf bifurcation of system(4.1) occurring at τ0 = 0.6473
is subcritical and the bifurcating periodic solution exists when τ cross τ0 to the left and the
bifurcating periodic solution is unstable.

By Theorem 3.1, the positive equilibrium point Y0 of system (4.1) is locally asymp-
totically stable when τ = 0.62 < τ0 as is illustrated by computer simulation in Fig.1. And
periodic solutions occur from Y0 when τ = 0.682 > τ0 as is illustrated by computer simulation
in Fig.2.

5 Discussion

Nowadays, economic profit is a very important factor for governments, merchants, and
even citizen, and the harvested biological resources in the predator-prey systems are usually
sold as commodities in the market in order to achieve the economic interest. So modelling
and qualitative analysis for bio-economic system are necessary.
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Compared with most other researches on dynamics of predator-prey population, see [1,
5, 12, 18], the main contribution of this paper lies in the following aspect. The predator-prey
system we consider incorporate delay and non-selective harvesting, which could make our
model more realistic and the analysis result in this paper is more scientific. So our paper
provide a new ideal and a efficacious method for the qualitative analysis of the Hopf bifur-
cation of the differential-algebraic biological economic system. In addition, stage structure,
diffusion effects, disease effects may be incorporated into our bio-economic system, which
would make the bio-economic system exhibit much more complicated dynamics.
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一类带无选择性捕获和时滞的捕食食饵系统的Hopf分支分析

李震威,李必文,刘 炜,汪 淦

(湖北师范学院数学与统计学院,湖北黄石 435002)

摘要: 本文主要研究了一个改进的带时滞和无选择捕获函数的捕食-食饵生态经济系统的稳定性

和Hopf分支. 利用微分代数系统的稳定性理论和分支理论, 得到了系统正平衡点稳定性的条件, 以及当时

滞τ作为分支参数时系统产生Hopf分支的条件. 对Leslie-Gower捕食-食饵模型进行了一定程度的完善, 使得

建立的模型更符合实际情况, 因此得到的结论也更加科学.
关键词: 稳定性; Hopf分支; 时滞; 无选择性; 捕食食饵系统; 周期解
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